Skip to main content
Log in

Trajectory Tracking Control of a Class of Underactuated Mechanical Systems with Nontriangular Normal Form Based on Block Backstepping Approach

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, the formulation of a block-backstepping control approach is presented to address the trajectory tracking problem for a general class of nonlinear n degrees of freedom (n-DOF) underactuated mechanical systems (UMSs) in nontriangular normal form. First, the Euler-Lagrange model of the general form of UMSs is transformed into block-strict feedback form. Then, control input for the n-DOF UMS will be obtainable by synthesis of the backstepping approach. Additionally, an integral action is incorporated to the proposed controller to enhance the steady state performance of the overall system and also to improve the trajectory tracking precision of the control system. Lyapunov theory is utilizable to prove the stability and convergence of the overall system. To demonstrate the effectiveness of the designed controller, the proposed control algorithm is applied through numerical simulation for the trajectory tracking of a single-link flexible-link flexible-joint manipulator (SFLFJM) as an UMS with the nontriangular normal form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spong, M.W.: Underactuated mechanical systems. In: Control Problems in Robotics and Automation, pp. 135–150. Springer, Berlin (1998)

  2. Liu, Y., Yu, H.: A survey of underactuated mechanical systems. IET Control Theor. Appl. 7(7), 921–935 (2013)

    Article  MathSciNet  Google Scholar 

  3. Olfati-Saber, R.: Nonlinear Control of Underactuated Mechanical Systems with Application to Robotics and Aerospace Vehicles. Massachusetts Institute of Technology (2001)

  4. Fantoni, I., Lozano, R.: Non-linear Control for Underactuated Mechanical Systems. Springer Science & Business Media, London (2002)

    Book  Google Scholar 

  5. Aneke, N.P.I.: Control of Underactuated Mechanical Systems. Technische Universiteit Eindhoven (2003)

  6. Maalouf, D., Moog, C.H., Aoustin, Y., Li, S.: Classification of two-degree-of-freedom underactuated mechanical systems. IET Control Theor. Appl. 9(10), 1501–1510 (2015)

    Article  MathSciNet  Google Scholar 

  7. Zhang, M., Ma, X., Rong, X., Tian, X., Li, Y.: Error tracking control for underactuated overhead cranes against arbitrary initial payload swing angles. Mech. Syst. Signal Process. 84, 268–285 (2017)

    Article  Google Scholar 

  8. Sepulchre, R., Jankovic, M., Kokotovic, P.V.: Constructive Nonlinear Control. Springer Science & Business Media (2012)

  9. Kokotović, P., Arcak, M.: Constructive nonlinear control: a historical perspective. Automatica 37(5), 637–662 (2001)

    Article  MathSciNet  Google Scholar 

  10. Khalil, H.K.: Noninear Systems, vol. 2, pp. 5–1. Prentice-Hall, New Jersey (1996)

    Google Scholar 

  11. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design, vol. 222. Wiley, New York (1995)

    Google Scholar 

  12. Chang, Y., Cheng, C.-C.: Block backstepping control of multi-input nonlinear systems with mismatched perturbations for asymptotic stability. Int. J. Control 83(10), 2028–2039 (2010)

    Article  MathSciNet  Google Scholar 

  13. Rudra, S., Barai, R.K., Maitra, M.: Nonlinear state feedback controller design for underactuated mechanical system: a modified block backstepping approach. ISA Trans. 53(2), 317–326 (2014)

    Article  Google Scholar 

  14. Rudra, S., Barai, R.K., Maitra, M.: Block Backstepping Design of Nonlinear State Feedback Control Law for Underactuated Mechanical Systems. Springer, Berlin (2016)

    MATH  Google Scholar 

  15. Chang, Y.: Block backstepping control of MIMO systems. IEEE Trans. Autom. Control 56(5), 1191–1197 (2011)

    Article  MathSciNet  Google Scholar 

  16. Rudra, S., Barai, R.K., Maitra, M.: Design and implementation of a block-backstepping based tracking control for nonholonomic wheeled mobile robot. Int. J. Robust Nonlinear Control 26(14), 3018–3035 (2016)

    Article  MathSciNet  Google Scholar 

  17. Dong, Z., Wan, L., Li, Y., Liu, T., Zhang, G.: Trajectory tracking control of underactuated USV based on modified backstepping approach. Int. J. Naval Archit. Ocean Eng. 7(5), 817–832 (2015)

    Article  Google Scholar 

  18. Vakil, M., Fotouhi, R., Nikiforuk, P.: A new method for dynamic modeling of flexible-link flexible-joint manipulators. J. Vib. Acoust. 134(1), 014503 (2012)

    Article  Google Scholar 

  19. Staufer, P., Gattringer, H., Bremer, H.: Comparative study on control concepts of a robot manipulator with multiple-link/joint flexibilities. PAMM 12(1), 79–80 (2012)

    Article  Google Scholar 

  20. Suklabaidya, S., Lochan, K., Roy, B.: Modeling and sliding mode control of flexible link flexible joint robot manipulator. In: Proceedings of the 2015 Conference on Advances in Robotics, p. 59. ACM (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad-Reza Moghanni-Bavil-Olyaei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Dynamic Model of the SFLFJM

Appendix: Dynamic Model of the SFLFJM

Mass matrix:

$$M=M_{FI} +M_{FR} $$

where

$$M_{FI} =\left[ {{\begin{array}{*{20}c} {h^{2}I_{r} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \end{array} }} \right], M_{FR} =\left[ {{\begin{array}{*{20}c} 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {\mathrm{M}_{\text{11}} } \hfill & {\mathrm{M}_{12} } \hfill & {\mathrm{M}_{13} } \hfill \\ 0 \hfill & {\mathrm{M}_{21} } \hfill & {\mathrm{M}_{22} } \hfill & {\mathrm{M}_{23} } \hfill \\ 0 \hfill & {\mathrm{M}_{31} } \hfill & {\mathrm{M}_{32} } \hfill & {\mathrm{M}_{33} } \hfill \end{array} }} \right] $$

where

$$\begin{array}{@{}rcl@{}} M_{11} &=&{(\rho L^{3})} / 3+\rho ({\Phi}_{11} {\delta_{1}^{2}} + 2{\Phi}_{12} \delta_{1} \delta_{2} +{\Phi}_{22} {\delta_{2}^{2}} )\\ &&+I_{h} +I_{tip} +m_{tip} L^{2} +m_{tip} (\phi_{_{1} }^{2} (L){\delta_{1}^{2}}\\ &&+ 2\phi_{1} (L)\phi_{2} (L)\delta_{1} \delta_{2} +\phi_{_{2} }^{2} (L){\delta_{2}^{2}} )\\ M_{12} &=&\rho {\Phi}_{1x} +m_{tip} L\phi_{1} (L)+I_{tip} {\phi }^{\prime}_{1} (L) \\ M_{21} &=&M_{12} \end{array} $$
$$\begin{array}{@{}rcl@{}} M_{13} &=&\rho {\Phi}_{2x} +m_{tip} L\phi_{2} (L)+I_{tip} {\phi }^{\prime}_{2} (L) \\ M_{31} &=&M_{13} \\ M_{22} &=&\rho {\Phi}_{11} +m_{tip} {\phi_{1}^{2}}(L)+I_{tip} \phi^{\prime{2}}_{1}(L) \\ M_{23} &=&\rho {\Phi}_{11} +m_{tip} \phi_{1} (L)\phi_{2} (L)+I_{tip} {\phi }^{\prime}_{1} (L){\phi }^{\prime}_{2} (L) \\ M_{32} &=&M_{23} \\ M_{33} &=&\rho {\Phi}_{22} +m_{tip} {\phi_{2}^{2}}(L)+I_{tip} {\phi }^{\prime2}_{2} (L) \end{array} $$

Stiffness matrix:

$$K=K_{FI} +K_{FR} $$

where

$$\begin{array}{@{}rcl@{}} K_{FI} =\left[ {{\begin{array}{*{20}c} {\mathrm{k}_{\text{jo}} } \hfill & {{-k}_{\text{jo}} } \hfill & 0 \hfill & 0 \hfill \\ {{-k}_{\text{jo}} } \hfill & {\mathrm{k}_{\text{jo}} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \end{array} }} \right], K_{FR} =\left[ {{\begin{array}{*{20}c} 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {\text{0}} \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\mathrm{K}_{11} } \hfill & {\mathrm{K}_{12} } \hfill \\ 0 \hfill & 0 \hfill & {\mathrm{K}_{21} } \hfill & {\mathrm{K}_{22} } \hfill \end{array} }} \right] \end{array} $$

where

$$\begin{array}{@{}rcl@{}} K_{11} &=& EI{\Phi}_{11xx} \\ K_{12} &=& EI{\Phi}_{12xx} \\ K_{21} &=& K_{12} \\ K_{22} &=& EI{\Phi}_{22xx} \end{array} $$

Dissipation matrix:

$$\begin{array}{@{}rcl@{}} C=\left[ {{\begin{array}{*{20}c} 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {\mathrm{C}_{11} } \hfill & {\mathrm{C}_{12} } \hfill & {\mathrm{C}_{13} } \hfill \\ 0 \hfill & {\mathrm{C}_{21} } \hfill & {\mathrm{C}_{22} } \hfill & {\mathrm{C}_{23} } \hfill \\ 0 \hfill & {\mathrm{C}_{31} } \hfill & {\mathrm{C}_{32} } \hfill & {\mathrm{C}_{33} } \hfill \end{array} }} \right] \end{array} $$

where

$$\begin{array}{@{}rcl@{}} C_{11} &=&\rho (\dot{{\delta }}_{1} (\delta_{1} {\Phi}_{11} +\delta_{2} {\Phi}_{12} )+\dot{{\delta }}_{2} (\delta_{2} {\Phi}_{22} +\delta_{1} {\Phi}_{12} )) \\ && +m_{tip} ({\phi_{1}^{2}} (L)\dot{{\delta }}_{1} \delta_{1} +\phi_{1} (L)\phi_{2} (L)\dot{{\delta }}_{1} \delta_{2}\\ &&+\phi_{1} (L)\phi_{2} (L)\dot{{\delta }}_{2} \delta_{1} +\delta_{2} \dot{{\delta }}_{2} \phi_{2}^{2} (L)); \\ C_{12} &=&\rho \dot{{\theta }}_{L} (\delta_{1} {\Phi}_{11} +\delta_{2} {\Phi}_{12} )+m_{tip} \dot{{\theta }}_{L} (\delta_{1} {\phi_{1}^{2}} (L)\\ &&+\phi_{1} (L)\phi_{2} (L)\delta_{2} ); \\ C_{21} &=&-C_{12} \\ C_{13} &=&\rho \dot{{\theta }}_{L} (\delta_{2} {\Phi}_{22} +\delta_{1} {\Phi}_{12} )+m_{tip} \dot{{\theta }}_{L} (\delta_{1} \phi_{1} (L)\phi_{2} (L)\\ &&+\delta_{2} {\phi_{2}^{2}} (L)); \\ C_{31} &=&-C_{13} \\ C_{23} &=&0 \\ C_{32} &=&0 \\ C_{22} &=&0 \\ C_{33} &=&0 \end{array} $$

Gravity vector:

$$\begin{array}{@{}rcl@{}} G=\left[ {{\begin{array}{*{20}c} {G_{1} } \hfill \\ {G_{2} } \hfill \\ {G_{3} } \hfill \\ {G_{4} } \hfill \end{array} }} \right] \end{array} $$

where

$$\begin{array}{@{}rcl@{}} G_{1} &=&0; \\ G_{2} &=&\rho g{(L^{2}} / 2)cos(\theta_{L} )-\rho g(\delta_{1} {\Phi}_{10} +\delta_{2} {\Phi}_{20} )sin(\theta_{L} ); \\ G_{3} &=&\rho g{\Phi}_{10} cos(\theta_{L} ); \\ G_{4} &=&\rho g{\Phi}_{20} cos(\theta_{L} ); \end{array} $$

where

$$\begin{array}{@{}rcl@{}} &&{\kern-7.75pt} {\Phi}_{10} = {{\int}_{0}^{L}} {\phi_{1} (x)dx} \\ &&{\kern-7.75pt} {\Phi}_{20} = {{\int}_{0}^{L}} {\phi_{2} (x)dx} \\ &&{\kern-7.75pt} {\Phi}_{11} = {{\int}_{0}^{L}} {{\phi_{1}^{2}} (x)dx} \\ &&{\kern-7.75pt} {\Phi}_{12} = {{\int}_{0}^{L}} {\phi_{1} (x)\phi_{2} (x)dx} \\ &&{\kern-7.75pt} {\Phi}_{22} = {{\int}_{0}^{L}} {{\phi_{2}^{2}} (x)dx} \\ &&{\kern-7.75pt} {\Phi}_{1x} = {{\int}_{0}^{L}} {x\phi_{1} (x)dx} \\ &&{\kern-7.75pt} {\Phi}_{2x} = {{\int}_{0}^{L}} {x\phi_{2} (x)dx} {\Phi}_{11xx} ={{\int}_{0}^{L}} {\left( {\frac{d^{2}\phi_{1} (x)}{dx^{2}}} \right)^{2}dx} \\ &&{\kern-7.75pt} {\Phi}_{12xx} = {{\int}_{0}^{L}} {\left( {\frac{d^{2}\phi_{1} (x)}{dx^{2}}} \right)\left( {\frac{d^{2}\phi_{2} (x)}{dx^{2}}} \right)dx} \\ &&{\kern-7.75pt} {\Phi}_{22xx} = {{\int}_{0}^{L}} {\left( {\frac{d^{2}\phi_{2} (x)}{dx^{2}}} \right)^{2}dx} \end{array} $$

where

$$\begin{array}{@{}rcl@{}} \phi_{\text{1}} (\mathrm{x}) = {\cosh}(\mu_{1} \text{x})-\cos(\mu_{1} \text{x})-\gamma_{\text{1}} ({\sinh}(\mu_{1} \text{x})-\sin(\mu_{1} \text{x})) \\ \phi_{\text{2}} (\text{x})= {\cosh}(\mu_{2} \text{x})-\cos(\mu_{2} \text{x})-\gamma_{\text{2}} ({\sinh}(\mu_{2} \text{x})-\sin(\mu_{2} \text{x})) \end{array} $$

where

$$\begin{array}{@{}rcl@{}} \mu_{1} &=&\frac{\beta_{1} }{L} , \mu_{2} =\frac{\beta_{2} }{L} \\ \beta_{1} &=&1.8751 , \beta_{2} = 4.6941 , \gamma_{1} = 0.7341 , \gamma_{2} = 1.0185 \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghanni-Bavil-Olyaei, MR., Ghanbari, A. & Keighobadi, J. Trajectory Tracking Control of a Class of Underactuated Mechanical Systems with Nontriangular Normal Form Based on Block Backstepping Approach. J Intell Robot Syst 96, 209–221 (2019). https://doi.org/10.1007/s10846-019-00984-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-00984-5

Keywords

Navigation