Skip to main content
Log in

Image Uncertainty-Based Absolute Camera Pose Estimation with Fibonacci Outlier Elimination

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Estimating the pose of a camera is a vital requirement in real-world applications like virtual reality, structure from motion, vision-assisted robot localization and manipulation. The existing Perspective-n-Point (PnP) based pose estimation algorithms have poor accuracy in presence of noise and outliers. Hence, they are combined with the Random Sample Consensus strategies to eliminate the outliers prior to pose estimation and to produce accurate results at the expense of computation time. With this concern, an Image Uncertainty-based Perspective-n-Point (IUPnP) with Fibonacci-based outlier rejection is proposed to accurately estimate the absolute pose of a calibrated camera with a minimum computation load. The uncertainties of the spherically normalized camera coordinates are formulated in the tangent space of the camera coordinate system and the initial pose is estimated using Singular Value Decomposition. The correspondences with tangent space residual exceeding the threshold values, are classified as outliers and then rejected iteratively. In order to prevent the inlier rejections and to improve the pose estimates, the threshold values are updated eventually using the Fibonacci technique. Finally, the estimated pose values are refined, using Gauss-Newton optimization. The proposed IUPnP algorithm is tested with synthetic data and real image data to validate its performance by comparing with the existing PnP algorithms in terms of accuracy. The results show that the proposed technique produces better pose estimates for correspondences with 50% outliers, than the state-of-art techniques do.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: an accurate O(n) solution to the PnP problem. Int. J. Comput. Vis. 81, 155 (2009). https://doi.org/10.1007/s11263-008-0152-6

    Article  Google Scholar 

  2. Choi, S.-I., Park, S.-Y.: A new 2-point absolute pose estimation algorithm under planar motion. Adv. Robot. 29, 1005–1013 (2015). https://doi.org/10.1080/01691864.2015.1024285

    Article  Google Scholar 

  3. Nöll, T., Pagani, A., Stricker, D.: Real-time camera pose estimation using correspondences with high outlier ratios. In: VISAPP 2010: International Conference on Computer Vision Theory and Applications, pp. 381–386 (2010)

  4. Kneip, L., Scaramuzza, D., Siegwart, R.: A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation. In: CVPR 2011, pp. 2969–2976 (2011)

  5. Li, S., Xu, C., Xie, M.: A robust O(n) solution to the perspective-n-point problem. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1444–1450 (2012). https://doi.org/10.1109/TPAMI.2012.41

    Article  Google Scholar 

  6. Zheng, Y., Sugimoto, S., Okutomi, M.: ASPnP: an accurate and scalable solution to the perspective-n-point problem. IEICE Trans. Inf. Syst. E96.D, 1525–1535 (2013). https://doi.org/10.1587/transinf.E96.D.1525

    Article  Google Scholar 

  7. Zheng, Y., Kuang, Y., Sugimoto, S., Åström, K., Okutomi, M.: Revisiting the PnP problem: a fast, general and optimal solution. In: 2013 IEEE International Conference on Computer Vision, pp. 2344–2351 (2013)

  8. Ferraz, L., Binefa, X., Moreno-Noguer, F.: Leveraging feature uncertainty in the PnP problem. Presented at the (2014)

  9. Urban, S., Leitloff, J., Hinz, S.: MLPnP—a real-time maximum likelihood solution to the perspective-n-point problem. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. III–3, 131–138 (2016). https://doi.org/10.5194/isprs-annals-III-3-131-2016

    Article  Google Scholar 

  10. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 60, 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  11. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 110, 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014

    Article  Google Scholar 

  12. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886–893 (2005)

  13. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision—ECCV 2006, pp. 430–443. Springer, Berlin (2006)

    Chapter  Google Scholar 

  14. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981). https://doi.org/10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  15. Ferraz, L., Binefa, X., Moreno-Noguer, F.: Very fast solution to the PnP problem with algebraic outlier rejection. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 501–508 (2014)

  16. Gao, X.-S., Hou, X.-R., Tang, J., Cheng, H.-F.: Complete solution classification for the perspective-three-point problem. IEEE Trans. Pattern Anal. Mach. Intell. 25, 930–943 (2003). https://doi.org/10.1109/TPAMI.2003.1217599

    Article  Google Scholar 

  17. Triggs, B.: Camera pose and calibration from 4 or 5 known 3D points. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 278–284 (1999)

  18. David, P., DeMenthon, D., Duraiswami, R., Samet, H.: Simultaneous pose and correspondence determination using line features. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings, vol. 2, pp. II-424–II-431 (2003)

  19. Pribyl, B., Zemcík, P., Cadík, M.: Camera pose estimation from lines using Plücker coordinates. arXiv:1608.02824 [cs]. 45.1-45.12. https://doi.org/10.5244/C.29.45 (2015)

  20. DeMenthon, D., Davis, L.S.: Exact and approximate solutions of the perspective-three-point problem. IEEE Trans. Pattern Anal. Mach. Intell. 14, 1100–1105 (1992). https://doi.org/10.1109/34.166625

    Article  Google Scholar 

  21. Lu, C.P., Hager, G.D., Mjolsness, E.: Fast and globally convergent pose estimation from video images. IEEE Trans. Pattern Anal. Mach. Intell. 22, 610–622 (2000). https://doi.org/10.1109/34.862199

    Article  Google Scholar 

  22. Garro, V., Crosilla, F., Fusiello, A.: Solving the PnP problem with anisotropic orthogonal procrustes analysis. In: Visualization Transmission 2012 Second International Conference on 3D Imaging, Modeling, Processing, pp. 262–269 (2012)

  23. Hesch, J.A., Roumeliotis, S.I.: A Direct Least-Squares (DLS) method for PnP. In: 2011 International Conference on Computer Vision, pp. 383–390 (2011)

  24. Hmam, H., Kim, J.: Optimal non-iterative pose estimation via convex relaxation. Image Vis. Comput. 28, 1515–1523 (2010). https://doi.org/10.1016/j.imavis.2010.03.005

    Article  Google Scholar 

  25. Larsson, V., Fredriksson, J., Toft, C., Kahl, F.: Outlier rejection for absolute pose estimation with known orientation. Presented at the (2016)

  26. Förstner, W.: Minimal representations for uncertainty and estimation in projective spaces. In: Computer Vision—ACCV 2010, pp. 619–632. Springer, Berlin (2010)

    Chapter  Google Scholar 

  27. Schweighofer, G., Pinz, A.: Globally optimal O(n) solution to the PnP problem for general camera models. Presented at the (2008)

  28. VLFeat - Home, http://www.vlfeat.org/index.html

  29. Nister, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26, 756–770 (2004). https://doi.org/10.1109/TPAMI.2004.17

    Article  Google Scholar 

Download references

Acknowledgments

Nagarajan Pitchandi is supported by the University Grants Commission, India- National Fellowship Scheme F./2016–17/ NFO-2015–17-OBC-TAM-33559.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagarajan Pitchandi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitchandi, N., Subramanian, S.P. Image Uncertainty-Based Absolute Camera Pose Estimation with Fibonacci Outlier Elimination. J Intell Robot Syst 96, 65–81 (2019). https://doi.org/10.1007/s10846-019-00985-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-00985-4

Keywords

Navigation