Skip to main content
Log in

Experimental Characterization of a Propulsion System for Multi-rotor UAVs

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The propulsion system of a multi-rotor UAV plays a fundamental role in the aircraft flight characteristics. In fact, it generally represents the major contributor to the aerodynamic forces acting on the vehicle. While several approaches for modeling rotor thrust and drag forces exist, the problem of identifying the parameters for these models is still challenging. In this paper we propose a systematic method for identifying a limited number of parameters which guarantee accurate thrust and drag prediction according to Blade Element Theory (BET). Simple experimental tests employing a popular rotor system and a custom-made quadrotor are used both in the identification phase and for the final validation. The discussion of the results illustrates the accuracy of the method, while highlighting the modeling limit of BET. A refinement using Blade Element Momentum Theory is proposed and validated with the support of experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abeywardena, D., Kodagoda, S., Dissanayake, G., Munasinghe, R.: Improved state estimation in quadrotor mavs: a novel drift-free velocity estimator. IEEE Robot. Autom. Mag. 20(4), 32–39 (2013)

    Article  Google Scholar 

  2. Bangura, M., Melega, M., Naldi, R., Mahony, R.: Aerodynamics of rotor blades for quadrotors. arXiv:1601.00733 (2016)

  3. Bazin, J.M., Fields, T.D., Smith, A.J.: Feasibility of in-flight quadrotor individual motor thrust measurements. In: AIAA Atmospheric Flight Mechanics Conference (2016)

  4. Bristeau, P.J., Martin, P., Salaün, E., Petit, N.: The role of propeller aerodynamics in the model of a quadrotor UAV. In: European Control Conference, pp 683–688 (2009)

  5. Capello, E., Park, H., Tavora, B., Guglieri, G., Romano, M.: Modeling and experimental parameter identification of a multicopter via a compound pendulum test rig. In: 2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (2015)

  6. DJI: DJI E310 propulsion system. https://www.dji.com/e310 (2018)

  7. Gill, R., D’Andrea, R.: Propeller thrust and drag in forward flight. In: IEEE Conference on Control Technology and Applications (2017)

  8. Hoffmann, G.M., Huang, H., Waslander, S.L., Tomlin, C.J.: Quadrotor helicopter flight dynamics and control: theory and experiment. In: AIAA Guidance Navigation and Control Conference and Exhibit (2007)

  9. Hung, L.N., Bon, L.S.: A quadcopter-based auto cameraman system. In: 2016 (IEEE) Virtual Conference on Applications of Commercial Sensors (VCACS), pp 1–8 (2016)

  10. Khan, W., Nahon, M.: Toward an accurate physics-based uav thruster model. IEEE/ASME Trans. Mechatron. 18(4), 1269–1279 (2013)

    Article  Google Scholar 

  11. Lai, W.Y., Er, M.J., Ng, Z.C., Goh, Q.W.: Semi-autonomous control of an unmanned aerial vehicle. In: 2016 14Th International Conference on Control, Automation, Robotics and Vision (ICARCV), pp 1–4 (2016)

  12. Leishman, J.G.: Principle of Helicopter Aerodynamics, 2nd edn. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  13. Leishman, R.C., Macdonald, J.C., Beard, R.W., McLain, T.W.: Quadrotors and accelerometers: State estimation with an improved dynamic model. IEEE Control. Syst. 34(1), 28–41 (2014)

    Article  MathSciNet  Google Scholar 

  14. Loianno, G., Spurny, V., Thomas, J., Baca, T., Thakur, D., Hert, D., Penicka, R., Krajnik, T., Zhou, A., Cho, A., Saska, M., Kumar, V.: Localization, grasping, and transportation of magnetic objects by a team of (MAVs) in challenging desert-like environments. IEEE Robotics and Automation Letters 3(3), 1576–1583 (2018)

    Article  Google Scholar 

  15. Mahony, R.E., Kumar, V., Corke, P.: Multirotor aerial vehicles: modeling, estimation, and control of quadrotor. IEEE Robot. Autom. Mag. 19(3), 20–32 (2012)

    Article  Google Scholar 

  16. Martin, P., Salaün, E.: The true role of accelerometer feedback in quadrotor control. In: IEEE International Conference on Robotics and Automation, pp 1623–1629 (2010)

  17. McCormick, B.W.: Aerodynamics, Aeronautics, and Flight Mechanics, 2nd edn. Wiley, New York (1994)

    Google Scholar 

  18. Meier, L., Tanskanen, P., Heng, L., Lee, G.H., Fraundorfer, F., Pollefeys, M.: PIXHAWK: a micro aerial vehicle design for autonomous flight using onboard computer vision. Auton. Robot. 33, 21–39 (2012)

    Article  Google Scholar 

  19. Omari, S., Hua, M.D., Ducard, G., Hamel, T.: Nonlinear control of VTOL UAVs incorporating flapping dynamics. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 2419–2425 (2013)

  20. Pounds, P., Mahony, R.E., Corke, P.: Modelling and control of a large quadrotor robot. Control. Eng. Pract. 18(7), 691–699 (2010)

    Article  Google Scholar 

  21. Powers, C., Mellinger, D., Kushleyev, A., Kothmann, B., Kumar, V.: Influence of aerodynamics and proximity effects in quadrotor flight. Experimental Robotics Springer Tracts in Advanced Robotics 88, 289–302 (2013)

    Article  Google Scholar 

  22. Sartori, D., Zou, D., Pei, L., Yu, W.: A revisited approach to lateral acceleration modeling for quadrotor UAVs state estimation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 5711–5718 (2018)

  23. da Silva, L.C.B., Bernardo, R.M., de Oliveira, H.A., Rosa, P.F.F.: Multi-UAV agent-based coordination for persistent surveillance with dynamic priorities. In: 2017 International Conference on Military Technologies (ICMT), pp 765–771 (2017)

  24. Vacek, L., Atter, E., Rizo, P., Nam, B., Kortvelesy, R., Kaufman, D., Das, J., Kumar, V.: sUAS for deployment and recovery of an environmental sensor probe. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp 1022–1029 (2017)

Download references

Acknowledgments

The authors wish to thank Ruocheng Yao, Weiqi Liu and Rongzhi Wang for the support in the realization of the experimental tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Sartori.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sartori, D., Yu, W. Experimental Characterization of a Propulsion System for Multi-rotor UAVs. J Intell Robot Syst 96, 529–540 (2019). https://doi.org/10.1007/s10846-019-00995-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-00995-2

Keywords

Navigation