Skip to main content
Log in

Immunity-Based Dynamic Reconfiguration of Mobile Robots in Unstructured Environments

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Mobile robots have shown the capability to address difficult challenges ranging from disaster response to autonomous delivery of goods. However, the robots designed for one environment are often unable to perform effectively in other settings, and frequently require reconfiguration on software and/or hardware levels. Therefore, authors have designed a new immunity-based arbitration scheme to dynamically reconfigure mobile robots during their activity in unknown environments. The technique continuously selects the most suitable modules from its library e.g. sensor-configuration and navigation approach, on the basis of immunological mechanism of clonal selection. The technique successfully arbitrates different robot-configurations because of its ability to clone, mutate and select the suitable antibodies as well as to dynamically change the antibody concentrations. Moreover, maintenance of low inflammation levels alongside low collision count and slow battery drainage clearly illustrates the effectiveness of the presented technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alterovitz, R., Koenig, S., Likhachev, M.: Robot planning in the real world: research challenges and opportunities. AI Mag. 37(2), 76–84 (2016)

    Article  Google Scholar 

  2. Borenstein, J., Koren, Y.: Real-time obstacle avoidance for fast mobile robots. IEEE Trans. Syst. Man Cybern. 19(5), 1179–1187 (1989)

    Article  Google Scholar 

  3. Brugali, D., Capilla, R., Hinchey, M.: Dynamic variability meets robotics. Computer 48(12), 94–97 (2015). https://doi.org/10.1109/MC.2015.354

    Article  Google Scholar 

  4. Burgess, M.: Configurable immunity for evolving human-computer systems. Sci. Comput. Program. 51, 197 (2004)

    Article  MathSciNet  Google Scholar 

  5. Burnet, F.M.: The Clonal Selection: Theory of Acquired Immunity. Vanderbilt University Press, Tennessee (1959)

    Google Scholar 

  6. Chocron, O., Vega, E.P., Benbouzid, M.: Evolutionary Dynamic Reconfiguration of AUVs for Underwater Maintenance, pp. 137–178. Springer International Publishing, Cham (2018)

    Google Scholar 

  7. Commuri, S., Tadigotla, V., Sliger, L.: Task-based hardware reconfiguration in mobile robots using fpgas. J. Intell. Robot. Syst. 49(2), 111–134 (2007). https://doi.org/10.1007/s10846-007-9131-3

    Article  Google Scholar 

  8. Cutello, V., Narzisi, G., Nicosia, G., Pavone, M.: Clonal selection algorithms: a comparative case study using effective mutation potentials. In: Jacob, C., Pilat, M., Bentley, P., Timmis, J. (eds.) Artificial Immune Systems, Lecture Notes in Computer Science, vol. 3627, pp. 13–28. Springer, Berlin (2005)

    Google Scholar 

  9. Deng, L., Ma, X., Gu, J., Li, Y., Xu, Z., Wang, Y.: Artificial immune network-based multi-robot formation path planning with obstacle avoidance. Int. J. Robot. Autom. 31(3), 233–242 (2016)

    Google Scholar 

  10. Fernández, J.L., Sanz, R., Benayas, J., Diéguez, A.R.: Improving collision avoidance for mobile robots in partially known environments: the beam curvature method. Robot. Auton. Syst. 46(4), 205–219 (2004)

    Article  Google Scholar 

  11. Gongor, F., Tutsoy, O., Erol Barkana, D., Colak, S.: Sit-to-stand motion analysis for nao humanoid robot. In: International Conference on Innovation Trends in Multidisciplinary Academic Research (ITMAR) (2017)

  12. Hart, E., Timmis, J.: Application areas of AIS: the past, the present and the future. Appl. Soft Comput. 8(1), 191–201 (2008)

    Article  Google Scholar 

  13. Hoy, M., Matveev, A.S., Savkin, A.V.: Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey. Robotica 33(3), 463–497 (2015). https://doi.org/10.1017/S0263574714000289

    Article  Google Scholar 

  14. Ishiguro, A., Kondo, T., Watanabe, Y., Uchikawa, Y.: Immunoid: an immunological approach to decentralized behavior arbitration of autonomous mobile robots. In: PPSN IV: Proceedings of the 4th International Conference on Parallel Problem Solving from Nature, pp. 666–675. Springer, London (1996)

    Chapter  Google Scholar 

  15. Ishiguro, A., Watanabe, Y., Kondo, T., Shirai, Y., Uchikawa, Y.: A robot with a decentralized consensus-making mechanism based on the immune system. In: Third International Symposium on Autonomous Decentralized Systems, 1997. Proceedings. ISADS 97, pp. 231–237 (1997)

  16. Janeway, C.A. Jr, Travers, P., Walport, M., Shlomchik, M.J.: Principles of innate and adaptive immunity (2001)

  17. Jerne, N.K.: Towards a network theory of the immune system. Annales d’immunologie 125C(1-2), 373–389 (1974)

    Google Scholar 

  18. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Autonomous Robot Vehicles, pp. 396–404. Springer (1986)

  19. Li, W.: A dynamics perspective of pursuit-evasion: capturing and escaping when the pursuer runs faster than the agile evader. IEEE Trans. Autom. Control 62(1), 451–457 (2017)

    Article  MathSciNet  Google Scholar 

  20. Luh, G.C., Liu, W.W.: An immunological approach to mobile robot navigation. In: Motion Planning. Intech (2008)

    Google Scholar 

  21. Madhevan, B., Sreekumar, M.: Structures and characteristics in reconfigurable modular robots. In: Dai, J. S., Zoppi, M., Kong, X. (eds.) Advances in Reconfigurable Mechanisms and Robots I, pp. 525–534. Springer, London (2012)

    Chapter  Google Scholar 

  22. Meng, Y.: A dynamic self-reconfigurable mobile robot navigation system. In: Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1541–1546 (2005). https://doi.org/10.1109/AIM.2005.1511230

  23. Minami, M., Li, X., Matsuno, T., Yanou, A.: Dynamic reconfiguration manipulability for redundant manipulators. J. Mech. Robot. 8(6), 061004–061004–9 (2016). https://doi.org/10.1115/1.4033667

    Article  Google Scholar 

  24. Murata, S., Kurokawa, H.: Self-reconfigurable robots. IEEE Robot. Autom. Mag. 14(1), 71–78 (2007). https://doi.org/10.1109/MRA.2007.339607

    Article  Google Scholar 

  25. Nava, F., Sciuto, D., Santambrogio, M.D., Herbrechtsmeier, S., Porrmann, M., Witkowski, U., Rueckert, U.: Applying dynamic reconfiguration in the mobile robotics domain: a case study on computer vision algorithms. ACM Trans. Reconfigurable Technol. Syst. 4(3), 29:1–29:22 (2011). https://doi.org/10.1145/2000832.2000841. http://doi.acm.org/10.1145/2000832.2000841

    Article  Google Scholar 

  26. Ploeg, J., Semsar-Kazerooni, E., Lijster, G., van de Wouw, N., Nijmeijer, H.: Graceful degradation of cooperative adaptive cruise control. IEEE Trans. Intell. Transp. Syst. 16(1), 488–497 (2015). https://doi.org/10.1109/TITS.2014.2349498

    Article  Google Scholar 

  27. Raza, A., Fernandez, B.: Immuno-inspired heterogeneous mobile robotic systems. In: 2010 49th IEEE Conference on Decision and Control (CDC), pp. 7178–7183 (2010)

  28. Raza, A., Fernandez, B.R.: Immuno-inspired robotic applications: a review. Appl. Soft Comput. 37, 490–505 (2015)

    Article  Google Scholar 

  29. Raza, A., Fernandez, B.R.: A multi-tier immuno-inspired framework for heterogeneous mobile robotic systems. Appl. Soft Comput. 71, 333–352 (2018). https://doi.org/10.1016/j.asoc.2018.06.041

    Article  Google Scholar 

  30. Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer, Berlin (2008)

    Book  Google Scholar 

  31. Simmons, R.: The curvature-velocity method for local obstacle avoidance. In: 1996 IEEE International Conference on Robotics and Automation, 1996. Proceedings, vol. 4, pp. 3375–3382. IEEE (1996)

  32. Triantaphyllou, E.: Multi-criteria decision making methods: a comparative study. Applied Optimization. Springer, US. https://books.google.com.pk/books?id=IPPiBwAAQBAJ (2013)

  33. Tutsoy, O., Erol Barkana, D., Colak, S.: Learning to balance an nao robot using reinforcement learning with symbolic inverse kinematic. Trans. Inst. Meas. Control. 39(11), 1735–1748 (2017)

    Article  Google Scholar 

  34. Vergnano, A., Thorstensson, C., Lennartson, B., Falkman, P., Pellicciari, M., Leali, F., Biller, S.: Modeling and optimization of energy consumption in cooperative multi-robot systems. IEEE Trans. Autom. Sci. Eng. 9(2), 423–428 (2012). https://doi.org/10.1109/TASE.2011.2182509

    Article  Google Scholar 

  35. Wang, Y., Chirikjian, G.S.: A new potential field method for robot path planning. In: IEEE International Conference on Robotics and Automation, 2000. Proceedings. ICRA’00, vol. 2, pp. 977–982. IEEE (2000)

  36. Zhang, H., Long, P., Zhou, D., Qian, Z., Wang, Z., Wan, W., Manocha, D., Park, C., Hu, T., Cao, C., et al.: Dorapicker: an autonomous picking system for general objects. In: 2016 IEEE International Conference on Automation Science and Engineering (CASE), pp. 721–726. IEEE (2016)

  37. Zou, X.Y., Zhu, J.: Virtual local target method for avoiding local minimum in potential field based robot navigation. Journal of Zhejiang University-SCIENCE A 4(3), 264–269 (2003). https://doi.org/10.1631/jzus.2003.0264

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Raza.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, A., Ali, S. & Akram, M. Immunity-Based Dynamic Reconfiguration of Mobile Robots in Unstructured Environments. J Intell Robot Syst 96, 501–515 (2019). https://doi.org/10.1007/s10846-019-01000-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01000-6

Keywords

Navigation