Skip to main content

Advertisement

Log in

Adaptive Neural Network Control of Underwater Robotic Manipulators Tuned by a Genetic Algorithm

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper describes a novel approach for the control of underwater robots that can handle uncertainties and disturbance problems, which are commonly met in underwater environments. The considered system is an underwater manipulator with n-degrees of freedom. The approximation capability of an adaptive neural network is exploited to estimate uncertainties in system dynamics. Drag and lift forces are considered as an external disturbance, and a disturbance observer approach which has been proved to be effective with on-land robotic systems, is applied to compensate for it. The objective of the controller designed is to track a desired trajectory. To find the optimal gain parameters of this controller, a classical Genetic Algorithm is employed. Extensive simulation studies carried out on a two degrees of freedom manipulator indicate the efficacy of the proposed approach, proving that the disturbance observer originally developed for on-land systems can also be used effectively for underwater robotic systems. Finally, the performance of the proposed controller, tuned by the Genetic Algorithm is compared with that of a controller, tuned manually. The results show that the reliance on a well-known classic Genetic Algorithm for the tuning of the controller parameters not only saves time, but also provides better values of the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, C., Wu, H., Li, Z., He, W., Wang, N., Su, C.Y.: Mind control of a robotic arm with visual fusion technology. IEEE Trans. Ind. Inf. 14(9), 3822–3830 (2018)

    Google Scholar 

  2. Huang, H., Tang, Q., Li, H., Liang, L., Li, W., Pang, Y.: Vehicle-manipulator system dynamic modeling and control for underwater autonomous manipulation. Multibody Sys.Dyn. 41(2), 125–147 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Wang, H., Wang, C., Chen, W., Liang, X., Liu, Y.: Three dimensional dynamics for cable-driven soft manipulator. IEEE/ASME Trans. Mechatron. 22(1), 18–28 (2017)

    Google Scholar 

  4. Wang, H., Zhang, R., Chen, W., Liang, X., Pfeifer, R.: Shape detection algorithm for soft manipulator based on fiber bragg gratings. IEEE/ASME Trans. Mechatron. 21(6), 2977–2982 (2016)

    Google Scholar 

  5. Xiao, B., Yin, S., Kaynak, O.: Tracking control of robotic manipulators with uncertain kinematics and dynamics. IEEE Trans. Ind. Electron. 63(10), 6439–6449 (2016)

    Google Scholar 

  6. Tutsoy, O., Barkana, D.E., Tugal, H.: Design of a completely model free adaptive control in the presence of parametric, non-parametric uncertainties and random control signal delay. ISA Trans. 76, 67–77 (2018)

    Google Scholar 

  7. Tutsoy, O.: Design and comparison base analysis of adaptive estimator for completely unknown linear systems in the presence of OE noise and constant input time delay. Asian J. Control 18, 1020–1029 (2016)

    MathSciNet  MATH  Google Scholar 

  8. He, W., Ge, W., Li, Y., Liu, Y.J., Yang, C., Sun, C.: Model identification and control design for a humanoid robot. IEEE Trans. Syst. Man Cybern. Syst. Hum. 47(1), 45–57 (2017)

    Google Scholar 

  9. Chen, C.L.P., Wen, G.-X., Liu, Y.-J., Liu, Z.: Observer-based adaptive backstepping consensus tracking control for high-order nonlinear semi-strict-feedback multiagent systems. IEEE Trans. Cybern. 46(7), 1591–1601 (2016)

    Google Scholar 

  10. He, W., Li, Z., Chen, C.L.P.: A survey of human-centered intelligent robots: issues and challenges. IEEE/CAA J. Autom. Sin. 4(4), 602–609 (2017)

    Google Scholar 

  11. Yang, C., Li, Z., Cui, R., Xu, B.: Neural network-based motion control of an underactuated wheeled inverted pendulum model. IEEE Trans. Neural Net. Learn. Syst. 25(11), 2004–2016 (2014)

    Google Scholar 

  12. Li, Z., Huang, Z., He, W., Su, C.-Y.: Adaptive impedance control for an upper limb robotic exoskeleton using biological signals. IEEE Trans. Ind. Electron. 64(2), 1664–1674 (2017)

    Google Scholar 

  13. Zhang, S., Dong, Y., Ouyang, Y., Yin, Z., Peng, K.: Adaptive neural control for robotic manipulators with output constraints and uncertainties. IEEE Trans. Neural Net. Learn. Syst. 29(11), 5554–5564 (2018)

    MathSciNet  Google Scholar 

  14. Liu, D., Xu, Y., Wei, Q., Liu, X.: Residential energy scheduling for variable weather solar energy based on adaptive dynamic programming. IEEE/CAA J. Autom. Sin. 5(1), 36–46 (2018)

    Google Scholar 

  15. Dai, S., Wang, C., Wang, M.: Dynamic learning from adaptive neural network control of a class of nonaffine nonlinear systems. IEEE Trans. Neural Net. Learn. Syst. 25(1), 111–123 (2014)

    Google Scholar 

  16. Dai, S., Wang, M., Wang, C.: Neural learning control of marine surface vessels with guaranteed transient tracking performance. IEEE Trans. Ind. Electron. 63(3), 1717–1727 (2016)

    Google Scholar 

  17. Wang, L., Liu, Z., Chen, C.L.P., Zhang, Y., Lee, S., Chen, X.: Energy-efficient SVM learning control system for biped walking robots. IEEE Trans. Neural Net. Learn. Syst. 24(5), 831–837 (2013)

    Google Scholar 

  18. Liu, Z., Lai, G., Zhang, Y., Chen, X., Chen, C.L.P.: Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis. IEEE Trans. Neural Net. Learn. Sys. 25(12), 2129–2140 (2014)

    Google Scholar 

  19. Sun, C., He, W., Hong, J.: Neural network control of a flexible robotic manipulator using the lumped spring-mass model. IEEE Trans. Syst. Man Cybern. Syst. Hum. 47(8), 1–12 (2016)

    Google Scholar 

  20. He, W., Ge, S. S., Li, Y., Chew, E., Ng, Y.S.: Neural network control of a rehabilitation robot by state and output feedback. J. Intell. Robot. Syst. 80(1), 15–31 (2015)

    Google Scholar 

  21. Wang, F.Y., Zheng, N.N., Cao, D., Martinez, C.M., Li, L., Liu, T.: Parallel driving in CPSS: A unified approach for transport automation and vehicle intelligence. IEEE/CAA J. Autom. Sin. 4(4), 577–587 (2017)

    MathSciNet  Google Scholar 

  22. Yang, C., Wang, X., Cheng, L., Ma, H.: Neural-learning-based telerobot control with guaranteed performance. IEEE Trans. Cybern. 47(10), 3148–3159 (2017)

    Google Scholar 

  23. Li, Y., Ge, S.S.: Human–robot collaboration based on motion intention estimation. IEEE/ASME Trans. Mechatron. 19(3), 1007–1014 (2014)

    Google Scholar 

  24. He, W., Huang, H., Ge, S.S.: Adaptive neural network control of a robotic manipulator with time-varying output constraints. IEEE Trans. Cybern. 47(10), 3136–3147 (2017)

    Google Scholar 

  25. Li, Z., Su, C.-Y., Li, G., Su, H.: Fuzzy approximation-based adaptive backstepping control of an exoskeleton for human upper limbs. IEEE Trans. Fuzzy Syst. 23(3), 555–566 (2015)

    Google Scholar 

  26. Huang, P., Wang, D., Meng, Z., Zhang, F., Liu, Z.: Impact dynamic modeling and adaptive target capturing control for tethered space robots with uncertainties. IEEE/ASME Trans. Mechatron. 21(5), 2260–2271 (2016)

    Google Scholar 

  27. Huang, P., Zhang, F., Cai, J., Wang, D.: Dexterous tethered space robot: design, measurement, control and experiment. IEEE Trans. Aerosp. Electron. Syst. 3, 53 (2017)

    Google Scholar 

  28. Mohan, S., Kim, J.: Indirect adaptive control of an autonomous underwater vehicle-manipulator system for underwater manipulation tasks. Ocean Eng. 54, 233–243 (2012)

    Google Scholar 

  29. Dos Santos, C.H.F., De Pieri, E.R.: Functional machine with takagi-sugeno inference to coordinated movement in underwater vehicle-manipulator systems. IEEE Trans. Fuzzy Syst. 21(6), 1105–1114 (2013)

    Google Scholar 

  30. Zhang, M.J., Chu, Z.Z.: Adaptive sliding mode control based on local recurrent neural networks for underwater robot. Ocean Eng. 45, 56–62 (2012)

    Google Scholar 

  31. Xu, J., Wang, M., Qiao, L.: Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles. Ocean Eng. 105, 54–63 (2015)

    Google Scholar 

  32. Lee, M., Choi, H.S.: A robust neural controller for underwater robot manipulators. IEEE Trans. Neural Netw. 11(6), 1465–1470 (2000)

    Google Scholar 

  33. Zhang, Y., Sun, J., Liang, H., Li, H.: Event-triggered adaptive tracking control for multiagent systems with unknown disturbances. IEEE Trans. Cybern. 1–12 (2018)

  34. Chen, M.: Disturbance attenuation tracking control for wheeled mobile robots with skidding and slipping. IEEE Trans. Ind. Electron. 64(4), 3359–3368 (2017)

    Google Scholar 

  35. Li, Z., Su, C. Y., Wang, L., Chen, Z., Chai, T.: Nonlinear disturbance observer-based control design for a robotic exoskeleton incorporating fuzzy approximation. IEEE Trans. Ind. Electron. 62(9), 5763–5775 (2015)

    Google Scholar 

  36. Liu, S., Liu, Y., Wang, N.: Nonlinear disturbance observer-based backstepping finite-time sliding mode tracking control of underwater vehicles with system uncertainties and external disturbances. Nonlinear Dyn. 88(1), 465–476 (2017)

    MATH  Google Scholar 

  37. Cui, R., Zhang, X., Cui, D.: Adaptive sliding-mode attitude control for autonomous underwater vehicles with input nonlinearities. Ocean Eng. 123, 45–54 (2016)

    Google Scholar 

  38. Cui, R., Chen, L., Yang, C., Chen, M.: Extended state observer-based integral sliding mode control for an underwater robot with Unknown disturbances and uncertain nonlinearities. IEEE Trans. Ind. Electron. 64 (8), 6785–6795 (2017)

    Google Scholar 

  39. Tsai, C. C., Huang, H. C., Chan, C. K.: Parallel elite genetic algorithm and its application to global path planning for autonomous robot navigation. IEEE Trans. Ind. Electron. 58(10), 4813–4821 (2011)

    Google Scholar 

  40. Sahu, D., Mishra, A. K.: Mobile robot path planning by genetic algorithm with safety parameter. International Journal of Engineering Science and Computing 7(8), 14723–14727 (2017)

    Google Scholar 

  41. Neath, M. J., Swain, A. K., Madawala, U. K., Thrimawithana, D. J.: An optimal PID controller for a bidirectional inductive power transfer system using multiobjective genetic algorithm. IEEE Trans. Power Electron. 29(3), 1523–1531 (2014)

    Google Scholar 

  42. Dimeo, R., Lee, K.: Boiler-turbine control system design using a genetic algorithm. IEEE Trans. Energy Convers. 10(4), 752–759 (1995)

    Google Scholar 

  43. Chocron, O., Vega, E. P., Benbouzid, M.: Dynamic reconfiguration of autonomous underwater vehicles propulsion system using genetic optimization. Ocean Eng. 156(2017), 564–579 (2018)

    Google Scholar 

  44. Roberge, V., Tarbouchi, M., Labonte, G.: Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Trans. Ind. Inf. 9(1), 132–141 (2013)

    Google Scholar 

  45. Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer International Publishing, Cham (2016)

    MATH  Google Scholar 

  46. Kolodziejczyk, W.: The method of determination of transient hydrodynamic coefficients for a single DOF underwater manipulator. Ocean Eng. 153, 122–131 (2018)

    Google Scholar 

  47. il Seo, S., suk Mun, H., ho Lee, J., ha Kim, J.: Simplified analysis for estimation of the behavior of a submerged floating tunnel in waves and experimental verification. Mar. Struct. 44, 142–158 (2015)

    Google Scholar 

  48. Dioguardi, F., Mele, D.: A new shape dependent drag correlation formula for non-spherical rough particles. Experiments and results. Powder Technol. 277, 222–230 (2015)

    Google Scholar 

  49. Chen, Z., Shatara, S., Tan, X.: Modeling of biomimetic robotic fish propelled by an ionic polymermetal composite caudal fin. IEEE/ASME Trans. Mechatron. 15(3), 448–459 (2010)

    Google Scholar 

  50. Maza, M., Adler, K., Ramos, D., Garcia, A. M., Nepf, H.: Velocity and drag evolution from the leading edge of a model mangrove forest. J. Geophys. Res. Oceans 122(11), 9144–9159 (2017)

    Google Scholar 

  51. Meng, W., Yang, Q., Si, J., Sun, Y.: Adaptive neural control of a class of output-constrained nonaffine systems. IEEE Trans. Cyber. 46(1), 85–95 (2016)

    Google Scholar 

  52. Na, J., Ren, X., Zheng, D.: Adaptive control for nonlinear pure-feedback systems with high-order sliding mode observer. IEEE Trans. Neural Net. Learn. Syst. 24(3), 370–382 (2013)

    Google Scholar 

  53. Li, Y., Tee, K. P., Chan, W. L., Yan, R., Chua, Y., Limbu, D. K.: Continuous role adaptation for human robot shared control. IEEE Trans. Robot. 31(3), 672–681 (2015)

    Google Scholar 

  54. Zhou, Q., Wang, L., Wu, C., Li, H., Du, H.: Adaptive fuzzy control for nonstrict-feedback systems with input saturation and output constraint. IEEE Trans. Syst. Man Cybern. Syst. Hum. 47(1), 1–12 (2017)

    Google Scholar 

  55. Li, H., Wang, L., Du, H., Boulkroune, A.: Adaptive fuzzy backstepping tracking control for strict-feedback systems with input delay. IEEE Trans. Fuzzy Syst. 25(3), 642–652 (2017)

    Google Scholar 

  56. Li, Z., Huang, B., Ajoudani, A., Yang, C., Su, C. -Y., Bicchi, A.: Asymmetric bimanual control of dual-Arm exoskeletons for human-cooperative manipulations. IEEE Trans. Robot. 34(1), 264–271 (2018)

    Google Scholar 

  57. Wu, G., Sun, J., Chen, J.: Optimal linear quadratic regulator of switched systems. IEEE Trans. Autom. Control PP(8), 1 (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant 61873298 the Beijing Natural Science Foundation under Grant 4172041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei He.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: : The proof of the system stability

Appendix: : The proof of the system stability

To prove the stability of the considered system under the designed controller, we consider the Lyapunov function in Eq. ?? and take its time derivative to get:

$$ \begin{array}{@{}rcl@{}} \dot{V} &= &-{e_{1}^{T}} K_{1} e_{1} +{e_{1}^{T}}e_{2} +\frac{1}{2}{e_{2}^{T}} \dot{M}_{c} e_{2} +\frac{1}{2}{e_{2}^{T}}M_{c} \dot{e}_{2}+ \tilde{f}_{T}^{T} \dot{\tilde{f}}_{T}\\ &&+\sum\limits_{i = 1}^{N}\tilde{W}_{i}^{T} \psi_{i}^{-1} \dot{\tilde{W}}_{i} \end{array} $$
(1)

Substituting Eq. ?? and ?? in Eq. 1 results in:

$$ \begin{array}{@{}rcl@{}} \dot{V} &= &-{e_{1}^{T}} K_{1} e_{1}+ {e_{1}^{T}}e_{2} +\frac{1}{2}{e_{2}^{T}} \dot{M}_{c} e_{2} +{e_{2}^{T}}\left[-e_{1}- K_{2} e_{2}\right.\\ &&+ \left.C_{c} \alpha+ \hat{W}^{T}{\Theta} (h) +\hat{f}_{T} - C_{c} x_{2} -{W}^{T}{\Theta} (h)-f_{T} \right]\\ &&+ \tilde{f}_{T}^{T} \dot{\tilde{f}}_{T} +\sum\limits_{i = 1}^{N}\tilde{W}_{i}^{T} \psi_{i}^{-1} \dot{\tilde{W}}_{i} \end{array} $$
(2)
$$ \begin{array}{@{}rcl@{}} \dot{V} &=& -{e_{1}^{T}} K_{1} e_{1}-{e_{2}^{T}} K_{2} e_{2}+ \frac{1}{2}{e_{2}^{T}} (\dot{M}_{c}-2C_{c} ) e_{2}\\ &&+{e_{2}^{T}}\left[\tilde{W}^{T}{\Theta} (h) + \tilde{f}_{T}\right] + \tilde{f}_{T}^{T} \!\dot{\tilde{f}}_{T} + \sum\limits_{i = 1}^{N}\tilde{W}_{i}^{T} \!\psi_{i}^{-1} \dot{\tilde{W}}_{i} \end{array} $$
(3)

\( \frac {1}{2}e_2^T (\dot {M}_c-2C_c ) e_2 = 0 \) because \( \dot {M}_c-2C_c \) is a skew symmetric matrix. Substituting Eq. ?? in 3 yields:

$$ \begin{array}{@{}rcl@{}} \dot{V} &=&-{e_{1}^{T}} K_{1} e_{1} -{e_{2}^{T}} K_{2} e_{2} +{e_{2}^{T}}\left[\tilde{W}^{T}{\Theta} (h) +\tilde{f}_{T}\right] - \tilde{f}_{T}^{T} B M_{c}^{-1} \tilde{f}_{T} \\&&+\tilde{f}_{T}^{T} B M_{c}^{-1} W{\Theta}(h) - \tilde{f}_{T}^{T} \dot{f}_{T} +\sum\limits_{i = 1}^{N}\tilde{W}_{i}^{T} \psi_{i}^{-1} \dot{\tilde{W}}_{i} \end{array} $$
(4)

We have \( \tilde {W}_i =\hat {W}_i-W_i \), then we can write

$$ \begin{array}{@{}rcl@{}} \sum\limits_{i = 1}^{N}\tilde{W}_{i}^{T} \psi_{i}^{-1} \dot{\tilde{W}}_{i} = &-&\sum\limits_{i = 1}^{N}\tilde{W}_{i}^{T} [{\Theta}_{i} (h)e_{2,i}+ \gamma_{i} \vert e_{2} \vert\hat{W}_{i}]\\ &+& \sum\limits_{i = 1}^{N}\tilde{W}_{i}^{T} \psi_{i}^{-1} \dot{W}_{i} \end{array} $$
(5)

Substituting in Eq. 4 results in:

$$ \begin{array}{@{}rcl@{}} \dot{V} \leq& -&{e_{1}^{T}} K_{1} e_{1} -{e_{2}^{T}} K_{2} e_{2}+ {e_{2}^{T}} \tilde{f}_{T}- \tilde{f}_{T}^{T} B M_{c}^{-1} \tilde{f}_{T} - \tilde{f}_{T}^{T} \dot{f}_{T}\\&+&\tilde{f}_{T}^{T} B M_{c}^{-1} W{\Theta}(h) -\sum\limits_{i = 1}^{N} \tilde{W}_{i}^{T} \gamma_{i} \vert e_{2} \vert\hat{W}_{i} \end{array} $$
(6)

We have :

$$ - {e_{2}^{T}} \tilde{f}_{T} \leq \frac{1}{2} \Vert e_{2}\Vert^{2} +\frac{1}{2} \Vert \tilde{f}_{T} \Vert^{2} $$
(7)
$$ - \tilde{f}^{T}_{T} \dot{f}_{T} \leq \frac{1}{2} \tilde{f}_{T}^{T} \tilde{f}_{T} +\frac{1}{2} \xi^{2} $$
(8)
$$ \begin{array}{@{}rcl@{}} \tilde{f}_{T}^{T} B M_{c}^{-1} W{\Theta}(h) &\leq& \frac{1}{2} \Vert B M_{c}\Vert^{2} \Vert \tilde{f}_{T} \Vert^{2}\\ &&+\frac{1}{2} \sum\limits_{i = 1}^{N} \Vert W_{i}\Vert^{2}\Vert {\Theta}_{i}(h)\Vert^{2} \end{array} $$
(9)
$$ -\sum\limits_{i = 1}^{N} \tilde{W}_{i}^{T} \gamma_{i} \vert e_{2} \vert\hat{W}_{i}\leq \frac{1}{2}{e_{2}^{T}} e_{2} + \frac{1}{8} \sum\limits_{i = 1}^{N} {\gamma_{i}^{2}} \left( \Vert \tilde{W}_{i} \Vert^{2} -\Vert W_{i} \Vert^{2} \right)^{2} $$
(10)

According to Proposition 1, we can write:

$$ \Vert \tilde{W}_{i} \Vert \leq \frac{\epsilon_{i}}{\gamma_{i}} + \Vert W_{i} \Vert = d $$
(11)

For the activation function of the RBF NN, there is a constant 𝜖 > 0 where ∥Θi(h)∥≤ 𝜖,i = 1, 2,…,N. Substituting Eqs. 711 in Eq. 6 results in:

$$ \begin{array}{@{}rcl@{}} \dot{V} \leq &-&{e_{1}^{T}} K_{1} e_{1}-{e_{2}^{T}}(K_{2}-I_{n \times n})e_{2} + \frac{1}{2} \xi^{2}\\ &-&\tilde{f}_{T}^{T} \left( -\frac{\Vert B M_{c}^{-1} \Vert^{2} + 2 } {2} I_{n \times n} +B M^{-1}_{c}\right) \tilde{f}_{T}\\ &-&\sum\limits_{i = 1}^{n} \frac{{\gamma_{i}^{2}}}{4}\Vert W_{i} \Vert^{2} \Vert \tilde{W}_{i} \Vert^{2} +\sum\limits_{i = 1}^{n} \frac{{\gamma_{i}^{2}}}{8}\left( \Vert W_{i} \Vert^{4}+ d^{4}\right)\\ \leq & -&a V +b \end{array} $$
(12)

where

$$ \begin{array}{@{}rcl@{}} b&=&\sum\limits_{i = 0}^{n}{\frac{\gamma_{i}+\epsilon^{2}}{2}\Vert{W}_{i}\Vert^{2}} + \sum\limits_{i = 0}^{n}{\frac{{\gamma_{i}^{2}}}{8}\left( \Vert{W}_{i}\Vert^{4} + d^{4} \right)} + \frac{1}{2}\xi^{2}\\ a&=& \min\left( 2 \lambda_{\min}(K_{1}), \frac{2\lambda_{\min}(K_{2}- I_{n\times n})}{\lambda_{\max}(M)},\right.\\ && 2 \lambda_{\min}\left( BM_{c}^{-1}- \left( 1+ \frac{1}{2}\Vert B M_{c}^{-1} \Vert^{2} \right) I_{n \times n}\right),\\&& \left.\min_{i = 1,2,..,n} \left( \frac{{\gamma_{i}^{2}} \Vert W_{i} \Vert^{2}} {2\lambda_{\max} (\psi_{i}^{-1})}\right)\right) \end{array} $$
(13)

In order to guarantee a positive value of a, the gain matrices K1, K2 and Φ(e2) are designed to guarantee the following conditions:

$$ \begin{array}{@{}rcl@{}} &&\lambda_{\min}(K_{1})>0, \lambda_{\min}\left( BM_{c}^{-1}- \left( 1+ \frac{1}{2}\Vert B M_{c}^{-1} \Vert^{2} \right) I_{n \times n}\right) > 0,\\ &&\lambda_{\min} \left( K_{2}-I_{n\times n}\right) > 0 \end{array} $$
(14)

Multiply both sides of Eq. 12 with eat to get:

$$ \frac{d}{dt} \left( V e^{at}\right) \leq b e^{at} $$
(15)

Integrating Eq. 15 over the interval [0,t] yields:

$$ V \leq V(0) +\frac{b}{a} $$
(16)

Since all terms of Lyapunov function (??) are positive, for e1 we can write:

$$ \frac{1}{2} \Vert e_{1}\Vert^{2} \leq V(0) +\frac{b}{a} \rightarrow \Vert e_{1}\Vert \leq 2(\sqrt{V(0) +\frac{b}{a}}) = \sqrt{S} $$
(17)

The other error signals boundedness can be proved in the same way. Thus the stability of this system is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salloom, T., Yu, X., He, W. et al. Adaptive Neural Network Control of Underwater Robotic Manipulators Tuned by a Genetic Algorithm. J Intell Robot Syst 97, 657–672 (2020). https://doi.org/10.1007/s10846-019-01008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01008-y

Keywords

Navigation