Skip to main content
Log in

A Unified Approach to Consensus Control of Three-Link Manipulators

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

We consider a consensus control problem for a set of three-link manipulators connected by digraphs. Assume that the control inputs of each manipulator are the torques on its links and they are generated by adjusting the weighted difference between the manipulator’s states and those of its neighbor agents. Then, we propose a condition for adjusting the weighting coefficients in the control inputs, so that full consensus is achieved among the manipulators. By designing complex Hurwitz polynomials, we obtain a necessary and sufficient condition for achieving the consensus. Moreover, the discussion is extended to the case of designing convergence rate of consensus. Numerical examples are provided to illustrate the condition and the design conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  MathSciNet  Google Scholar 

  2. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95, 215–233 (2007)

    Article  Google Scholar 

  3. Huang, J.: Adaptive distributed observer and the cooperative control of multi-agent systems. J. Control Decis. 4(1), 1–11 (2017)

    Article  MathSciNet  Google Scholar 

  4. Shamma, J.: Cooperative Control of Distributed Multi-Agent Systems. Wiley, New York (2008)

    Google Scholar 

  5. Ren, W., Beard, R.W.: Distributed Consensus in Multi-Vehicle Cooperative Control: Theory and Applications. Springer, London (2008)

    Book  Google Scholar 

  6. Ren, W., Beard, R.W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50(5), 655–661 (2005)

    Article  MathSciNet  Google Scholar 

  7. Ren, W., Beard, R.W., Atkins, E.: Information consensus in multivehicle cooperative control. IEEE Control Syst. Mag. 27(2), 71–82 (2007)

    Article  Google Scholar 

  8. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49, 1465–1476 (2004)

    Article  MathSciNet  Google Scholar 

  9. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48, 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  10. Moreau, L.: Stability of multi-agent systems with time-dependent communication links. IEEE Trans. Autom. Control 50(2), 169–182 (2005)

    Article  Google Scholar 

  11. Droge, G., Kawashima, H., Egerstedt, M.B.: Continuous-time proportional-integral distributed optimisation for networked systems. J. Control Decis 1(3), 191–213 (2014)

    Article  Google Scholar 

  12. Sun, D., Wang, C., Shang, W., Feng, G.: A synchronization approach to trajectory tracking of multiple mobile robots while maintaining time-varying formations. IEEE Trans. Robot. 25(5), 1074–1086 (2009)

    Article  Google Scholar 

  13. Sun, D.: Synchronization and Control of Multiagent Systems. CRC Press, Boca Raton (2010)

    Google Scholar 

  14. Bouteraa, Y., Abdallah, I.B.: Distributed control and speed sensorless for the synchronisation of multi-robot systems. Autom. Control. Comput. Sci. 50(5), 306–317 (2016)

    Article  Google Scholar 

  15. Qin, J., Gao, H., Hayat, T., Alsaadi, F.E.: Synchronising second-order multi-agent systems under dynamic topology via reference model-based algorithm. J. Control Decis. 1(3), 214–225 (2014)

    Article  Google Scholar 

  16. Yu, W., Chen, G., Cao, M.: Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. Automatica 46(6), 1089–1095 (2010)

    Article  MathSciNet  Google Scholar 

  17. Hou, W., Fu, M., Zhang, H., Wu, Z.: Consensus condition for general second-order multi-agent systems with communication delay. Automatica 75, 293–298 (2017)

    Article  MathSciNet  Google Scholar 

  18. Huang, C., Zhai, G., Xu, G.: Necessary and sufficient conditions for consensus in third order multi-agent systems, IEEE/CAA. J. Autom. Sinica 5(6), 1057–1066 (2018)

    Google Scholar 

  19. Xu, G., Huang, C., Zhai, G.: A necessary and sufficient condition for designing formation of discrete-time multi-agent systems with delay. Neurocomputing 315, 48–58 (2018)

    Article  Google Scholar 

  20. Cheng, L., Hou, Z.G., Tan, M.: Decentralized adaptive consensus control for multi-manipulator system with uncertain dynamics. In: Proceedings of 2008 IEEE International Conference on Systems, Man and Cybernetics (SMC2008), Singapore, pp. 2712–2717 (2008)

  21. Cui, R., Yan, W.: Mutual synchronization of multiple robot manipulators with unknown dynamics. J. Intell. Robot. Syst. 68(2), 105–119 (2012)

    Article  Google Scholar 

  22. Zhao, D., Ni, W., Zhu, Q.: A framework of neural networks based consensus control for multiple robotic manipulators. Neurocomputing 140, 8–18 (2014)

    Article  Google Scholar 

  23. Mohar, B.: The Laplacian Spectrum of Graphs. In: Alavi, Y., Chartrand, G., Ollermann, O., Schwenk, A. (eds.) Graph Theory, Combinatorics, and Applications, pp 871–898. Wiley, New York (1991)

  24. Laub, A.J.: Matrix analysis for scientists and engineers. SIAM, Philadelphia (2004)

    MATH  Google Scholar 

  25. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Prees, Boca Raton (1994)

    MATH  Google Scholar 

  26. Khalil, H.K.: Nonlinear Systems. 3rd edn. Prentice Hall, Englewood Cliffs (2001)

  27. Frank, E.: On the zeros of polynomials with complex coefficients. Bull. Am. Math. Soc. 52, 144–157 (1946)

    Article  MathSciNet  Google Scholar 

  28. Hurwitz, A.: Über die Bedingungen unter welchen eine Gleichung nur Wurzeln mit negativen reellen Teilen besitzt. Math. Ann. 46, 273–284 (1895)

    Article  MathSciNet  Google Scholar 

  29. Xiong, L., Cheng, J., Cao, J., Liu, Z.: Novel inequality with application to improve the stability criterion for dynamical systems with two additive time-varying delays. Appl. Math. Comput. 321, 672–688 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Yu, W., Chen, G., Cao, M., Ren, W.: Delay-induced consensus and quasi-consensus in multi-agent dynamical systems. IEEE Trans. Circ. Syst. I 60(10), 2679–2687 (2013)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Lianglin Xiong with Yunnan Minzu University for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guisheng Zhai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Matrices in Dynamical System (3)

Appendix: Matrices in Dynamical System (3)

By using the joint angles 𝜃1, 𝜃2, 𝜃3 to compute h1(x), h2(x),h3(x) in V (x) and then substituting \(T(x, \dot {x})\), V (x) into the Lagrange’s equation, we obtain the dynamical (3).

To describe the matrices M(x), \(V(x, \dot {x})\) and G(x) in detail, we use the following shorthand notations

$$ c_{i} {=} \cos \theta_{i} , \quad c_{ij} {=} \cos (\theta_{i} + \theta_{j}) , s_{i} = \sin \theta_{i} , \quad s_{ij} = \sin (\theta_{i} + \theta_{j}) , $$

and let Ixi, Iyi, Izi be the moments of inertia about the x −, y −, and z −axes of the i th link frame. Then, M(x), \(V(x, \dot {x})\) and G(x) are as follows [25].

Manipulator inertia matrix M(x):

$$ \begin{array}{@{}rcl@{}} M(x) = \left[ \begin{array}{rrr} M_{11} & M_{12} & M_{13}\\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{array}\right] \end{array} $$

where

$$ \begin{array}{rcl} M_{11} &=& I_{y2}{s_{2}^{2}} +I_{y3} s_{23}^{2} +I_{z1} + I_{z2} {c_{2}^{2}} +I_{z3} c_{23}^{2} +m_{2}{r_{1}^{2}} {c_{2}^{2}} \\ &&+m_{3}(l_{1} c_{2} + r_{2} c_{23})^{2} \\ M_{22} &=& I_{x2} + I_{x3} + m_{3} {l_{1}^{2}} +m_{2} {r_{1}^{2}} +m_{3} {r_{2}^{2}} + 2 m_{3} l_{1} r_{2} c_{3} \\ M_{23} &=& I_{x3} +m_{3} {r_{2}^{2}}+m_{3} l_{1} r_{2} c_{3} \\ M_{32} &=& I_{x3} + m_{3} {r_{2}^{2}}+m_{3} l_{1} r_{2} c_{3} \\ M_{33} &=& I_{x3} + m_{3} {r_{2}^{2}} \\ M_{12} &=& M_{13}= M_{21}= M_{31}= 0 . \end{array} $$

Coriolis matrix \(V(x,\dot {x})\):

$$ V(x, \dot{x}) = \left[ \begin{array}{rrr} V_{11} & V_{12} & V_{13}\\ V_{21} & V_{22} & V_{23}\\ V_{31} & V_{32} & V_{33} \end{array}\right] $$

where \(V_{ij} = v_{ij1}\dot {\theta }_{1} + v_{ij2} \dot {\theta }_{2} + v_{ij3} \dot {\theta }_{3}\) and

$$ \begin{array}{rcl} v_{112} &=& (I_{y2}-I_{z2}-m_{2} {r_{1}^{2}} ) c_{2} s_{2} + (I_{y3}-I_{z3})c_{23} s_{23} \\ &&-m_{3} (l_{1} c_{2} + r_{2} c_{23})(l_{1} s_{2} + r_{2} s_{23})\\ v_{113} &=& (I_{y3}-I_{z3})c_{23} s_{23} -m_{3} r_{2} s_{23}(l_{1} c_{2} + r_{2} c_{23})\\ v_{121} &=& (I_{y2}-I_{z2}-m_{2} {r_{1}^{2}} ) c_{2} s_{2} + (I_{y3}-I_{z3})c_{23} s_{23} \\ &&-m_{3} (l_{1} c_{2} + r_{2} c_{23})(l_{1} s_{2} + r_{2} s_{23})\\ v_{131} &=& (I_{y3} - I_{z3})c_{23} s_{23} - m_{3} r_{2} s_{23} (l_{1} c_{2} + r_{2} c_{23})\\ v_{211} &=& (I_{z2}-I_{y2}+ m_{2} {r_{1}^{2}} ) c_{2} s_{2} + (I_{z3}-I_{y3}) c_{23} s_{23} \\ &&+m_{3} (l_{1} c_{2} + r_{2} c_{23})(l_{1} s_{2} + r_{2} s_{23})\\ v_{223} &=& v_{232} = v_{233}= -l_{1} m_{3} r_{2} s_{3} \\ v_{311} &=& (I_{z3}-I_{y3}) c_{23} s_{23} + m_{3} r_{2} s_{23} (l_{1} c_{2} + r_{2} c_{23})\\ v_{322} &=& l_{1} m_{3} r_{2} s_{3} \\ v_{111} &=& v_{122} = v_{123} = v_{132} = v_{133} = v_{212} = v_{213} =v_{221} = v_{222} \\ &{=}& v_{231}{=}v_{312} {=} v_{313} = v_{321}= v_{323} = v_{331} = v_{332} = v_{333} = 0 . \end{array} $$

Gravity terms etc G(x):

$$ G(x)=\left[ \begin{array}{c} 0 \\ -(m_{2} g r_{1} + m_{3} g l_{1})c_{2} -m_{3} g r_{2} c_{23} \\ -m_{3} g r_{2} c_{23} \\ \end{array}\right] . $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, G., Nakamura, S. & Mardlijah A Unified Approach to Consensus Control of Three-Link Manipulators. J Intell Robot Syst 97, 3–15 (2020). https://doi.org/10.1007/s10846-019-01032-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01032-y

Keywords

Navigation