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Abstract
This paper proposes a novel distributed EKF-SLAM system that combines the advantages of EKF-SLAM and distributed SLAM
systems. The systemmodel of this novel SLAM system has a distributed structure, and each subsystem is a special SLAM system
corresponding to every effectively observed landmark by feeding the heading information from amagnetic compass is introduced
into the observation equation. Aim at the correlation problem in distributed SLAM system, a decorrelated distributed EKF
(DDEKF) was developed to estimate the robot pose and landmarks. DDEKF reconstructs and extends the maximum allocation
covariance (MAC) method so that it can be applied to the distributed structure where the number of local filters is dynamically
changed. Then, the local filter estimation results are weighted and fused in the main filter to obtain the estimation result. Finally,
the experimental tests were performed in an outdoor environment, and the experiment results demonstrate that the proposed novel
distributed EKF-SLAM system has a better performance than the existing SLAM system.
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1 Introduction

Simultaneous localization and mapping, a well-known
computational problem abbreviated as SLAM, was pro-
posed as a means of enabling a mobile robot to move
through an unknown environment while building a map
and simultaneously estimating its position [1]. Unlike tra-
ditional navigation systems that rely on prior knowledge
of the environment or external reference systems (e.g.
GPS), SLAM requires only the utilization of onboard sen-
sors without any other assistance. Therefore, SLAM has
attracted extensive attention in mobile robotics and has
come to be seen as the primary tool for solving the au-
tonomous navigation problem for various unmanned

vehicles, such as unmanned aerial vehicles [2, 3], under-
water robots [4, 5] and space robots [6].

In general, two main types of approaches have been widely
used to solve the SLAM problem. The first is smoothing ap-
proaches, in which the complete trajectory of the robot is esti-
mated from the full set of measurements. The existing solutions
for graph-based SLAM include square root smoothing and map-
ping (SAM) [7], incremental smoothing and mapping (iSAM)
[8], nonlinear constraint network optimization [9], and hierarchi-
cal optimization for pose graphs on manifolds [10]. Due to the
relatively high complexity of solving the error minimization
problem, graph-based SLAM is often considered to require an
offline algorithm. The second is filtering approaches, in which
the SLAM problem is modeled on the basis of an online state
estimation system consisting of the robot’s current position and
the map. The SLAM approaches that fall into this category in-
clude methods based on the extended Kalman filter (EKF), in-
formation filters and particle filters. Successful SLAM algo-
rithms that use the EKF have been developed for various appli-
cations [11–13]. However, linearized series approximations can
lead to poor representations of nonlinear functions, and the EKF
approach cannot be used to solve non-Gaussian problems. A
SLAM system using an information filter maintains a sparse
information matrix that preserves the consistency of the
Gaussian distribution [14, 15]; however, accessing the mean
and covariance requires the inversion of a large matrix, which
is computationally expensive. The most efficient system for
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particle-filter-based SLAM (PF-SLAM) is FastSLAM, in which
the SLAMproblem is decomposed into a robot localization prob-
lem and a landmark estimation problem, which are addressed
with a particle filter and the EKF, respectively [16–19].

However, the aforementioned approaches all rely on a sys-
tem structure based on a centralized filter. Any change in the
number of feature points will result in state vector reconstruc-
tion and an additional computational burden because all of the
state information is contained in one vector, and information
of different quality will be unavoidably confused. To over-
come these limitations of centralized filters, Dae Hee Won
proposed a SLAM system based on a distributed particle filter
(DPF) [20, 21]. In this distributed SLAM system, the mea-
surements of every feature point are processed in local particle
filters (the number of local filters is determined by the number
of feature points). Then, the estimated results from the indi-
vidual local filters are transmitted to a master filter, which
calculates the final estimate for the vehicle. The authors of
[22, 23] developed a distributed SLAM system with an im-
proved DPF approach. In [23], the authors developed an im-
proved FastSLAM system based on a distributed structure for
autonomous robot navigation.

Among the aforementioned SLAM systems, the distributed
SLAM system proposed in [21, 23] is the most representative.
There is no doubt that this algorithm is effective and easy to
implement in real time for practical applications. However,
there are still some drawbacks inherent in this algorithm. In
this distributed SLAM system, since a particle filter is used as
the estimator for the robot pose, the consistency and long-term
accuracy of the distributed SLAM system will be affected by
the particle diversity and accuracy. Even when an improved
particle filter is used in the distributed SLAM system, incon-
sistency cannot be avoided in PF-SLAM when resampling is
performed. In addition, the feature points on the map and the
robot pose are related in every cycle of estimation because of
the common prior estimates and common process noise shared
by the local filters, and the correlations will become stronger
as the number of observations increases.

Since EKF estimation directly provides recursive solu-
tions to localization problems and suitable to the robot and
landmark positions, the EKF approach remains the method
of choice for the great majority of applications, and EKF-
SLAM has been proven to offer the best convergence and
consistency [21, 22]. Motivated by this previous experience,
this paper proposes a decorrelated distributed EKF-SLAM
system. In this distributed SLAM system, to guarantee the
performance of the system model, a magnetic compass sen-
sor is introduced into the system, and the heading from this
magnetic compass is fed into each subsystem as a measure-
ment vector. Because this heading information is considered,
the proposed SLAM system not only can revise the robot’s
orientation during estimation but also can ensure the consis-
tency and accuracy of each subsystem. An observability

analysis of the new distributed SLAM system model is pre-
sented to provide a theoretical basis for the design of the
estimator. To overcome the suboptimality problem caused
by the measurement vector correlations, the maximum allo-
cated covariance (MAC) fusion method [24] is implemented
and extended to an N-dimensional matrix to improve the
computational efficiency of the system and allow it to adapt
to a situation with an uncertain number of local filters. The
proposed distributed SLAM system is thus more suitable for
practical applications because of its system structure and
implementation technique.

The contents of this paper are as follows. In Section 2,
the basic configuration and model of a typical distributed
particle SLAM system are reviewed. Section 3 introduces
the novel distributed SLAM system model with heading
assistance based on magnetic compass measurements. The
decorrelated distributed EKF algorithm for the proposed
SLAM system is designed and analyzed in Section 4.
Section 5 presents the experimental results, and conclu-
sions are drawn in Section 6.

2 Distributed System Architecture for Slam

The typical centralized filter structure is considered to
yield globally optimal results because the master filter in
this structure considers all state information and observed
data [11]. The EKF and the unscented Kalman filter
(UKF) are the most widely used filtering methods in
SLAM, but they always have a centralized structure.
Changes in the state and observation vectors reduce the
system stability since each change in the number of fea-
ture points will cause the entire state vector to be recon-
structed, and a large amount of computation required also
reduces the real-time capabilities of such a centralized sys-
tem because of the exponential increase in the computa-
tional burden with changes in the state vector. An effec-
tive way to solve the above problems is to adopt a dis-
tributed parallel synchronous structure that has a master
filter to fuse local trajectories within a certain period of
time; such a distributed structure can reduce the effect of
error messages on the final estimation result, improve the
fault tolerance, and allow the system to respond effectively
to changes in the number of effective landmarks. The
most successful distributed filtering method in SLAM is
particle filtering [22]. The configuration of a typical dis-
tributed particle SLAM system is shown in Fig. 1.

The DPF structure is an attractive and effective means
of realizing a SLAM system. Generally, the estimation
model of a distributed particle SLAM system is composed
of a motion model and an observation model. The estima-
tion model addresses the problem of a robot with known
kinematics, starting at an unknown position and moving
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through an unknown environment populated with land-
marks of a certain type [23]:

fX˙ 1 ¼ f X r1;XL1ð Þ þ γ
Z1 kð Þ ¼ h X r1 kð Þ;XL1ð Þ þ η

fX˙ 2 ¼ f X r2;XL2ð Þ þ γ
Z2 kð Þ ¼ h X r2 kð Þ;XL2ð Þ þ η

⋮
X˙ j ¼ f X rj kð Þ;XLj

� �þ γ
Z j kð Þ ¼ h X rj kð Þ;XLj

� �þ η

�
ð1Þ

where Xr(k) is the robot motion model, which can be
described by a probabilistic Markov chain; XL(k) is the

state of the landmarks observed by the robot; and Z kð Þ
¼ zT1 kð Þ; zT2 kð Þ; :::zTj kð Þ

h i
is the observation equation. ω(k)

and v(k) are considered to be zero-mean Gaussian white
measurement noise.

X kþ 1ð Þ ¼

xr k þ 1ð Þ
yr k þ 1ð Þ
φr k þ 1ð Þ
xLj k þ 1ð Þ
yLj k þ 1ð Þ

2
66664

3
77775 ¼ f X kð Þð Þ þ γ ¼

xr kð Þ þΔx
yr kð Þ þΔy
φr kð Þ þΔφ

xLj kð Þ
yLj kð Þ

2
66664

3
77775þ γ ð2Þ

where xr(k), yr(k), and φr(k) are the robot states defined by
the external odometer sensor at time k and γ is the pro-
cess noise. It is assumed that γ consists of zero-mean
white sequences that are uncorrelated with each other,
and the covariance is Q. xLj and yLj represent the state
of the jth landmark. Δx, Δy, and Δφ are the variations
of the robot states.

Z(k) is the observation equation relating the robot states to
the landmarks, as shown in (3):

Z kð Þ ¼ h X r kð Þ; xLj; yLj
� �

¼ z jr
z jβ

� �
þ η ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xLj−xr
� �2 þ yLj−yr

� �2
r

arctan
yLj−yr

� �
xLj−xr
� �

0
@

1
A−φr þ

π
2

2
66664

3
77775þ η ð3Þ

where Z is the observation vector, η is zero-mean
Gaussian white measurement noise, Zr is the distance
from the beacon to the laser sensor, and Zβ is the bear-
ing of the laser sensor measured with respect to the
robot coordinate frame.

This distributed SLAM system model is based on
every effectively observed landmark and establishes a
set of local filters that are independent of each other
and work in parallel. Each estimated result for the states
is transmitted to the fusion filter to obtain the final
results. However, this type of distributed structure gives
rise to a correlation problem for the following reasons:

(1) Collective process noise: Every subsystem can be
regarded as a special SLAM system with an obser-
vation equation that includes information on only
one landmark from the sensor. Thus, correlations
between the measurement vectors in different sub-
systems are inevitably induced because all of the
measurements originate from the same sensor.

(2) Common prior estimates: Common prior estimates
will lead to correlation problems when one track is
merged with another track to generate a system
track because each track contains common histori-
cal information. As shown in Fig. 2, a plurality of
parallel filters B1 - B3 and the system track esti-
mate S(k + 1) contain the common local track esti-
mate S(k) propagated from an earlier time.

The conventional track fusion algorithm does not con-
sider the local association problem in the system when all
tracks are estimated from only one given target. To over-
come this problem, Y. Bar-Shalom proposed a distributed
track fusion formula called track-to-track fusion (TTF) in
[25]. The TTF formula considers the correlations caused
by common process noise. The cross-covariance and the
fusion trajectory in a distributed system can be calculated
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Fig. 1 DPF configuration
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from two state estimates, Xa and Xb, and their covariance
matrixes, Pa and Pb:

X̃ij kjkð Þ ¼ X î kjkð Þ þ ζij kð Þ X ̂i kjkð Þ−X ̂ j kjkð Þ�i∈ 1; 2; :::;N−1f g; j∈ i; iþ 1; :::;N½ �

ð4Þ

where

ζij kð Þ ¼ Pi kjkð Þ−Pij kjkð Þ
 �
Pi kjkð Þ þ P j kjkð Þ−Pij kjkð Þ−PT

ij kjkð Þ
h i

ð5Þ

where X̃ij kjkð Þ is the fusion result, ζij(k) is the filter gain

of a local processor, and X î kjkð Þ and X ̂ j kjkð Þ are the
local filters’ estimates from a single sensor.

P̃ij kjkð Þ ¼ Pij kjkð Þ−ξij kð Þ Pij kjkð Þ−Pij kjkð ÞT
� �

ð6Þ

The advantage of this method is that the correlations
between the local estimation errors are taken into con-
sideration. The disadvantages are that a large amount of
information is needed to calculate the cross-covariance
between the estimations and the communication require-
ments are strict.

3 Novel Distributed Slam System Model

It is clear that a distributed structure is an effective way
to realize a SLAM system compared to a centralized
structure; however, the existing distributed SLAM

systems are all based on the DPF approach, which has
the inherent drawbacks of particle impoverishment and
high computational complexity. Synthesizing the advan-
tages of EKF-SLAM and distributed SLAM systems,
this paper proposes a novel distributed SLAM system
that has a distributed structure and uses a distributed
EKF (DEKF) as the estimator. Similar to the conven-
tional distributed system model, the state vector of ev-
ery subsystem is composed of the robot state and one
landmark position. Notably, it has been proven that in-
consistency in EKF-SLAM is directly related to heading
uncertainty [1]. If the true heading variance remains
small, the inconsistency grows slowly and is manage-
able. To overcome the inconsistency problem, heading
information from a magnetic compass is fed into the
observation model for each subsystem to ensure global
observability and consistency.

3.1 Novel Distributed SLAM System Model

The novel distributed SLAM state model is constructed in the
same way as the conventional model:

X t þ 1ð Þ ¼

xr t þ 1ð Þ
yr t þ 1ð Þ
φr t þ 1ð Þ
xLj t þ 1ð Þ
yLj t þ 1ð Þ

2
66664

3
77775 ¼ f X tð Þð Þ þ γ ¼

xr tð Þ þ vccos φr tð Þð ÞΔT
yr tð Þ þ vcsin φr tð Þð ÞΔT

φr tð Þ þ ωcΔT
xLj tð Þ
yLj tð Þ

2
66664

3
77775þ γ

ð7Þ
where vc is the linear velocity and ωc is the angular velocity;
these velocities are calculated from encoder information. The

System track

Common prior 
estimates

Common sensor

Landmarks

B1

B2

B3

S(k+1)
S(k)

Fig. 2 Configuration of sensor-
to-system track integration
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observation model, which consists of the laser and heading
information, is

X kð Þ ¼ h X r kð Þ; xLj; yLj;φr

� �
¼

z jr
z jβ
zφ

2
4

3
5þ η

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xLj−xr
� �2 þ yLj−yr

� �2
r

arctan
yLj−yr

� �
xLj−xr
� �

0
@

1
A−φr þ

π
2

φr

2
6666664

3
7777775
þ η ð8Þ

where zφis the heading of the robot as measured by the mag-
netic compass.

Then, based on every effective observed landmark, we can
establish the distributed structure as follows:

fX˙ 1 ¼ f X r kð Þ; xL1; yL1ð Þ þ γ
X 1 kð Þ ¼ h X r kð Þ; xL1; yL1ð Þ þ η

fX˙ 2 ¼ f X r kð Þ; xL2; yL2ð Þ þ γ
Z2 kð Þ ¼ h X r kð Þ; xL2; yL2ð Þ þ η

⋮
X˙ j ¼ f X r kð Þ; xLj; yLj

� �
þ γ

Z j kð Þ ¼ h X r kð Þ; xLj; yLj
� �

þ η

8<
:

ð9Þ

This novel distributed SLAM system model uses every
effectively observed landmark to establish a set of local filters
that work in parallel and independently of each other. The
heading information is used as observation information to
revise the robot’s steering and to ensure the global observabil-
ity of the model.

3.2 Observability Analysis of the SLAM System

Observability is an important issue that plays a major role in
the filtering and reconstruction of states from inputs and out-
puts [26]. The observability condition is an indicator of wheth-
er the system contains all the necessary information to perform
the estimation with a bounded error. In particular, for the case
of SLAM, observability implies a bounded error in the local-
ization of both the robot and the landmarks.

Formally, observability simply reflects whether the initial
state x(0) can be uniquely deduced from the history of obser-
vations. This requires that the observability Gramian

Ο 0; tð Þ≜∫t0eF
T τHHTeFτdτ ð10Þ

be nonsingular; if this condition is met, then all states are
observable.

For a time-invariant system, which can be approximated by
a piecewise constant system with little loss of accuracy and no
loss of the characteristic behavior of the system [27], we can

ensure that the entire system can be observed by confirming
the observability of every distributed local system. In addition,
checking the observability condition can be reduced to
checking whether the matrix (11) is of rank N:

Q≜

H
HF
…

HFn−1

2
664

3
775 ð11Þ

where F and H are the motion and observation Jacobian ma-
trixes, respectively, and N is the size of the state.

Consider the SLAM system defined by the observation
model in (3) and the state model X = [xr, yr, φr, (xLj, yLj)]

T,
which takes one landmark as input. When the nonlinear ob-
servation model is linearized using the Taylor series expan-
sion, the observation model Jacobian H is

H ¼ ∂h
∂X

¼
∂hr
∂X
∂hβ
∂X

2
64

3
75 ¼

∂zr
∂ xr; yr;ϕr; xLj; yLj

� �� �
∂zβ

∂ xr; yr;ϕr; xLj; yLj
� �� �

2
66664

3
77775

¼
−Δx
Δ

−Δy
Δ

0
Δx
Δ

Δy
Δ

Δy

Δ2 −
Δx

Δ2 −1 −
Δy

Δ2

Δx

Δ2

2
64

3
75 ð12Þ

whereΔx = [xLj − xr],Δy = [yLj − yr] andΔ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þΔy2

p
.

The state Jacobian matrix F is

F ¼

0 0 −vcsin ϕð Þ 0 0
0 0 vccos ϕð Þ 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

2
66664

3
77775 ð13Þ

Thus, the observability matrix from (11) is

Q ¼

−
Δx
Δ

−
Δy
Δ

0
Δx
Δ

Δy
Δ

Δy

Δ2 −
Δx

Δ2 −1
Δy

Δ2

Δx

Δ2

0 0
vsinθΔx−vcosθΔy

Δ
Δx
Δ

Δy
Δ

0 0
−vsinθΔy−vcosθΔx

Δ2

Δy

Δ2

Δx

Δ2

2
6666666664

3
7777777775

ð14Þ

Here, Rank(Q) = 4 < 5. It can be shown that the observabil-
ity matrix is not of full rank when observing the range and
bearing of one landmark, meaning that the system is
unobservable.

Therefore, we use an additional compass sensor to measure
position information in the SLAM system: given the state
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model in (7) and the observation model in (8), the observation
model Jacobian H is

H ¼ ∂h
∂X

¼

∂hr
∂X
∂hβ
∂X
∂hϕ
∂X

2
666664

3
777775
¼

∂zr
∂ xr; yr;ϕr; xLj; yLj

� �� �
∂zβ

∂ xr; yr;ϕr; xLj; yLj
� �� �

∂zϕ
∂ xr; yr;ϕr; xLj; yLj

� �� �

2
66666666664

3
77777777775

¼
0

Δx
Δ

Δy
Δ

Δy

Δ2 −
Δx

Δ2 −1 −
Δy

Δ2

Δx

Δ2

0 0 1 0 0

2
6664

3
7775 ð15Þ

and the observability matrix from (11) is

Q ¼

−
Δx
Δ

−
Δy
Δ

0
Δx
Δ

Δy
Δ

Δy

Δ2 −
Δx

Δ2 −1
Δy

Δ2

Δx

Δ2

0 0 1 0 0

0 0
vsinθΔx−vcosθΔy

Δ
Δx
Δ

Δy
Δ

0 0
−vsinθΔy−vcosθΔx

Δ2

Δy

Δ2

Δx

Δ2

2
66666666664

3
77777777775

ð16Þ

Here, Rank(Q) = 5. It can be shown that the observability
matrix becomes of full rank when observing the range and
bearing of one landmark and the heading of the robot, dem-
onstrating that the novel distributed SLAM system is
observable.

4 Decorrelation Algorithm for Distributed
Slam

Generally, correlations can be taken into account during track
fusion, and one method of doing so based on a convex fusion
algorithm is named TTF [28]. In accordance with the maxi-
mum likelihood (ML) and linear minimum variance (LMV)
estimators, the TTF algorithm can be simply extended to N-
dimensional fusion. However, the correlations cannot be ef-
fectively calculated in the case in which the number of local
filters changes dynamically because the correlation calcula-
tion requires continuous recursion. The method of covariance
intersection (CI) can be used to realize approximate correla-
tion calculations even if the correlations are unknown [29].
The correlation at each moment is calculated from the param-
eters of the local sensors, and this calculation does not require
any recursion, thus effectively solving the problem of dynam-
ic changes in the number of local filters. According to CI
theory, the results of the MAC algorithm proposed by Zarei-
Jalalabadi are less conservative than the fusion results

achieved in the well-known CI case [24], but the applications
of the MAC algorithm are still limited because of the absence
of weights in the master fusion filter.

Since the recursive computation of the local filters’ covari-
ance cannot be implemented in a dynamic distributed system,
it is not feasible to use the cross-covariance algorithm to com-
bine two tracks. CI fusion is a popular method used in the TTF
algorithm because it does not require knowledge of the real
cross-covariance between two tracks. However, because the
CI method is too conservative, its fusion performance is in-
sufficient compared with that of the MAC algorithm [24].
Thus, the MAC fusion algorithm is adopted here to combine
two tracks with unknown correlations; that is, this method can
be used to combine two tracks using only the information
from those two tracks, including the local filter states and
covariance matrixes. Finally, weighted fusion is performed
at the fusion center. The entire framework of the decorrelated
distributed EKF (DDEKF)-SLAM system is shown in Fig. 3.

For the distributed Kalman filter algorithm, the local filters’

predicted states X i
k=k−1; i ¼ 1; :::;N

n o
and predicted covari-

ances Pi
k=k−1; i ¼ 1; :::;N

n o
can be obtained as follows:

X i
k=k−1 ¼ f X i

k−1=k−1; uk−1
� �

ð17Þ

Pi
k=k−1 ¼ Φk;k−1Pi

k−1=k−1Φ
T
k;k−1 þ Qk−1 ð18Þ

Then, the general measurement update equation is as fol-
lows:

X ̂i
k=k ¼ X ̂

i
kjk−1 þ Ki

k Zk−HkX ̂k=k−1Þ ¼ I−KkHkð ÞX ̂k=k−1 þ KkZk
�

ð19Þ

For tracks X ̂r;P ̂rÞ; r∈ i; jf g�
, with an unknown correlation,

the MAC-fused track is

Pm
k ¼ F Skð Þ

¼ Pi
k=k− Pi

k=k−Sk
� �

Pi
k=k þ Pi

k=k−Sk−S
T
k

� �−1
Pi
k=k−S

T
k

� �

ð20Þ

with Sk ¼
ffiffiffiffiffiffiffiffiffi
Pi
k=k

q T
Ck

ffiffiffiffiffiffiffiffiffi
P j
k=k

q
, where

Ck ¼ arg max det F Skð Þð Þ ð21Þ

For the fused track,

X ̂MAC ¼ WiX ̂i þW jX ̂ j ð22Þ
Wi ¼ P j−ST

� �
Pi þ P j−S−ST
� �−1 ð23Þ

W j ¼ Pi−Sð Þ Pi þ Pj−S−ST
� �−1 ð24Þ

where Wi +Wi ≤ 1.
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MAC fusion is also applicable to scenarios where the num-
ber of parallel filters is dynamically changing because the
fusion algorithm is based on the CI fusionmethod, which does
not require historical information. Besides, the MAC algo-
rithm is less conservative than the CI algorithm by
reconstructing weight functionsWi andWj; on the other hand,
the MAC algorithm is guaranteed to be more conservative
than track fusion with a known cross-covariance between
the tracks. To enable its application in the distributed SLAM
structure, especially in the case of multiple landmarks, we
extend the MAC algorithm to N-dimensional fusion and add
weights to the fusion results for each subsystem to obtain the
optimal estimate. According to the fusion equation of the ML
estimator, the fusion result can be obtained as follows:

X ̂ML ¼ UP−1
F U

T� �−1
UP−1

F X ̂F ð25Þ

where U ¼def I ; I ; ⋯ I ;½ �T .
According to [30], we can transform the covariance matrix

into a diagonal matrix; thus, the MAC expressions can be
rewritten as

X ̂m ¼ X ̂m1
t1t1X ̂m2

t1t2⋯X ̂mN
tNtNÞ

T
�

ð26Þ

PN ¼
Pm1
t1t1 0 ⋯ 0
0 Pm2

t1t2 ⋯ 0
⋮ ⋱ ⋮
0 0 ⋯ PmN

tNtN

2
664

3
775 ð27Þ

Finally, we add weight information to the fusion center. The

weights are obtained as follows: Wsisj ¼ ∑
N

n¼1
PlN−1

sisj

� −1

PlN−1

sisj .

Then, the fused estimate is given by

X ̂NMAC ¼ ∑
N

n¼1
WsisjX ̂

lN
sisji; j∈ 1; 2; :::;Nf g; i≠ j and i < j ð28Þ

5 Experimental Results and Analysis

In order to evaluate the performance of the proposed distributed
structure DDEKF-SLAM system and consider the problem of
correlation between local filters to the estimation accuracy, a robot
runs in the square to collect the actual data, and the DDEKF
algorithm is used to process it. Then, the estimated results are
compared with those of the traditional EKF-SLAM system.

5.1 Experiment Design

The DDEKF proposed in this paper is suitable for data fusion
in a variety of distributed structures. In order to verify the
effectiveness of DDEKF in distributed architecture to improve
the estimation accuracy, an outdoor experiment based on tree
as road punctuation is designed. In this experiment, the way to
set the tree as the road punctuation is to verify the algorithm
conveniently, and the local filter can be established by identi-
fying different landmarks according to the actual scene. The
robot platform used in the experiment uses 2D laser, odometer
and magnetic compass as sensors, as shown in Fig. 4. The
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laser used was the LMS111–10100 model produced by SICK,
the maximum measuring distance of this sensor is 20 m, and
the scanning time is 0.1 s for a 180-degree measurement area.
The compass uses magnetic sensors and a two-axis tilt sensor
to collect heading information, and its accuracy is 0.3°. In the
experiments, trees were used as artificial landmarks, and the
SLAM algorithm used dead reckoning and relative observa-
tions to estimate the position of the robot and build a naviga-
tion map, as shown in Fig. 6. The accuracy of the map reflects
the accuracy of the local map origin and the quality of the
kinematics model and relative observations.

The real trajectory of the robot was derived from GPS data
and is displayed as the red trajectory in Fig. 5. The robot’s
trajectory started at the left and proceeded in the direction of
the arrow; the shape of the first lap was similar to a figure-8
pattern, and the second lap lay along the outer ring of the map.

The laser-based landmark extraction algorithm is sim-
ilar to the algorithm used in [26], in which the center of a
tree trunk is tracked by clustering a number of laser ob-
servations. The data collected by the laser sensor from
within its projection range were sufficient to determine
the thickness of the cylindrical trunk relative to the ro-
bot’s angle and distance, as shown in Fig. 6. Then, the
relative coordinates of the central position of the cylinder
could be calculated in accordance with the collected data
and the sensor resolution. Feature matching was per-
formed using the nearest neighbor (NN) algorithm, which
obtains a positive subset of landmarks in the current map
corresponding to a subset of landmarks in a previous map.

Landmark
Landmark

Landmark

Global Coordinate

Z

X

Y
Z

X

Y

Local Map Origin

Laser Beam

Landmark

Fig. 6 The laser-based landmark
extraction algorithm

Fig. 7 The GPS, odometer’s data and real trees

Fig. 5 GPS measurements in GPGGA mode
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5.2 Performance of algorithms in the real-world
environment

The track information in Fig. 7 is provided by the odometer,
and the GPS information is added to the picture to facilitate the
real track. Intensive trees in the park cause poor GPS perfor-
mance, so only the robot trajectories recorded when the num-
ber of satellites is greater than 12. At the meanwhile, the real
tree positions are depicted in Fig. 7, and the tree positions are
obtained from the field measurement information combined
with the picture information.

The estimated results for the robot’s trajectory and the nav-
igation landmarks as obtained with the DDEKF algorithm are
shown in Fig. 8. To test the performance of the DDEKF-
SLAM system, the experiment was also performed with
DPF-SLAM and DEKF-SLAM system for comparison, and
these methods have been debugged to the best state in this
group of experiments..

Figure 8 shows the pose estimation performance of the three
distributed filtering algorithms in the same scene. Among them,
the blue dotted line indicates the estimation result of each algo-
rithm, and the red plus sign indicates the estimated landmark
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point information, the black squares are real trees. The black
dots represent the GPS measurement results, which are used as
reference information for these experiments.

It is obvious that the DDEKF estimation results more close-
ly approximate to the GPS results than the DPF estimation and
DEKF estimation, demonstrating that the DDEKF algorithm
achieves better accuracy. Compared to the other two algo-
rithms, the proposed algorithm can estimate the robot’s trajec-
tory and the positions of the navigation landmarks very well
and shows little error on the estimated landmark positions due
to the sensors’ inherent noise.

5.3 RMSE of algorithms in the case of the different
number of landmarks

Figure 9 is a set of comparative tests in which the number of
landmark points is less than or equal to 8 and greater than 8.
This set of experiments is mainly used to verify the optimiza-
tion of the decorrelated distributed system, especially when
the number of parallel filters is large.

In Fig. 9 (a), the error of this localization algorithm comes
from the initial stage of the map. The estimation accuracy of
the three algorithms differs little when the number of parallel
filters is relatively less, and the floating phenomenon of esti-
mation error at this time mainly comes from the sensor error.
The results show that the correlation problem in the distributed
structure is not obvious when the initial stage of the localiza-
tion algorithm and the number of landmarks are few.

In Fig. 9 (b) where the number of local filters is relatively
large (the number of local filters in this experiment is about 8),
the decorrelated distributed structure improves the estimation
accuracy of the distributed system, since the correlation is
considered in the filtering process. The error of this localiza-
tion algorithm comes from locating for a period of time, so the
cumulative correlation problem is more obvious.

5.4 RMSE of algorithms and Computational Cost

Table 1 summarizes the mean values and variances of the
estimation results from three algorithms. Besides, the compu-
tational cost of the three algorithms is recorded for compari-
son. These algorithms run on Intel(R) Core (TM) i5–4590
CPU @ 3.30GHz PC.

The estimation accuracy of DEKF is slightly lower than
DPF, but the computational complexity is low and the com-
putation time is only 20% of DPF. However, the DDEKF
system obtains the final estimation result by weighting the
fusion result of the MAC. As can be seen from Tab. 1,
DDEKF reduces the RMSE and increases the real-time per-
formance of the system, what’s more, the calculation time of
the DDEKF system is only 28.13% of the DPF.

6 Conclusion

This paper has proposed a decorrelated distributed SLAM
system based on the EKF, which is an effective real-time so-
lution for the automation navigation of mobile robots. The
EKF is the best and easiest filter to implement in real time
for practical applications of SLAM systems, and the distribut-
ed structure can transform the problem of state vector expan-
sion with changing landmarks into dynamic changes in sub-
systems using a parallel synchronous framework. By integrat-
ing the landmarks of these two types of SLAM systems, the
proposed DDEKF-SLAM system achieves significant advan-
tages compared to existing SLAM systems. In each local filter,
the state vector is composed of the state of the robot and the
information on one landmark, and the observation model is
composed of laser and heading information, which is used to
improve the observability and convergence of the subsystem.
To address the correlation problem caused by the common
process noise and common prior estimates, the MAC method
is implemented to use all local filters as information sources;
thus, the local estimates are fused by means of a master filter
to achieve global optimality. The experimental results show
that the proposed distributed SLAM system has a better esti-
mation accuracy than existing SLAM systems do and consis-
tently achieves more accurate estimation for a continuous tra-
jectory. A disadvantage of the proposed SLAM system is that
the stability of the distributed filter with dynamic changes in
the subsystems has not been analyzed. For a SLAM system,
dynamic changes in subsystems should be considered because
this situation commonly occurs. Investigations of an advanced
distributed filter and its stability analysis are underway and
hopefully will be reported in the near future.
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Table 1 Comparison of the estimation errors and CPU running time

Algorithm Estimated Error CPU Running Time (s)

Mean (m) RMSE (m)

DPF 0.647758 0.38263 14.75

DEKF 0.683575 0.39626 3.05

DDEKF 0.626077 0.35765 4.15
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