Skip to main content
Log in

Improving Autonomous Exploration Using Reduced Approximated Generalized Voronoi Graphs

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Autonomous robotic exploration has been extensively applied in many tasks, such as mobile mapping and indoor searching. One of the most challenging issues is to locate the Next-Best-View and to guide robots through a previously unknown environment. Existing methods based on generalized Voronoi graphs (GVGs) have presented feasible solutions but require excessive computation to construct GVGs from metric maps, and the GVGs are usually redundant. This paper proposes an improving method based on reduced approximated GVG (RAGVG), which provides a topological representation of the explored space with a smaller graph. Additionally, a fast and robust image thinning algorithm for constructing RAGVGs from metric maps is presented, and an autonomous robotic exploration framework using RAGVGs is designed. The proposed method is validated with three known common data sets and two simulations of autonomous exploration tasks. The experimental results show that the proposed algorithm is efficient in constructing RAGVGs, and the simulations indicate that the mobile robot controlled by the RAGVG-based exploration method reduced the total time by approximately 20% for the given tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Burgard, W., Moors, M., Stachniss, C., et al.: Coordinated multi-robot exploration[J]. IEEE Trans. Robot. 21(3), 376–386 (2005)

    Article  Google Scholar 

  2. Stachniss, C., Hahnel, D., Burgard, W.: Exploration with active loop-closing for FastSLAM[C]. Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on. IEEE, 2, 1505–1510 (2004)

  3. Stachniss, C., Burgard, W.: Mapping and exploration with mobile robots using coverage maps[C]. Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on. IEEE, 1, 467–472 (2003)

  4. Calisi, D., Farinelli, A., Iocchi, L., et al.: Autonomous navigation and exploration in a rescue environment[C]. Safety, Security and Rescue Robotics, Workshop, 2005 IEEE International. IEEE, 54–59 (2005)

  5. Basilico, N., Amigoni, F.: Exploration strategies based on multi-criteria decision making for searching environments in rescue operations[J]. Auton. Robot. 31(4), 401 (2011)

    Article  Google Scholar 

  6. Low, K.L., Lastra, A.: An adaptive hierarchical next-best-view algorithm for 3d reconstruction of indoor scenes[C]. Proceedings of 14th Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2006), 1–8 (2006)

  7. Quintana, B., Prieto, S.A., Adán, A., et al.: Semantic scan planning for indoor structural elements of buildings[J]. Adv. Eng. Inform. 30(4), 643–659 (2016)

    Article  Google Scholar 

  8. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters[J]. IEEE Trans. Robot. 23(1), 34–46 (2007)

    Article  Google Scholar 

  9. Kulich, M., Kubalík, J., Přeučil, L.: An integrated approach to goal selection in Mobile robot exploration[J]. Sensors. 19(6), 1400 (2019)

    Article  Google Scholar 

  10. Yamauchi, B.: A frontier-based approach for autonomous exploration[C]. Computational Intelligence in Robotics and Automation, 1997. CIRA'97., Proceedings 1997 IEEE International Symposium on. IEEE, 146–151 (1997)

  11. González-Banos, H.H., Latombe, J.C.: Navigation strategies for exploring indoor environments[J]. Int. J. Robot. Res. 21(10–11), 829–848 (2002)

    Article  Google Scholar 

  12. Visser, A., Van Ittersum, M., Jaime, L.A.G., et al.: Beyond Frontier Exploration[C]. Robot Soccer World Cup, pp. 113–123. Springer, Berlin/Heidelberg (2007)

    Google Scholar 

  13. Stachniss, C., Grisetti, G., Burgard, W.: Information gain-based exploration using rao-blackwellized particle filters[C]. Robot. Sci. Syst. 2, 65–72 (2005)

    Google Scholar 

  14. Vallvé, J., Andrade-Cetto, J.: Potential information fields for mobile robot exploration[J]. Robot. Auton. Syst. 69, 68–79 (2015)

    Article  Google Scholar 

  15. Carrillo, H., Dames, P., Kumar, V., et al.: Autonomous robotic exploration using occupancy grid maps and graph SLAM based on Shannon and Rényi entropy[C]. 2015 IEEE international conference on robotics and automation (ICRA). IEEE, 487–494 (2015)

  16. Carrillo, H., Dames, P., Kumar, V., et al.: Autonomous robotic exploration using a utility function based on Rényi’s general theory of entropy[J]. Auton. Robot. 42(2), 235–256 (2018)

    Article  Google Scholar 

  17. Peng Cheng, S.M. LaValle.: Resolution complete rapidly-exploring random trees[C]// Robotics and Automation, 2002. Proceedings. ICRA '02. IEEE International Conference on. IEEE (2002)

  18. Umari, H., Mukhopadhyay, S.: Autonomous robotic exploration based on multiple rapidly-exploring randomized trees[C]. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 1396–1402 (2017)

  19. Tsardoulias, E.G., Iliakopoulou, A., Kargakos, A., et al.: Cost-based target selection techniques towards full space exploration and coverage for USAR applications in a priori unknown environments[J]. J. Intell. Robot. Syst. 87(2), 313–340 (2017)

    Article  Google Scholar 

  20. Thrun, S.: Learning metric-topological maps for indoor mobile robot navigation[J]. Artif. Intell. 99(1), 21–71 (1998)

    Article  Google Scholar 

  21. Howie Choset, J.B.: Sensor based planning, Part I: The generalized Voronoi graph[C]. IEEE International Conference on Robotics & Automation. IEEE (1995)

  22. Nagatani, K., Choset, H.: Toward robust sensor-based exploration by constructing reduced generalized Voronoi graph[C]. IEEE/RSJ International Conference on Intelligent Robots & Systems. IEEE (1999)

  23. Choset, H.: Sensor-based exploration: the hierarchical generalized Voronoi graph[J]. Int. J. Robot. Res. 19(2), 96–125 (2000)

    Article  Google Scholar 

  24. Kim, J., Zhang, F., Egerstedt, M.: A provably complete exploration strategy by constructing Voronoi diagrams[J]. Auton. Robot. 29(3–4), 367–380 (2010)

    Article  Google Scholar 

  25. Lau, B., Sprunk, C., Burgard, W.: Improved updating of Euclidean distance maps and Voronoi diagrams[C]. Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on. IEEE, 281–286 (2010)

  26. Tsardoulias, E.G., Serafi, A.T., Panourgia, M.N., et al.: Construction of minimized topological graphs on occupancy grid maps based on GVD and sensor coverage information[J]. J. Intell. Robot. Syst. 75(3–4), 457–474 (2014)

    Article  Google Scholar 

  27. Tsardoulias, E.G., Iliakopoulou, A., Kargakos, A., et al.: A review of global path planning methods for occupancy grid maps regardless of obstacle density[J]. J. Intell. Robot. Syst. 84(1–4), 829–858 (2016)

    Article  Google Scholar 

  28. Valero-Gomez, A., Gomez, J.V., Garrido, S., et al.: The path to efficiency: fast marching method for safer, more efficient mobile robot trajectories[J]. IEEE Robot. Autom. Mag. 20(4), 111–120 (2013)

    Article  Google Scholar 

  29. Takahashi, O., Schilling, R.: Motion planning in a plane using generalized Voronoi diagrams[J]. IEEE Trans. Robot. Autom. 5(2), 150 (1989)

    Article  Google Scholar 

  30. Choset, H., Lynch, K., Hutchinson, S., et al.: Principles of robot motion: theory, algorithms, and implementations. MIT Press, Cambridge, MA[J]. Proc. Soc. Exper. Biol. Med. 147(1), 512–512 (2005)

    Google Scholar 

  31. Zhang, T.Y., Suen, C.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM. 27(3), 236–239 (1984)

    Article  Google Scholar 

  32. Saeed, K., Rybnik, M., Tabedzki, M.: Implementation and Advanced Results on the Non-interrupted Skeletonization Algorithm[C]. International Conference on Computer Analysis of Images and Patterns, pp. 601–609. Springer, Berlin/Heidelberg (2001)

  33. Saeed, K., Tabędzki, M., Rybnik, M., et al.: K3M: A universal algorithm for image skeletonization and a review of thinning techniques[J]. Int. J. Appl. Math. Comput. Sci. 20(2), 317–335 (2010)

    Article  Google Scholar 

  34. Hershberger, J.E, Snoeyink, J.: Speeding up the Douglas-Peucker Line-Simplification Algorithm[M]. University of British Columbia, Department of Computer Science (1992)

Download references

Acknowledgements

This study is funded by the National Key R&D Program of China (2017YFB0503701) and the National Natural Science Foundation of China (41871298).

Author information

Authors and Affiliations

Authors

Contributions

This study was completed by the co-authors, and the major experiments and analyses were undertaken by Xinkai Zuo. Lin Li and Haihong Zhu supervised and guided this study. Dalin Li and Fan Yang designed the proposal for the experiments and conducted the analyses. Jun Liu and Yifan Liang aided in the collection and analysis of the data, and Fei Su contributed to algorithm implementation while Xinkai Zuo wrote the paper. Huixiang Peng and Gang Zhou helped a lot to conduct the experiment of the real-world scenario. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Haihong Zhu.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zuo, X., Peng, H. et al. Improving Autonomous Exploration Using Reduced Approximated Generalized Voronoi Graphs. J Intell Robot Syst 99, 91–113 (2020). https://doi.org/10.1007/s10846-019-01119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01119-6

Keywords

Navigation