Skip to main content
Log in

A Smooth and Safe Path Planning for an Active Lower Limb Exoskeleton

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The Probabilistic Foam method (PFM) is a path planner that ensures a volumetric region for safe maneuverability called bubble. This method generates paths bounded by a set of overlapped bubbles, called rosary. In this paper, we present an approach to obtain safe and smooth collision-free paths from PFM for a lower limb active exoskeleton, which is based on two main processes: The rosary adjustment and the path smoothing. The first process keeps the size of the bubbles more regular, while the second process guarantees a smooth and short path, satisfying the safe constraints imposed by the rosary. To evaluate these proposed approaches, we presented a simulation of the exoskeleton leg performing the swing phase movement in three different scenarios: overcoming an obstacle, walking up and down a step. The resulting planned paths were evaluated and compared, considering the path length and the path smoothness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006). OCLC: ocm65301992

    Book  Google Scholar 

  2. Kavraki, L., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996). https://doi.org/10.1109/70.508439

    Article  Google Scholar 

  3. Lavalle, S.M.: Rapidly-exploring random trees: A new tool for path planning (1998)

  4. Lavalle, S.M., Kuffner, J.J. Jr: Rapidly-exploring random trees: Progress and prospects. In: Algorithmic and Computational Robotics: New Directions, pp 293–308 (2000)

  5. Blanco, J.L., Bellone, M., Gimenez-Fernandez, A.: TP-space RRT – kinematic path planning of non-holonomic any-shape vehicles. Int. J. Adv. Robot. Syst. 12(5), 55 (2015). https://doi.org/10.5772/60463

    Article  Google Scholar 

  6. Banzhaf, H., Sanzenbacher, P., Baumann, U., Zöllner, J.M.: Learning to predict ego-vehicle poses for sampling-based nonholonomic motion planning. IEEE Robot. Autom. Lett. 4(2), 1053–1060 (2019). https://doi.org/10.1109/LRA.2019.2893975

    Article  Google Scholar 

  7. Moon, C., Chung, W.: Kinodynamic planner dual-tree RRT (DT-RRT) for two-wheeled mobile robots using the rapidly exploring random tree. IEEE Trans. Ind. Electron. 62 (2), 1080–1090 (2015). https://doi.org/10.1109/TIE.2014.2345351

    Article  Google Scholar 

  8. Palomeras, N., Hurtós, N., Vidal, E., Carreras, M.: Autonomous exploration of complex underwater environments using a probabilistic next-best-view planner. IEEE Robot. Autom. Lett. 4(2), 1619–1625 (2019). https://doi.org/10.1109/LRA.2019.2896759

    Article  Google Scholar 

  9. Lin, Y., Saripalli, S.: Sampling-based path planning for UAV collision avoidance. IEEE Trans. Intell. Transp. Syst. 18(11), 3179–3192 (2017). https://doi.org/10.1109/TITS.2017.2673778

    Article  Google Scholar 

  10. Liu, Z., Zhang, Y., Yuan, C., Ciarletta, L., Theilliol, D.: Collision avoidance and path following control of unmanned aerial vehicle in hazardous environment. Journal of Intelligent & Robotic Systems. https://doi.org/10.1007/s10846-018-0929-y (2018)

  11. Ma, C., Zhang, Y., Zhao, Q., Bai, K.: 6R serial manipulator space path planning based on RRT. In: 2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), vol. 02, pp 99–102 (2016), https://doi.org/10.1109/IHMSC.2016.90

  12. Neto, A.A., Macharet, D.G., Campos, M.M.F.: Multi-agent rapidly-exploring pseudo-random tree. J. Intell. Robot. Syst. 89(1), 69–85 (2018). https://doi.org/10.1007/s10846-017-0516-7

    Article  Google Scholar 

  13. Liu, J., Veloso, M.: Online ZMP sampling search for biped walking planning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008. IROS 2008, pp 185–190. IEEE (2008)

  14. Liu, H., Sun, Q., Zhang, T.: Hierarchical RRT for humanoid robot footstep planning with multiple constraints in complex environments. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 3187–3194. IEEE (2012)

  15. Zhu, H., Guan, Y., Chen, S., Su, M., Zhang, H.: Single-step collision-free trajectory planning of biped climbing robots in spatial trusses. Robot. Biomimet. 3(1), 1 (2016)

    Article  Google Scholar 

  16. de Araujo, M.V., da Silva, G.N., Soares, L.C., Alsina, P.J.: Ortholeg project - development of an active orthosis prototype for lower limbs. In: 2012 Brazilian Robotics Symposium and Latin American Robotics Symposium, pp 239–244 (2012), https://doi.org/10.1109/SBR-LARS.2012.46

  17. Araujo, M.V., Alsina, P.J., Roza, V.C.C., Melo, N.B.: Powered orthosis ortholeg: Design and development. IEEE Lat. Am. Trans. 13(1), 90–95 (2015)

    Article  Google Scholar 

  18. Melo, N.B., Dorea, C.E., Alsina, P.J., Araujo, M.V., Gloger, M.: Ortholeg 2.0-design of a transparent active orthosis. IEEE Lat. Am. Trans. 15(10), 1869–1874 (2017)

    Article  Google Scholar 

  19. Silveira, Y.S., Alsina, P.J.: A new robot path planning method based on probabilistic foam. In: 2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR), pp 217–222 (2016), https://doi.org/10.1109/LARS-SBR.2016.43

  20. Nascimento, L.B.P., Silva, D.P., Sanca, A.S., Eugenio, K.J.S., Fernandes, D.H.S., Alsina, P.J., Araujo, M.V., Silva, M.R.: Safe path planning based on probabilistic foam for a lower limb active orthosis to overcoming an obstacle. In: 2018 Latin American Robotic Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE), pp 413–419 (2018), https://doi.org/10.1109/LARS/SBR/WRE.2018.00080

  21. Quinlan, S.: Real-Time Modification of Collision-Free Paths. Doctoral dissertation, Stanford University Stanford CA (1995)

  22. Nascimento, L.B.P., Pereira, D.S., Alsina, P.J., Silva, M.R., Fernandes, D.H.S., Roza, V.C.C., Sanca, A.S.: Goal-biased probabilistic foam method for robot path planning. In: 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp 199–204 (2018), https://doi.org/10.1109/ICARSC.2018.8374183

  23. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30 (7), 846–894 (2011)

    Article  Google Scholar 

  24. Fu, B., Chen, L., Zhou, Y., Zheng, D., Wei, Z., Dai, J., Pan, H.: An improved A* algorithm for the industrial robot path planning with high success rate and short length. Robot. Auton. Syst. 106, 26–37 (2018)

    Article  Google Scholar 

  25. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  26. Cao, X., Zou, X., Jia, C., Chen, M., Zeng, Z.: RRT-based path planning for an intelligent litchi-picking manipulator. Comput. Electron. Agricul. 156, 105–118 (2019)

    Article  Google Scholar 

  27. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, 1975, 2nd edn. University of Michigan Press, Ann Arbor (1992)

    Book  Google Scholar 

  28. Bhattacharya, P., Gavrilova, M.L.: Voronoi diagram in optimal path planning. In: 4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007), pp 38–47 (2007), https://doi.org/10.1109/ISVD.2007.43

  29. Bhattacharya, P., Gavrilova, M.L.: Roadmap-based path planning - using the Voronoi diagram for a clearance-based shortest path. IEEE Robot. Autom. Mag. 15(2), 58–66 (2008). https://doi.org/10.1109/MRA.2008.921540

    Article  Google Scholar 

  30. Dong, H., Li, W., Zhu, J., Duan, S.: The path planning for mobile robot based on voronoi diagram. In: 2010 Third International Conference on Intelligent Networks and Intelligent Systems, pp 446–449 (2010), https://doi.org/10.1109/ICINIS.2010.105

  31. Ayawli, B.B.K., Mei, X., Shen, M., Appiah, A.Y., Kyeremeh, F.: Mobile robot path planning in dynamic environment using Voronoi diagram and computation geometry technique. IEEE Access 7, 86026–86040 (2019). https://doi.org/10.1109/ACCESS.2019.2925623

    Article  Google Scholar 

  32. Elbanhawi, M., Simic, M., Jazar, R.N.: Continuous path smoothing for car-like robots using B-spline curves. J. Intell. Robot. Syst, 80(1), 23–56 (2015)

    Article  Google Scholar 

  33. Manns, M., Martin, N.A.A.: Improving A* walk trajectories with B-splines and motion capture for manual assembly verification. Procedia CIRP 33, 364–369 (2015)

    Article  Google Scholar 

  34. Sidobre, D., Desormeaux, K.: Smooth cubic polynomial trajectories for human-robot interactions. J. Intell. Robot. Syst., 1–19 (2019)

  35. Yang, K., Moon, S., Yoo, S., Kang, J., Doh, N.L., Kim, H.B., Joo, S.: Spline-based RRT path planner for non-holonomic robots. J. Intell. Robot. Syst. 73(1–4), 763–782 (2014)

    Article  Google Scholar 

  36. Tian, Z., Zhao, M., Hu, W., Zhang, X.: Walking pattern generation using quintic spline function based on human motion capture. In: 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp 575–580. IEEE (2018)

  37. Singh, R., Chaudhary, H., Singh, A.K.: Sagittal position analysis of gait cycle for a five link biped robot. In: CAD/CAM, Robotics and Factories of the Future, pp 387–396. Springer (2016)

  38. Ravankar, A., Ravankar, A., Kobayashi, Y., Hoshino, Y., Peng, C.C.: Path smoothing techniques in robot navigation: State-of-the-art, current and future challenges. Sensors 18(9), 3170 (2018)

    Article  Google Scholar 

  39. Quinlan, S., Khatib, O.: Elastic bands: Connecting path planning and control. In: [1993] Proceedings IEEE International Conference on Robotics and Automation, pp 802–807. IEEE (1993)

  40. Latombe, J.C.: Robot Motion Planning. Springer, Boston (1991)

    Book  Google Scholar 

  41. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986). https://doi.org/10.1177/027836498600500106

    Article  Google Scholar 

  42. Muller, M.E.: A note on a method for generating points uniformly on n-dimensional spheres. Commun. ACM 2(4), 19–20 (1959). https://doi.org/10.1145/377939.377946

    Article  MATH  Google Scholar 

  43. Roza, V.C., Eugenio, K.J., Morais, V.G., Alsina, P.J., de Araújo, M.V.: Development of a kinematic model based on bezier curves for improvement of safe trajectories in active orthosis walking tasks. In: in the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) Workshop on Behavior Adaptation, Interaction and Learning for Assistive Robotics (BAILAR) (2017)

  44. Bhowmick, S., Mukhopadhyay, J., Deb, A.K.: Fast path planning on planar occupancy grid exploiting geometry of obstacles. In: 2017 Ninth International Conference on Advances in Pattern Recognition (ICAPR), pp 1–6 (2017), https://doi.org/10.1109/ICAPR.2017.8593059

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís B. P. Nascimento.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nascimento, L.B.P., Barrios-Aranibar, D., Alsina, P.J. et al. A Smooth and Safe Path Planning for an Active Lower Limb Exoskeleton. J Intell Robot Syst 99, 535–553 (2020). https://doi.org/10.1007/s10846-019-01134-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01134-7

Keywords

Navigation