Skip to main content
Log in

A Control Software Framework for Wearable Mechatronic Devices

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The rapid growth of wearable mechatronic devices for motion assistance applications has created a demand for tools that assist with control software development. The wearable mechatronics-enabled control software (WearMECS) framework is proposed as a software development tool for the control systems of these devices. The WearMECS framework was developed to support both software design and implementation. Control software has been developed using the framework that supports various motion tasks, control system models, and wearable mechatronic devices. In this research, the control systems developed with the framework have resulted in some of the lowest elbow motion tracking errors in the literature. The framework has also helped to increase the efficiency of experimental evaluations and the comparison of control components. The versatility of the WearMECS framework provides control system developers with a foundation to build upon, while maintaining their creative freedom. This framework provides a platform that supports the continued growth and improvement of control systems for wearable assistive devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lum, P.S., Burgar, C.G., Shor, P.C., Majmundar, M., Van der Loos, M.: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 83(7), 952 (2002)

    Article  Google Scholar 

  2. Volpe, B.T., Lynch, D., Rykman-Berland, A., Ferraro, M., Galgano, M., Hogan, N., Krebs, H.I.: Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke. Neurorehabil. Neural Repair 22(3), 305 (2008)

    Article  Google Scholar 

  3. Page, S.J., Hill, V., White, S.: Portable upper extremity robotics is as efficacious as upper extremity rehabilitative therapy: a randomized controlled pilot trial. Clin. Rehabil. 27(6), 494 (2012)

    Article  Google Scholar 

  4. Basteris, A., Nijenhuis, S.M., Stienen, A.H., Buurke, J.H., Prange, G.B., Amirabdollahian, F.: Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J. NeuroEng. Rehab. 11(1), 111 (2014)

    Article  Google Scholar 

  5. Proietti, T., Crocher, V., Roby-Brami, A., Jarrassé, N.: Upper-limb robotic exoskeletons for neurorehabilitation: A review on control strategies. IEEE Rev. Biomed. Eng. 9, 4 (2016)

    Article  Google Scholar 

  6. Anam, K., Al-Jumaily, A.: Active exoskeleton control systems: State of the art. Procedia Eng. 41, 988 (2012)

    Article  Google Scholar 

  7. Gopura, R.A.R.C., Bandara, D.S.V., P., J.M., Gunasekara, T.S.: In: Electrodiagnosis in New Frontiers of Clinical Research (IntechOpen), chap. 12, pp. 237–267 (2013)

  8. Gopura, R.A.R.C., Kiguchi, K., Bandara, D.S.V.: A brief review on upper extremity robotic exoskeleton systems. In: International Conference on Industrial and Information Systems, vol. 8502, pp 346–351, Kandy (2011)

  9. Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., Leonhardt, S.: A survey on robotic devices for upper limb rehabilitation. J. NeuroEng. Rehab. 11(3), 1 (2014)

    Google Scholar 

  10. Woolley, B., Peterson, G.: Unified behavior framework for reactive robot control. J. Intell. Robot. Syst. 55, 155 (2009)

    Article  MATH  Google Scholar 

  11. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: ROS: An open-source robot operating system. In: IEEE International Conference on Robotics and Automation Workshop on Open Source Software. Kobe (2009)

  12. Chen, P., Cao, Q.: A middleware-based simulation and control framework for mobile service robots. J. Intell. Robot. Syst. 79, 489 (2014)

    Article  Google Scholar 

  13. Desplenter, T., Lobo-Prat, J., Stienen, A.H.A., Trejos, A.L.: Extension of the wearme framework for emg-driven control of a wearable arm support, Banff (2016)

  14. Desplenter, T., Kyrylova, A., Trejos, A.L.: Development of an emg-driven control system for a wearable mechatronic elbow brace, Las Vegas (2016)

  15. Desplenter, T., Trejos, A.L.: Evaluating muscle activation models for elbow motion estimation. Sensors 18, 4 (2018)

    Article  Google Scholar 

  16. Desplenter, T.: Development of digital control systems for wearable mechatronic devices: Applications in musculoskeletal rehabilitation of the upper Limb. Phd thesis, The University of Western Ontario London, Ontario, Canada (2018)

  17. Zhou, Y., Desplenter, T., Chinchalkar, S., Trejos, A.L.: A wearable mechatronic glove for resistive hand therapy exercises. In: IEEE/RAS-EMBS International Conference on Rehabilitation Robotics. Toronto, Ontario, Canada. Submitted (2019)

  18. Gopura, R.A.R.C., Bandara, D.S.V., Kiguchi, K., Mann, G.K.I.: Developments in hardware systems of active upper-limb exoskeleton robots: A review. Robot. Auton. Syst. 75, 203 (2015)

    Article  Google Scholar 

  19. O.M. Group: OMG Unified Modeling Language (OMG UML) Version 2.5.1. Tech. rep., Object Management Group https://www.omg.org/spec/UML/2.5.1/PDF (2017)

  20. Cherubini, A., Passama, R., Fraisse, P., Crosnier, A.: A unified multimodal control framework for human-robot interaction. Robot. Auton. Syst. 70, 106 (2015)

    Article  Google Scholar 

  21. Gianni, M., Kruijff, G.J.M., Pirri, F.: A stimulus-response framework for robot control. ACM Trans. Iteractive Intell. Syst. 4, 4 (2015)

    Google Scholar 

  22. Jarrassé, N., Charalambous, T., Burdet, E.: A Framework to Describe, Analyze and Generate Interactive Motor Behaviors. PLoS ONE 7(11), 1 (2012). https://doi.org/10.1371/journal.pone.0049945

    Article  Google Scholar 

  23. Oubbati, M., Palm, G.: A neural framework for adaptive robot control. Neural Comput. Applic. 19, 103 (2010)

    Article  Google Scholar 

  24. Przystałka, P., Adamczyk, M.: EmAmigo Framework for Developing Behavior-Based Control Systems of Inspection Robots. Springer, Berlin (2007)

    Book  Google Scholar 

  25. Seiger, R., Seidl, C., Aßmann, U., Schlegel, T.: A capability-based framework for programming small domestic service robots. In: MORSE/VAO Workshop on Model-Driven Robot Software Engineering and View-based Software-Engineering, pp 49–54, L’Aquila (2015)

  26. Stramigioli, S., Fasse, E.D., Willems, J.: A rigorous framework for interactive robot control. Int. J. Control. 75(18), 1486 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Visinskyi, M., Cavallaro, J., Walker, I.: Expert system framework for fault detection and fault toleracnce in robotics. Comput. Electr. Eng. 20(8), 421 (1994)

    Article  Google Scholar 

  28. Woolley, B., Peterson, G.: Genetic evolution of hierarchical behavior structures. In: Genetic and Evolutionary Computation Conference, pp 1731–1738, London (2007)

  29. Collett, T., MacDonald, B., Gerkey, B.: Player 2.0: Toward a practical robot programming framework. In: Australian Conference on Robotics and Automation, Sydney (2005)

  30. Albu-Schäffer, A., Ott, C., Hirzinger, G.: A unifying passivity-based control framework for position, torque and impedance control of flexible joint robots. Int. J. Robot. Res. 26(1), 23 (2007)

    Article  MATH  Google Scholar 

  31. Artemiadis, P., Kyriakopoulos, K.: Assessment of muscle fatigue using a probabilistic framework for an emg-based robot control scenario. In: IEEE International Conference on BioInformatics and BioEngineering, Athens (2008)

  32. Das, A., Fierro, R., Kumar, V., Ostrowski, J., Spletzer, J.: A vision-based formation control framework. IEEE Trans. Robot. Autom. 18(5), 813 (2002)

    Article  Google Scholar 

  33. Peters, J., Mistry, M., Udwadia, F., Nakanishi, J., Schaal, S.: A unifying framework for robot control with redundant dofs. Auton. Robot. 24, 1 (2008)

    Article  Google Scholar 

  34. Petrič, T., Gams, A., Babič, J., žlajpah, L.: Reflexive stability control framework for humanoid robots. Auton. Robot. 34(4), 347 (2013)

    Article  Google Scholar 

  35. Richter, H.: A framework for control of robots with energy regeneration. ASME J. Dyn. Syst. Measur. Control 137, 9 (2015)

    Article  Google Scholar 

  36. Urgulu, B., Nishimura, M., Hyodo, K., Kawanishi, M., Narikiyo, T.: A framework for sensorless torque estimationand control in wearable exoskeletons. In: IEEE International Workshop on Advanced Motion Control, Sarajevo (2012)

  37. Simões, A., Colombini, E., Matsuura, J., Franchin, M.: TORP: The open robot project a framework for module-based robots. J. Intell. Robot. Syst. 66, 3 (2012)

    Article  Google Scholar 

  38. Tekin, O.̈A., Babšuka, R., Tomiyama, T., Schutter, B.D.: Toward a flexible control design framework to automatically generate control code for mechatronic systems. In: American Control Conference. St. Louis (2009)

  39. Zou, Y., Zhao, G., Wang, T.: A general framework of mechatronic modular architecture. Advances in Mechanical Engineering (2013)

  40. Bó, A.P.L., Poignet, P., Widjaja, F., Ang, W.T.: Online pathological tremor characterization using extended Kalman filtering. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver (2008)

  41. Desplenter, T., Trejos, A.L.: The wearable mechatronics-enabled control software framework, https://github.com/tdesplen/WearMECS (2019)

  42. Kyrylova, A., Desplenter, T., Escoto, A., Chinchalkar, S., Trejos, A.L.: Simplified emg-driven model for active-assisted therapy. In: IEEE International Conference on Intelligent Robots and Systems Workshop on Rehabilitation and Assistive Robotics, Chicago (2014)

  43. Clancy, E.A., Liu, L., Liu, P., Moyer, D.V.Z.: Identification of constant-posture EMG-torque relationship about the elbow using nonlinear dynamic models. IEEE Trans. Biomed. Eng. 59(1), 205 (2012). https://doi.org/10.1109/TBME.2011.2170423

    Article  Google Scholar 

  44. Rosen, J., Fuchs, M.B., Arcan, M.: Performances of hill-type and neural network muscle models-toward a myosignal-based exoskeleton. Comput. Biomed. Res. 32(5), 415 (1999)

    Article  Google Scholar 

  45. Cavallaro, E.E., Rosen, J., Perry, J.C., Burns, S.: Real-time myoprocessors for a neural controlled powered exoskeleton arm. IEEE Trans. Biomed. Eng. 53(11), 2387 (2006)

    Article  Google Scholar 

  46. Desplenter, T., Kyrylova, A., Stanbury, T.K., Chinchalkar, S., Escoto, A., Trejos, A.L.: A wearable mechatronic brace for arm rehabilitation. In: IEEE International Conference on Biomedical Robotics and Biomechatronics, pp 491–496, Sáo Paulo (2014)

  47. Kooren, P.N., Lobo-prat, J., Keemink, A.Q.L., Janssen, M.M., Stienen, A.H.A., Groot, I.J.M.D., Paalman, M.I., Verdaasdonk, R., Koopman, B.F.J.M.: Design and control of the active a-gear: a wearable 5 DOF arm exoskeleton for adults with duchenne muscular dystrophy. In: IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, pp 1242–1247, UTown (2016)

  48. Bai, J., Gao, Y., Wang, S., Zhao, J.: An elbow biomechanical model and its coefficients adjustment. In: IEEE International Conference on Software Engineering and Service Science, pp 954–957, Beijing (2014)

  49. Ding, Q.C., Xiong, A.B., Zhao, X.G., Han, J.D.: A novel EMG-driven state space model for the estimation of continuous joint movements. In: IEEE International Conference on Systems, Man and Cybernetics, pp 2891–2897, Anchorage (2011)

  50. Gao, Y., Bai, J., Wang, S., Zhao, J.: An elbow-biomechanical modeling based on sEMG. In: World Congress on Intelligent Control and Automation, pp 5238–5243, Shenyang (2014)

Download references

Acknowledgements

The authors would like to thank Anastasiia Kyrylova, Myles Lidka, Abelardo Escoto, Yue Zhou, Joan Lobo-Prat, and Arno Stienen for collaborating on the developement and testing of the control systems and devices used in the experiments. The authors would also like to thank Michael Naish for lending equipment that was used in the experiments and Shrikant Chinchalkar for providing insights into upper limb rehabilitation. Funding for this research was provided by Western Strategic Support for NSERC Success Grant and the Academic Development Fund, Western University, by the Natural Sciences and Engineering Research Council (NSERC) of Canada under grant RGPIN-2014-03815, and by the Ontario Ministry of Economic Development, Trade and Employment, and the Ontario Ministry of Research and Innovation through the Early Researcher Award. Partial funding for Dr. Desplenter was provided by the Ontario Graduate Scholarship and the Queen Elizabeth II Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Trejos.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open-source Release

The WearMECS framework has been released an open-source software project and can be found in [41]. A portion of the control software used in these experiments are included within the open-source repository. The framework definitions and example control application, including one with a graphical user interface, are available from the open-source repository.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desplenter, T., Trejos, A.L. A Control Software Framework for Wearable Mechatronic Devices. J Intell Robot Syst 99, 757–771 (2020). https://doi.org/10.1007/s10846-019-01144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01144-5

Keywords

Navigation