Skip to main content

Advertisement

Log in

Interconnection and Damping Assignment Passivity-Based Control Design Under Loss of Actuator Effectiveness

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Due to the convenience in applications, interconnection and damping assignment passivity-based control (IDA-PBC) is applied widely to reformulate the nonlinear robust control as the total energy shaping. However, only few researches focus on the fault-tolerant control (FTC) method based on IDA-PBC, which limits its applications under actuator faults. To break this limitation, this paper improves the IDA-PBC with fault-tolerant ability, and the main contributions are to propose high-gain and adaptive IDA-PBC methods under loss of actuator effectiveness. The simulation and experiment results with a rotorcraft unmanned aerial vehicle (RUAV) are presented to illustrate the control effectiveness of the improved IDA-PBC methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ortega, R., Loria, A., Nicklasson, P.J., Sira-Ramirez, H.: Passivity-based Control of Euler-Lagrange Systems. Springer, UK (1998)

    Book  Google Scholar 

  2. Ortega, R., Schaft, A., Maschke, B., Escobar, G.: Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38(4), 585–596 (2002)

    Article  MathSciNet  Google Scholar 

  3. Ortega, R., Spong, M.W., Gomez-Estern, F., Blankenstein, G.: Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE T. Automat. Contr. 47(8), 1218–1233 (2002)

    Article  MathSciNet  Google Scholar 

  4. Acosta, J.A., Sanchez, M.I., Ollero, A.: Robust control of underactuated aerial manipulators via IDA-PBC. In: 53Rd IEEE Conference on Decision and Control, pp 673–678. Los Angeles, USA (2014)

  5. Bouzid, Y., Siguerdidjane, H., Bestaoui, Y., Zareb, M.: Energy based 3D autopilot for VTOL UAV under guidance & navigation constraints. J. Intell. Robot. Syst. 87(2), 341–362 (2017)

    Article  Google Scholar 

  6. Guerrero-Sanchez, M.E., Mercado-Ravell, A., Lozano, R., Garcia-Beltran, C.D.: Swing-attenuation for a quadrotor transporting a cable-suspended payload. ISA Trans. 68, 433–449 (2017)

    Article  Google Scholar 

  7. Serra, F.M., Angelo, C.H.D., Forchetti, D.G.: IDA-PBC Control of a DC-AC converter for sinusoidal three-phase voltage generation. Int. J. Electron. 104(1), 93–110 (2016)

    Article  Google Scholar 

  8. Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 32(2), 229–252 (2008)

    Article  Google Scholar 

  9. Nasiri, A., Nguang, S.K., Swain, A., Almakhles, D.: Passive actuator fault tolerant control for a class of MIMO nonlinear systems with uncertainties. Int. J. Control 92(3), 693–704 (2019)

    Article  MathSciNet  Google Scholar 

  10. Shen, Q., Wang, D., Zhu, S., Poh, E.K.: Integral-type sliding mode fault-tolerant control for attitude stabilization of spacecraft. IEEE T. Contr. Syst. T. 23(3), 1131–1138 (2015)

    Article  Google Scholar 

  11. Wang, B., Zhang, Y.: An adaptive fault-tolerant sliding mode control allocation scheme for multirotor helicopter subject to simultaneous actuator faults. IEEE T. Ind. Electron. 65(5), 4227–4236 (2018)

    Article  Google Scholar 

  12. Li, Y., Yang, G.: Adaptive asymptotic tracking control of uncertain nonlinear systems with input quantization and actuator faults. Automatic 72, 177–185 (2016)

    Article  MathSciNet  Google Scholar 

  13. Xiao, B., Hu, Q., Friswell, M.I.: Active fault-tolerant attitude control for flexible spacecraft with loss of actuator effectiveness. Int. J. Adapt. Control 27(11), 925–943 (2013)

    Article  MathSciNet  Google Scholar 

  14. Lin, X., Dong, H.: Tuning function-based adaptive backstepping fault-tolerant control for nonlinear systems with actuator faults and multiple disturbances. Nonlinear Dynam. 91(4), 2227–2239 (2018)

    Article  Google Scholar 

  15. Hu, Q., Xiao, B.: Fault-tolerant attitude control for spacecraft under loss of actuator effectiveness. J. Guid. Control Dynam. 34(3), 927–932 (2011)

    Article  Google Scholar 

  16. Lopez-Estrada, F.R., Ponsart, J., Theilliol, D., Zhang, Y., Astorga-Zaragoza, C.: LPV Model-based tracking control and robust sensor fault diagnosis for a quadrotor UAV. J. Intell. Robot. Syst. 84(1-4), 163–177 (2016)

    Article  Google Scholar 

  17. Liu, Z., Theilliol, D., Yang, L., He, Y., Han, J.: Observer-based linear parameter varying control design with unmeasurable varying parameters under sensor faults for quad-tilt rotor unmanned aerial vehicle. Aerosp. Sci. Technol. 92, 696–171 (2019)

    Article  Google Scholar 

  18. Chen, J., Zhang, W., Cao, Y., Chu, H.: Observer-based consensus control against actuator faults for linear parameter-varying multiagent systems. IEEE T. Syst. Man Cy.-S. 47(7), 1336–1347 (2017)

    Article  Google Scholar 

  19. Jiang, J., Yu, X.: Fault-tolerant control systems: a comparative study between active and passive approaches. Annu. Rev. Control 36(1), 60–72 (2012)

    Article  Google Scholar 

  20. Benosman, M., Lum, K.Y.: Application of passivity and cascade structure to robust control against loss of actuator effectiveness. Int. J. Robust Nonlin. 20(6), 673–693 (2010)

    Article  MathSciNet  Google Scholar 

  21. Donaire, A., Romero, J.G., Ortega, R., Siciliano, B., Crespo, M.: Robust IDA-PBC for underactuated mechanical systems subject to matched disturbances. Int. J. Robust Nonlin. 27(6), 1000–1016 (2017)

    Article  MathSciNet  Google Scholar 

  22. Wan, E.A., Merwe, R.: The unscented kalman filter for nonlinear estimation. In: IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium, pp. 1–6. Alberta, Canada (2000)

  23. Zhang, X., Zhang, Y., Su, C., Feng, Y.: Fault-tolerant control for quadrotor UAV via backstepping approach. In: 48Th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, pp. 1–12. Florida, USA (2010)

  24. Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice Hall, USA (2002)

    MATH  Google Scholar 

  25. Hashemi, M., Egoli, A.K., Naraghi, M.: Integrated fault tolerant control for saturated systems with additive faults: a comparative study of saturation models. Int. J. Control Autom. 17(4), 1019–1030 (2019)

    Article  Google Scholar 

  26. Shao, X., Hu, Q., Shi, Y., Jiang, B.: Fault-tolerant prescribed performance attitude tracking control for spacecraft under input saturation. IEEE T. Contr Syst. T., pp. 1–9 (2018)

  27. Shen, Q., Yue, C., Goh, C.H., Wang, D.: Active fault-tolerant control system design for spacecraft attitude maneuvers with actuator saturation and faults. IEEE T. Ind. Electron. 22(6), 3763–3772 (2019)

    Article  Google Scholar 

  28. Dai, B., He, Y., Zhang, G., Gu, F., Yang, L., Xu, W.: Wind disturbance rejection for unmanned aerial vehicle based on acceleration feedback method. In: IEEE 2018 Conference on Decision and Control, pp. 4680–4686. Miami Beach, USA (2018)

  29. Lee, T., Leok, M., McClamroch, H.: Nonlinear robust tracking control of a quadrotor UAV on SE(3). Asian J. Control 15(3), 1–18 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Schneider, T., Ducard, G., Rudin, K., Strupler, P.: Faulttolerant control allocation for multirotor helicopters using parametric programming. In: International Micro Air Vehicle Confrence and Flight Competition. Braunschweig, Germany (2012)

  31. Du, G., Quan, Q., Cai, K.: Controllability analysis and degraded control for a class of hexacopters subject to rotor failures. J. Intell. Robot. Syst. 78(1), 143–157 (2015)

    Article  Google Scholar 

  32. Qi, J., Song, D., Wu, C., Han, J., Wang, T.: KF-Based adaptive UKF algorithm and its application for rotorcraft UAV actuator failure estimation. Int. J. Adv. Robot. Syst. 9(4), 1–9 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (No. 2017YFD0701002) and National Natural Science Foundation of China (Nos. 91748130 and U1608253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Theilliol.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Theilliol, D., Yang, L. et al. Interconnection and Damping Assignment Passivity-Based Control Design Under Loss of Actuator Effectiveness. J Intell Robot Syst 100, 29–45 (2020). https://doi.org/10.1007/s10846-020-01170-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-020-01170-8

Keywords

Navigation