
HAL Id: hal-02566368
https://hal.science/hal-02566368

Submitted on 7 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Maximizing Manipulability Index while Solving a
Kinematics Task

Kévin Dufour, Wael Suleiman

To cite this version:
Kévin Dufour, Wael Suleiman. On Maximizing Manipulability Index while Solving a Kinematics Task.
Journal of Intelligent and Robotic Systems, 2020, �10.1007/s10846-020-01171-7�. �hal-02566368�

https://hal.science/hal-02566368
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

On Maximizing Manipulability Index while Solving a
Kinematics Task
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Abstract In this paper, we investigate the problem

of maximizing the manipulability index while solving a

general Inverse Kinematics (IK) problem of a redundant

industrial manipulator. Manipulability index has been

extensively studied in the robotics literature and sev-

eral formulae have been developed, nevertheless, they

mainly only exploit the robot redundancy.

The general IK is formulated as a Quadratic Pro-

gramming (QP) that can seamlessly incorporate inequal-

ity constraints, such as collision avoidance, and we pro-

pose two new formulae to integrate the manipulability

index maximization into the QP-based IK solver. We

then thoroughly analyze the performance of the pro-

posed formulae in simulation and validate them on a

real Baxter research robot.

The experimental results revealed the outperformance
of the proposed formulae in comparison with the clas-

sical formula in the literature. Hence, providing a way

to improve the manipulability index of a recorded tra-

jectory, e.g. by learning by demonstration, or an offline

generated one by a motion planning algorithm.
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1 Introduction

Collaborative robots (cobots) and their applications in

manufacturing are very promising, as they are expected

to allow small and medium-sized enterprises to regain

competitiveness and efficiency thanks to the flexibil-

ity of their deployment. Cobots market is forecasted to

grow at a compounded annual growth rate of 52.45%

to reach 3 Billion USD by 2022 [2].

A major concern, however, is the safety of human

operators of cobots. This is mainly because those robots

operate without the conventional security fences usually

used to separate heavy and dangerous industrial robots

from humans, they are even designed to physically col-

laborate with humans to accomplish some tasks. To

tackle the safety issue, several approaches have been

proposed: I)- modifying the mechanical design of the

robots and their material [3] or the actuation mecha-

nisms [4,5,6], II)- adding a software layer to monitor

the whole system to make it more human-friendly [7],

III)- considering the safety criterion as an additional

constraint in the planning and execution phases of the

task.

Dealing with a dynamic environment while ensur-

ing the safety of humans or not damaging the robot

is also another challenging issue. A possible way to

deal with this problem is by combining motion planning

techniques, e.g. RRT* or PRM* [8,9], and IK methods.

For instance, we generate at first a preliminary trajec-

tory using motion planning methods to benefit from

their probabilistic completeness and asymptotic opti-

mality properties, and then modify it in real time by IK

methods during the execution. The robot in this case

could react to the presence of moving obstacles, such as

a human or another robot, while satisfying some con-

straints, e.g. joint velocity or acceleration limits.
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Besides, an interesting technique for programing a

collaborative robot is Programing by Demonstration

(PbD), which is a technique that provides a simple and

intuitive way to program a collaborative robot from

observations and demonstrations given by a human,

who is not necessarily having programming abilities.

Although PbD is one of the reasons behind the pop-

ularity of collaborative robots, the quality of resulting

trajectories, e.g. being close to a singular configuration,

cannot be easily figured out during the teaching phase.

Either the robot is executing a task in a dynamic

environment or following a trajectory that has been

taught by demonstrations, an important feature to as-

sess is its ability to promptly react to unforeseen events.

A way to measure this ability is by computing the ma-

nipulability index [10]. When this index becomes small

and tends to zero that means that the robot is close to

a singular configuration and its ability to move away

from that pose is reduced. Hence, the objective of max-

imizing the manipulability index as much as possible

during the motion execution is to keep the robot as far

as possible from the singular configurations.

2 Contributions

The main contributions of this paper are:

– Proposing two new efficient formulae to solve the IK

problem while maximizing the manipulability index.

Those formulae are given in Section 4.2.

– Giving insights into the practical implementation of

the new IK solvers as well as conducting experimen-

tal validation in simulation and on a real Baxter

research robot. We also compare the performance

of the proposed IK solvers against the conventional

method in the literature. This contribution is de-

tailed in Section 5.

3 Inverse Kinematics Problem Formulae

In this section, we overview the two main formulae for

IK in the literature. Those formulae have been exten-

sively studied and nowadays integrated in most of com-

mercial control software for industrial manipulators.

3.1 Classical Formula

In order to accomplish a task defined by the user, IK

methods convert a Cartesian pose of the robot end-

effector into joint positions. The classical formula of IK

problem is given as follows1:

1 As a general rule, vectors and matrices are in bold font.

min
q̇t

‖Jq̇t − ṙt‖2 (1)

where J ∈ R6×n is the Jacobian matrix, q̇t ∈ Rn is

the joint velocity and ṙt =
[
vt
T ωt

T
]T

is the linear

and angular desired velocity of the end-effector, whose

components are defined such that:

vt =
Pd − Pe

T

e[ωt T ]∧ = RdR
T
e

where Pd and Pe are respectively the desired and actual

Cartesian positions, and the rotation matrices Rd and

Re are defined in the same way. T is the sampling time,

eM designs the matrix exponential of M , and [. ]
∧

is

the skew operator defined as follows:

[. ]
∧

: ωt = [ωx ωy ωz]
T ∈ R3 → so(3)

[ωt]
∧

=

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


The optimization problem (1) can be efficiently solved

using the pseudo-inverse technique [11,12] as follows:

q̇t = Ĵ†ṙt + (I6 − Ĵ†J)z (2)

where Ĵ† = JT
(
J JT

)−1
is the well-known Moore-

Penrose pseudo-inverse, I6 ∈ R6×6 is the identity ma-

trix and z is an arbitrary vector. Recall that Ĵ†J is

the orthogonal projector onto the kernel of J . Eq. (2)

clearly shows that the solution of the IK problem in the

case of a redundant robot is not unique.

3.2 General Formula With Inequality Constraints

Even though the classical formula has a clear advan-

tage, which is the low computational cost of its analyt-

ical solution, it cannot handle the case of inequality con-

straints, e.g. collision avoidance. In [1,13], we showed

that allowing the robot to deviate from the pre-defined

Cartesian trajectory, hence relaxing the constraint of

following precisely that trajectory, increases the numer-

ical robustness of the IK solver. Note that in some ap-

plication, such as “pick-and-place”, it is not necessary

to precisely follow the end-effector pre-defined Carte-

sian trajectory as long as it reaches the goal pose.

Let δ ∈ R6 be a new variable, representing the devi-

ation from the desired end-effector velocity. The general

formula of IK with the trajectory relaxation is an opti-

mization problem [1,13,14]:
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min
q̇,δ

1

2
q̇TQq̇ +

1

2
δTQδδ

subject to Jq̇ + δ = ṙt

b− ≤ Aq̇t ≤ b+

ˆ̇q
− ≤ q̇t ≤ ˆ̇q

+

δ− ≤ δ ≤ δ+

(3)

WhereA ∈ Rm×n, b+ and b− ∈ Rm can be used for

collision avoidance [15]. Refer to Appendix A for more

details regarding the collision avoidance as a kinematics

constraint.

Qδ(t) = fe(t) · I6, where fe is a function controlling

the amplitude of the deviation. fe must be very high at

the beginning and at the end of the trajectory so the

robot does not deviate from the trajectory and very low

otherwise to allow the relaxation. Note that if the goal

position is in collision with the obstacles, e.g. the end-

effector is in collision, the robot will not reach the goal

position and uses the relaxation parameter, δ, to avoid

the collision while being as close as possible to the goal

position.

In [13], we have studied several profile functions for

fe and the analysis revealed that a smooth joint ac-

celeration can be achieved by a profile function that

combines two polynomial functions as shown in Fig. 1.

The value of Qhigh is in the range [104, 105] and in the

range [1, 10] for Qlow. Refer to [13] for detailed descrip-

tion and explanation.
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Fig. 1 Profile of constraint stiffness

Furthermore, the above formula can be easily adapted

to consider the acceleration or even jerk limits of the

joints [16].

The optimization problem (3) can be solved in an

efficient way by transforming it into a QP problem as

follows:

min
Zt∈Rn+6

1

2
ZTt QZt

subject to J Zt = ṙt

B− ≤ AZt ≤ B+

Z− ≤ Zt ≤ Z+

(4)

with

Zt =

[
q̇t
δ

]
, Q =

[
Q 0n×6

06×n Qδ

]
,J =

[
J I6

]
,

A =
[
A 0m×6

]
,B+ = b+,B− = b−,

Z+ =

[
ˆ̇q
+

δ+

]
, Z− =

[
ˆ̇q
−

δ−

]

where 0k×l designs the zero matrix in Rk×l.

4 Manipulability Index

The ability of a manipulator robot to escape unforeseen

events, named manipulability, is defined by the follow-

ing index [10]:

m(q) =
√

det(J JT ) = σ1σ2 · · ·σn (5)

with (σi)1≤i≤n are the singular values of J .

The above index has been intensively studied in the

robotics literature, it is very useful in practice as it

gives an idea of the relative distance to singular config-

urations. It is obvious that m(q) ≥ 0 and m(q) = 0 if

and only if q is a singular configuration.

4.1 Integration into Classical IK Formula

In order to integrate the manipulability index into the

solution of the classical formula (2), one can replace z

by the following formula:

z = k0∇m

= k0

(
∂m(qt)

∂qt

)T (6)

where k0 is a positive coefficient and ∇m is the

gradient of the manipulability index. As a result the

analytical solution becomes:

q̇t = Ĵ†ṙt + k0 (I6 − Ĵ†J)

(
∂m(qt)

∂qt

)T
(7)
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4.2 Integration into General IK Formula

A direct way to integrate the manipulability index into

(3) is to incorporate it into the objective function, thus

we obtain:

min
q̇t,qt,δ

1

2
q̇Tt Qq̇t +

1

2
δTQδδ − αm(qt)

subject to Jq̇t = ṙt

b− ≤ Aq̇t ≤ b+

ˆ̇q
− ≤ q̇t ≤ ˆ̇q

+

δ− ≤ δ ≤ δ+

(8)

where α is a positive coefficient, which is preceded

by a negative sign in order to maximize m(qt).

As m(qt) is a nonlinear function in qt, Eq (8) be-

comes a nonlinear optimization problem which is hard

to solve within a fixed time and therefore the hard real-

time constraint might not be fulfilled.

In order to transform Eq (8) into a QP problem, the

manipulability index is linearized as follows:

m(qt) = m(qt−1) + (∇m)
T
∆qt +

1

2
∆qTt Hm∆qt

= m(qt−1) + T (∇m)
T
q̇t +

1

2
T 2 q̇Tt Hmq̇t

(9)

where Hm is the Hessian matrix of m, and recall that

∇m is its gradient, T is the control loop sampling time

of the robot.

By replacing (9) into (8), the following equivalent

optimization problem is obtained:

min
q̇t,δ

1

2
q̇Tt Qq̇t +

1

2
δTQδδ . . .

− α
(
T (∇m)

T
q̇t +

1

2
T 2 q̇Tt Hmq̇t

)
subject to Jq̇t + δ = ṙt

b− ≤ Aq̇t ≤ b+

ˆ̇q
− ≤ q̇t ≤ ˆ̇q

+

δ− ≤ δ ≤ δ+

(10)

By defining the following parameters:

Zt =

[
q̇t
δ

]
, Q =

[
Q− αT 2Hm 0n×6

06×n Qδ

]
,

G =

[
−αT ∇m

06×1

]
,J =

[
J I6

]
,

A =
[
A 0m×6

]
,B+ = b+,B− = b−,

Z+ =

[
ˆ̇q
+

δ+

]
, Z− =

[
ˆ̇q
−

δ−

]

The formula (10) is transformed into the following

standard QP problem:

min
Zt∈Rn+6

1

2
ZTt QZt + GTZt

subject to J Zt = ṙt

B− ≤ AZt ≤ B+

Z− ≤ Zt ≤ Z+

(11)

Another way to integrate the manipulability index

into (3) is as an equality constraint. Let us start by

introducing the following lemma.

Lemma 1 If h : Rn → R+, the following optimization

problem yields to the maximization of h:

min
q̇t,δ,εh

1

2
q̇Tt Qq̇t +

1

2
δTQδδ +

1

2
α ε2h

subject to Jq̇t = ṙt

h(qt)− T (∇h)T q̇t = εh

b− ≤ Aq̇t ≤ b+

ˆ̇q
− ≤ q̇t ≤ ˆ̇q

+

δ− ≤ δ ≤ δ+

(12)

where α is a positive coefficient.

Proof If we only consider the contribution of the func-

tion h in Eq (12), we obtain:

min
q̇t,εh

1

2
ε2h

subject to h(qt)− T (∇h)T q̇t = εh

(13)

We also have:

h(qt) ≈ h(qt−1) + T (∇h)T q̇t

Then εh = h(qt) − T (∇h)T q̇t ≈ h(qt−1) > 0, this is

because h is a positive function.

As εh > 0, Eq (13) leads to the minimization of εh,

i.e. leads to the minimization of h(qt)−T (∇h)T q̇t. Be-

cause h(qt) is a constant in the problem, Eq (13) min-

imizes −T (∇h)T q̇t and thus maximizes T (∇h)T q̇t,

which is the variation of h(qt). ut

By applying Lemma 1 to the case of manipulability

index, we obtain the following optimization problem:
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minimize
q̇t,δ,εm

1

2
q̇Tt Qq̇t +

1

2
δTQδδ +

1

2
α ε2m

subject to Jq̇t + δ = ṙt

m(qt)− T (∇m)T q̇t = εm

b− ≤ Aq̇t ≤ b+

ˆ̇q
− ≤ q̇t ≤ ˆ̇q

+

δ− ≤ δ ≤ δ+

(14)

In a similar way, the above optimization problem

can be transformed into the following standard QP prob-

lem:

min
Zt∈Rn+7

1

2
ZTt QZt

subject to J Zt =

[
ṙt

m(qt)

]

B− ≤ AZt ≤ B+

Z− ≤ Zt ≤ Z+

(15)

where:

Zt =

 q̇tδ
εm

 , Q =

 Q 0n×6 0n×1
06×n Qδ 06×1
01×n 01×6 α

 ,
J =

[
J I6 06×1

T (∇m)T 01×6 1

]
,

A =
[
A 0m×7

]
,B+ = b+,B− = b−,

Z+ =

[
ˆ̇q
+

δ+

]
, Z− =

[
ˆ̇q
−

δ−

]

Claim 1 Even though both formulae (14) and (10) lead

to the maximization of m(q), formula (14) is numeri-

cally more robust than formula (10).

Proof In order to compare the formulae (14) and (10),

without loss of generality, we suppose that Qδ = 0. Let

us first integrate the equality constraint on εm into the

objective function of (14), that leads to the following

equivalent optimization problem:

min
q̇t

1

2
q̇Tt
(
Q+ αT 2∇m (∇m)T

)
q̇t − αmT (∇m)T q̇t

subject to

Jq̇t = ṙt

b− ≤ Aq̇t ≤ b+

ˆ̇q
− ≤ q̇t ≤ ˆ̇q

+

(16)

It is then easy to verify that, ∀α > 0, the matrix Q +

αT 2∇m (∇m)T is always positive definite, and the op-

timization problem is therefore convex that can be solved

in a weakly polynomial time. On the other hand, the

matrix Q − αT 2Hm in (10) can become indefinite by

increasing α, as a result the QP problem becomes non-

convex and NP-hard. Our empirical numerical analysis

in Section 5 has confirmed this claim, moreover, it re-

vealed that finding a quasi-optimal and trajectory in-

dependent value for α is possible for (14), while in the

case of (10) the quasi-optimal value for α depends on

the desired trajectory. ut

4.3 Gradient and Hessian Computation

The gradient of m (∇m) can be computed either nu-

merically or analytically. The numerical computation of

the gradient is straightforward:

(∇m)i =
∂m(qt)

∂qi

=
m(qt + δqiEi)−m(qt − δqiEi)

2δqi

(17)

where (∇m)i is the ith element of vector ∇m(qt), and

Ei ∈ Rn is defined as follows:

Ei = [0 . . . 0 1

↑
i

0 . . . 0]
T

A practical value for δqi is in the range [10−4, 10−3]

rad. As one can figure out, it is easy to numerically

compute ∇m since only the manipulability index for

different configurations is computed, which indirectly

implies, according to (5), Jacobian matrix calculations.

∇m can also be computed analytically using the fol-

lowing formula (refer to Appendix B for more details):

∂m

∂qi
= m · tr

((
J JT

)−1 ∂J

∂qi
JT
)

(18)

where tr(M) is the trace operator of matrix M .

Note that the above analytical derivative is unde-

fined at m = 0, while the numerical derivative is always

defined ∀m.

Regarding the Hessian matrix, a direct way to com-

pute it is the following:

(Hm)i,j =
∂2m(qt)

∂qi∂qj

=
(∇m)j (qt + δqiEi)− (∇m)j (qt − δqiEi)

2δqi
(19)
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where:

(∇m)j (qt + δqiEi) =
m(qt+δqiEi+δqjEj)−m(qt+δqiEi−δqjEj)

2δqj

(∇m)j (qt − δqiEi) =
m(qt−δqiEi+δqjEj)−m(qt−δqiEi−δqjEj)

2δqj

One drawback of (19) is its expensive computational

cost, as it implies the evaluation of 4n2 Jacobian matri-

ces which seriously increases the total calculation time.

An alternative method to significantly reduce the com-

putational cost is to use Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method. The computation procedure

using BFGS can be summarized as follows:

yt =∇m(qt)−∇m(qt−1)

st =qt − qt−1

ρt =
1

yTt st

Hm(qt) =
(
In − ρt st yTt

)
Hm(qt−1)

(
In − ρt yt sTt

)
+ ρt st s

T
t

(20)

5 Experimental Results

In order to evaluate the performance of the different

proposed formulae, we have carried out several scenar-

ios. In the first two scenarios, we compare the max-

imization of manipulability index using the proposed

formula (10) with the conventional method in the liter-

ature (formula (7)).

In the third scenario we handle the case of obstacle

avoidance while maximizing the manipulability index,

this situation cannot be handled by the classical for-

mula, hence pointing out one of the advantages of the

proposed general formulae.

Finally, we compare in the fourth scenario the for-

mulae (10) and (14) regarding numerical robustness and

parameters tuning.

The different approaches have been tested in sim-

ulation using a Baxter research robot from Rethink

Robotics and then validated on the real robot. A pre-

liminary test has been conducted offline to measure the

manipulability index for all possible configurations of

the robot, thus to find an approximation of its maximal

value. Note that all the manipulability indexes shown

in this section are expressed relatively to that maxi-

mal value. The matrix Q in all formulae is equal to

the identity matrix, and T = 10 ms. The QP problems

are solved by qpOASES [17], which has been proven to

be efficient and real-time compatible. All experiments,

in simulation and on the real robot, are performed on

Intel R© CoreTM i5-3470 CPU @ 3.20 GHz PC with 8

GB RAM.

In the first scenario, the robot executes a simple

trajectory in the Cartesian space along the vertical axis

(a) Initial pose

(b) Final pose

Fig. 2 Scenario 1: Initial and final poses of the robot

as shown in Fig. 2. The trajectory is obtained by cubic

interpolation.

We compare in Fig. 3(a) the performance of the clas-

sical formula (7) and the proposed general formula (10),

as can be seen the later formula significantly improve

the manipulability index. This is because the classi-

cal formula only exploits the robot redundancy, while

the general formation relaxes the constraint of follow-

ing precisely the desired trajectory to maximize the

manipulability index as much as possible. Note that

the reported results are the best obtained results and

the corresponding parameters (k0 and α) are given in

Fig. 3(a).

Fig. 3(b) shows the reference Cartesian trajectory

of the end-effector and the obtained trajectories using

the classical and general formulae, it points out that the

reference trajectory is precisely tracked using the clas-

sical formula while small deviations can be observed in

the case of general formula, however, the robot resumes
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the task at the end to successfully reach the goal pose

for the end-effector.
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Fig. 3 Scenario 1: Comparing formulae (7) and (10)

In the second scenario, a trajectory is generated us-

ing the technique of programming by demonstrations.

Although the robot end-effector was able to follow the

pre-defined trajectory, the manipulability index signifi-

cantly decreases during the motion and comes close to

a singularity as can be seen in Fig. 4(a).

Fig. 4(a) also shows that a little improvement of the

manipulability index is obtained by applying the clas-

sical formula, while the proposed formula (10) yields a

very important improvement of the manipulability in-

dex. Moreover, the proposed formula allows the robot

to completely escape from the singular configuration,

hence improving the quality of the obtained trajectory.

Fig. 4(b) presents the influence of α on the relaxation

of the trajectory, and as it can be seen increasing α

increases the deviations. However, even limited devia-
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Fig. 4 Scenario 2: Comparing formulae (7) and (10)

tions, as with α = 15000, leads to a high profile of ma-

nipulability index. Note that the trajectory obtained

by applying the classical formula tracks precisely the

reference, and it is not shown in Fig. 4(b) for a clarity

reason.

Fig. 5 illustrates the difference between the final

configurations in scenario 2 by applying the classical

formula and proposed one (10), it shows that the con-

figuration of the robot has been changed to a more con-

venient one regarding the manipulability, while having

the same end-effector pose. The computation time of

our implementation in the case of scenarios 1 and 2 is

reported in Fig. 6. It clearly shows that the algorithm

is real-time compatible as its computational time is less

than the control loop sampling time T = 10 ms.

The case of collision avoidance is then addressed,

as shown in Fig. 7, where a spherical obstacle that is

located close to the elbow joint during the movement

has been added. The desired trajectory is the same as
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(a) formula (7)

(b) formula (10)

Fig. 5 Scenario 2: Final pose of the robot
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Fig. 6 Scenarios 1&2: Total computation time of our im-
plementation of (10).

in Scenario 1. Fig. 7 illustrates the effect of the collision

avoidance constraint on the configuration of the robot

for a given time during the motion: the elbow, which

becomes too close to the obstacle represented by a green

sphere, is pushed away to satisfy the security distance.

It should be noted that the end-effector has the same

pose in both configurations as the Cartesian trajectory

constraint is always satisfied.

(a) Without obstacle con-
straint

(b) With obstacle constraint

Fig. 7 Scenario 3: Effect of the obstacle avoidance constraint
on the configuration of the robot for a given state by applying
formula (10).

We applied the formula (10) to solve the kinemat-

ics task while avoiding the collision with the obstacle.

The minimal distance between the robot and the ob-

stacle is given in Fig. 8(a) for two values of α, α = 0

means that the manipulability index is not maximized.

It shows that the robot successfully avoids the obsta-

cle and does not cross the security distance ds while

still being able to reach the goal. Fig. 8(b) points out

that formula (10) succeeds in maximizing the manip-

ulability index, hence providing a general framework

to maximize the manipulability index while efficiently

incorporating inequality constraints, such as collision

avoidance.

Fig. 8(c) shows the computational time of the al-

gorithm while considering the collision avoidance con-

straint, the algorithm is still real-time compatible de-

spite the additional time of distance computations.

To compare the performance of formulae (14) and

(10), five kinematics tasks have been defined. Each kine-

matics task consists in following a pre-defined trajec-

tory of the robot end-effector, which was either ob-

tained by using MoveIt! [18] or by recording a trajectory
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Fig. 8 Scenario 3: Collision avoidance by applying formula
(10).

of the robot joints while moving the robot arm between

an initial and a goal positions of the robot end-effector

(learning by demonstration technique).

Experiments have shown that both formulae suc-

cessfully maximize the manipulability index. However,

as pointed out in Claim 1, increasing α in formula

(10) produced velocity oscillations and the QP prob-

lem became infeasible. On the other hand, formula (14)

was more numerically stable and always feasible for the

same values of α.

Table 1 Optimal coefficients for manipulability index maxi-
mization

Trajectory T1 T2 T3 T4 T5
α (in thousands), Formu. (10) 50 70 70 120 90

α, Formu. (14) 5× 105

In Table 1, we investigated the identification of the

optimal value of α using formulae (10) and (14). For

both formulae, we have noticed that while increasing

the value of α improves the manipulability profile, an

optimal value can be identified and further increase of

α does not much improve the manipulability index. Ta-

ble 1 points out that α is non-unique using formula

(10). On the other hand, a single coefficient for all five

kinematics tasks has been identified, α = 5 × 105, for

formula (14).

It is worth mentioning that using the unique value

of α in formula (14) yielded comparable normalized ma-

nipulability profiles to those produced by formula (10)

using the trajectory-dependent optimal α, but with in-

ferior values of around 3% to 5% as can be seen in

Fig. 9.

Therefore, from a practical point of view, formula

(10) can be used for repetitive tasks where the optimal

value of α can be determined offline for a given robot

and a specific kinematics task, while formula (14) can

be used for a given robot regardless of the kinematics

task.

We also validated formula (14) on the real Baxter

research robot as shown in Fig. 10. Our experiment

with the real robot confirmed that formula (14) is real

time compatible, and the robot successfully followed

the computed joint trajectories. Moreover, that exper-

iment pointed out that maximizing the manipulability

index while relaxing the trajectory yielded a smoother

trajectory than the initial provided one and the exerted

torques by the joint actuators were also less.
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Fig. 9 Comparing the performance between formulae (14)
and (10) for the trajectory T3.

6 Conclusion and Future Work

In this paper, we presented two formulae to integrate

the manipulability index maximization into an optimization-

based IK solver. The new proposed formulae signifi-

cantly improved the manipulability index profile with a

reasonable deviation from the desired trajectory of the

end-effector. They outperformed the classical formula

while being able to seamlessly integrate additional con-

straints such as collision avoidance.

Our experimental validation also revealed that in-

tegrating the manipulability index as an equality con-

straint is numerically more robust than directly inte-

grating it into the objective function.

We have also verified that the proposed formulae

are real-time compatible. Our experiments in simula-

tion and on the real Baxter robot were carried out at

a control frequency of 100 Hz. However, preliminary

results using a PC with more computational power re-

vealed that our proposed formulae can easily run with

a control frequency of 1 kHz.

An application of proposed IK solvers is post-processing

offline generated trajectories, such as trajectories gener-

ated through Learning from Programming by Demon-

stration (PbD) or motion planning techniques, to im-

prove the trajectory quality regarding the manipulabil-

ity index.

Future work will focus on integrating other security-

related constraints such as taking into account human

awareness and dealing with the presence of a human

beside the robot.

A Collision avoidance as kinematics constraint

Let us define d as the distance between two convex objects,
one being a part of the robot (O1) and the other is an ob-
stacle (O2). In order to avoid the collision with the obstacle,
we define two parameters, di and ds, which are respectively
influence and security distances. The following constraint is
then activated if and only if d becomes smaller than di:

−nTJ(qt,p1)q̇t ≤ ξ
d− ds
di − ds

if d ≤ di (A.1)

where n is the unit vector between the pair of closest
points p1 and p2, as described in Fig. 11, ξ is a positive
coefficient.

Let k be the number of distances between the robot and
a set of obstacles satisfying d ≤ di, the inequality constraint
in (3) can then be rewritten as:

Aq̇t ≤ b+

where A ∈ Rk×n and b+ ∈ Rk, and their jth line is defined
as follows:

Aj = −nT
j Jj(qt,p1)

b+j = ξ
dj − ds
di − ds

(A.2)

B Proof of Eq. (18)

If A(X) ∈ Rm×m is a matrix that is a function of X =
[x1 x2 · · ·xn]T ∈ Rn, using Jacobi’s formula we have:

∂ detA

∂xi
=

(
adj (A)

∂A

∂xi

)
where adj (A) is the adjugate operator of matrix A.

Applying the above formula to m2 = det(JJT ), we ob-
tain:

2m
∂m

∂qi
= tr

(
adj
(
JJT

) ∂ (JJT
)

∂qi

)

= 2 tr

(
adj
(
J JT

) ∂J
∂qi

JT

)
if m 6= 0, i.e. the robot is not in a singular configuration, we
obtain the following formula:

∂m

∂qi
=

1

m
tr

(
adj
(
J JT

) ∂J
∂qi

JT

)
= m · tr

((
J JT

)−1 ∂J

∂qi
JT

)
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