Skip to main content
Log in

A Control Scheme for Physical Human-Robot Interaction Coupled with an Environment of Unknown Stiffness

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Variable admittance control is commonly used for a collaborative robot to achieve the compliant or accurate cooperation according to human’s intention. However, existing research seldom investigates such a human-robot collaboration coupled with an extra environment with unknown stiffness. If the end-effector that is guided by a human with various intended motion contacts the unknown environment, the interaction might become unstable. Additionally, current research for this physical human-robot-environment interaction use two force sensors to address the issue, and hence the cost of the robot is likely to increase and it reduces the flexibility to many applications. Therefore, in this paper, we address the issue of physical human-robot interaction coupled with an extra environment whose stiffness is unknown. To achieve this, the condition of robot admittance is rigorously proved in accordance with different human intended motion and environmental stiffness. Moreover, a variable admittance control scheme is proposed based on human intention, environmental force and environment stiffness using the combination of a force sensor and a force observer. Simulation and experiments are conducted to demonstrate the effectiveness of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colgate, E., Wannasuphoprasit, W., Peshkin, M.: Cobots: Robots for collaboration with human operators. Proceedings of the ASME Dynamic Systems and Control Division 58, 433–439 (1996)

    Google Scholar 

  2. Khatib, O., Yokoi, K., Brock, O., Chang, K., Casal, A.: Robots in human environments: Basic autonomous capabilities. Int. J. Robot. Res. 18(7), 684–696 (1999)

    Article  Google Scholar 

  3. Ren, T., Dong, Y., Wu, D., Chen, K.: Design of Direct Teaching Behavior of Collaborative Robot Based on Force Interaction. J. Intell. Robot. Syst. 96 (1), 83–93 (2019). https://doi.org/10.1007/s10846-019-00986-3

    Article  Google Scholar 

  4. Rozo, L., Amor, H.B., Calinon, S., Dragan, A., Lee, D.: Special issue on learning for human–robot collaboration. Auton. Robot. 42(5), 953–956 (2018). https://doi.org/10.1007/s10514-018-9756-z

    Article  Google Scholar 

  5. Lecours, A., Mayer-St-Onge, B., Gosselin, C.: Variable admittance control of a four-degree-of-freedom intelligent assist device. In: 2012 IEEE international conference on robotics and automation, pp. 3903–3908. https://doi.org/10.1109/ICRA.2012.6224586 (2012)

  6. Li, X., Pan, Y., Chen, G., Yu, H.: Adaptive human–robot interaction control for robots driven by series elastic actuators. IEEE Trans. Robot. 33(1), 169–182 (2016). https://doi.org/10.1109/TRO.2016.2626479

    Article  Google Scholar 

  7. Li, Y., Ge, S.S.: Human–robot collaboration based on motion intention estimation. IEEE/ASME Trans. Mech. 19(3), 1007–1014 (2013). https://doi.org/10.1109/TMECH.2013.2264533

    Article  Google Scholar 

  8. Davies, B.L., Fan, K.L., Hibberd, R.D., Jakopec, M., Harris, S.J.: ACROBOT-using robots and surgeons synergistically in knee surgery. In: 1997 8th international conference on advanced robotics. Proceeding, pp. 173–178 (1997)

  9. Lo, S.Y., Cheng, C.A., Huang, H.P.: Virtual impedance control for safe human-robot interaction. J. Intell. Robot. Syst. 82(1), 3–19 (2016). https://doi.org/10.1007/s10846-015-0250-y

    Article  Google Scholar 

  10. Kartoun, U., Stern, H., Edan, Y.: A human-robot collaborative reinforcement learning algorithm. J. Intell. Robot. Syst. 60(2), 217–239 (2010). https://doi.org/10.1007/s10846-010-9422-y

    Article  Google Scholar 

  11. Taylor, R., Jensen, P., Whitcomb, L., Barnes, A., Kumar, R., Stoianovici, D., Kavoussi, L.: A steady-hand robotic system for microsurgical augmentation. Int. J. Robot. Res. 18(12), 1201–1210 (1999)

    Article  Google Scholar 

  12. Li, H.Y., Paranawithana, I., Chau, Z.H., Yang, L., Lim, T.S.K., Foong, S., Tan, U.X.: Towards to a robotic assisted system for percutaneous nephrolithotomy. In: 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 791–797. https://doi.org/10.1109/IROS.2018.8593689 (2018)

  13. Tsumugiwa, T., Yokogawa, R., Hara, K.: Variable impedance control with regard to working process for man-machine cooperation-work system. In: Proceedings 2001 IEEE/RSJ international conference on intelligent robots and systems, pp. 1564–1569. https://doi.org/10.1109/IROS.2001.977202 (2001)

  14. Labrecque, P.D., Laliberté, T., Foucault, S., Abdallah, M.E., Gosselin, C.: uMan: A low-impedance manipulator for human–robot cooperation based on underactuated redundancy. IEEE/ASME Trans. Mech. 22(3), 1401–1411 (2017). https://doi.org/10.1109/TMECH.2017.2652322

    Article  Google Scholar 

  15. Li, H.Y., Paranawithana, I., Yang, L., Lim, T. S.K., Foong, S., Ng, F.C., Tan, U.X.: Stable and compliant motion of physical human–robot interaction coupled with a moving environment using variable admittance and adaptive control. IEEE Robot. Auto. Lett. 3(3), 2493–2500 (2018). https://doi.org/10.1109/LRA.2018.2812916

    Article  Google Scholar 

  16. Ficuciello, F., Villani, L., Siciliano, B.: Variable impedance control of redundant manipulators for intuitive human–robot physical interaction. IEEE Trans. Robot. 31(4), 850–863 (2015). https://doi.org/10.1109/TRO.2015.2430053

    Article  Google Scholar 

  17. Ikeura, R., Moriguchi, T., Mizutani, K.: Optimal variable damping control for a robot carrying an object with a human. In: Proc. IEEE int. work. an robot hum. interact. commun, pp. 63–66 (2001)

  18. Landi, C.T., Ferraguti, F., Sabattini, L., Secchi, C., Bonfè, M., Fantuzzi, C.: Variable admittance control preventing undesired oscillating behaviors in physical human-robot interaction. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 3611–3616. https://doi.org/10.1109/IROS.2017.8206207 (2017)

  19. Landi, C.T., Ferraguti, F., Sabattini, L., Secchi, C., Fantuzzi, C.: Admittance control parameter adaptation for physical human-robot interaction. In: 2017 IEEE international conference on robotics and automation (ICRA), pp. 2911–2916. https://doi.org/10.1109/ICRA.2017.7989338 (2017)

  20. Ferraguti, F., Talignani Landi, C., Sabattini, L., Bonfè, M., Fantuzzi, C., Secchi, C.: A variable admittance control strategy for stable physical human–robot interaction. Int. J. Robot. Res. 38(6), 747–765 (2019). https://doi.org/10.1177/0278364919840415

    Article  Google Scholar 

  21. Ferraguti, F., Preda, N., Manurung, A., Bonfe, M., Lambercy, O., Gassert, R., Secchi, C.: An energy tank-based interactive control architecture for autonomous and teleoperated robotic surgery. IEEE Trans. Robot. 31(5), 1073–1088 (2015). https://doi.org/10.1109/TRO.2015.2455791

    Article  Google Scholar 

  22. Labrecque, P.D., Gosselin, C: Robotic force amplification with free space motion capability. In: 2014 IEEE international conference on robotics and automation (ICRA), pp. 134–140. https://doi.org/10.1109/ICRA.2014.6906600 (2014)

  23. Labrecque, P.D., Gosselin, C.: Variable admittance for pHRI: from intuitive unilateral interaction to optimal bilateral force amplification. Robot. Comput. Integr. Manuf. 52, 1–8 (2018). https://doi.org/10.1016/j.rcim.2018.01.005

    Article  Google Scholar 

  24. Li, H.Y., Paranawithana, I., Yang, L., Tan, U.X.: Physical human-robot interaction coupled with a moving environment or target: Contact and track. In: 2018 IEEE 14th international conference on automation science and engineering (CASE), pp 43–49. https://doi.org/10.1109/COASE.2018.8560702 (2018)

  25. Hogan, N.: Impedance control: An approach to manipulation: Part I - Theory. J. Dyn. Syst. Meas Control 107, 1–7 (1985)

    Article  Google Scholar 

  26. Hogan, N.: Impedance control: An approach to manipulation: Part I—Theory. J. Dyn. Syst. Meas Control 107, 17–24 (1985)

    Article  Google Scholar 

  27. Cheah, C.C., Wang, D.: Learning impedance control for robotic manipulators. IEEE Trans. Robot. Autom. 14(3), 452–465 (1998)

    Article  Google Scholar 

  28. Khatib, O.: A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE J. Robot. Auto. 3(1), 43–53 (1987)

    Article  Google Scholar 

  29. Hogan, N.: On the stability of manipulators performing contact tasks. IEEE J. Robot. Auto. 4(6), 677–686 (1988)

    Article  Google Scholar 

  30. Zhang, J., Cheah, C.C.: Passivity and stability of human–robot interaction control for upper-limb rehabilitation robots. IEEE Trans. Robot. 31(2), 233–245 (2015). https://doi.org/10.1109/TRO.2015.2392451

    Article  Google Scholar 

  31. Duchaine, V., St-Onge, B.M., Gao, D., Gosselin, C.: Stable and intuitive control of an intelligent assist device. IEEE Trans. Haptics 5(2), 148–159 (2012). https://doi.org/10.1109/TOH.2011.49

    Article  Google Scholar 

  32. Ohnishi, K., Shibata, M., Murakami, T.: Motion control for advanced mechatronics. IEEE/ASME Trans. Mech. 1(1), 56–67 (1996)

    Article  Google Scholar 

  33. Tsai, M.C., Tseng, E.C., Cheng, M.Y.: Design of a torque observer for detecting abnormal load. Control. Eng. Pract. 8(3), 259–269 (2000)

    Article  Google Scholar 

  34. De Luca, A., Mattone, R.: Sensorless robot collision detection and hybrid force/motion control. In: Proceedings of the 2005 IEEE international conference on robotics and automation, pp. 999–1004. https://doi.org/10.1109/ROBOT.2005.1570247 (2005)

  35. De Luca, A., Albu-Schaffer, A., Haddadin, S., Hirzinger, G.: Collision detection and safe reaction with the DLR-III lightweight manipulator arm. In: 2006 IEEE/RSJ international conference on intelligent robots and systems, pp. 1623–1630. https://doi.org/10.1109/IROS.2006.282053 (2006)

  36. Lee, S.D., Kim, M.C., Song, J.B.: Sensorless collision detection for safe human-robot collaboration. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 2392–2397. https://doi.org/10.1109/IROS.2015.7353701 (2015)

  37. Aguirre-Ollinger, G., Colgate, J.E., Peshkin, M.A., Goswami, A.: Design of an active one-degree-of-freedom lower-limb exoskeleton with inertia compensation. Int. J. Robot. Res. 30(4), 486–499 (2011). https://doi.org/10.1177/0278364910385730

    Article  Google Scholar 

  38. Jung, S., Hsia, T.C., Bonitz, R.G.: Force tracking impedance control of robot manipulators under unknown environment. IEEE Trans. Control Syst. Technol. 12(3), 474–483 (2004). https://doi.org/10.1109/TCST.2004.824320

    Article  Google Scholar 

  39. Li, Y., Ge, S.S.: Impedance learning for robots interacting with unknown environments. IEEE Trans. Control Syst. Technol. 22(4), 1422–1432 (2013). https://doi.org/10.1109/TCST.2013.2286194

    Article  MathSciNet  Google Scholar 

  40. Ferraguti, F., Secchi, C., Fantuzzi, C.: A tank-based approach to impedance control with variable stiffness. In: 2013 IEEE international conference on robotics and automation, pp. 4948–4953. https://doi.org/10.1109/ICRA.2013.6631284 (2013)

  41. Byrnes, C.I., Isidori, A., Willems, J.C.: Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Trans. Auto. Control 36(11), 1228–1240 (1991)

    Article  MathSciNet  Google Scholar 

  42. Balachandran, R., Jorda, M., Artigas, J., Ryu, J.H., Khatib, O.: Passivity-based stability in explicit force control of robots. In: 2017 IEEE international conference on robotics and automation (ICRA), pp. 386–393. https://doi.org/10.1109/ICRA.2017.7989050 (2017)

  43. Gilbertson, M.W., Anthony, B.W.: Force and position control system for freehand ultrasound. IEEE Trans. Robot. 31(4), 835–849 (2015). https://doi.org/10.1109/TRO.2015.2429051

    Article  Google Scholar 

  44. Pan, Y., Yang, C., Pan, L., Yu, H.: Integral sliding mode control: performance, modification, and improvement. IEEE Trans. Ind. Inf. 14(7), 3087–3096 (2017). https://doi.org/10.1109/TII.2017.2761389

    Article  Google Scholar 

  45. Li, X., Chi, G., Vidas, S., Cheah, C.C.: Human-guided robotic comanipulation: Two illustrative scenarios. IEEE Trans. Control Syst. Technol. 24(5), 1751–1763 (2016). https://doi.org/10.1109/TCST.2016.2514609

    Article  Google Scholar 

  46. Li, H.-Y., Theshani, N., Sebaratnam, A.X., Tan, U.-X.: Human-micromanipulator cooperation using a variable admittance controller. Sci. China Inf. Sci. 5, 62 (2019). https://doi.org/10.1007/s11432-018-9663-1

    MathSciNet  Google Scholar 

  47. Slotine, J.J.E., Li, W.: Applied nonlinear control, vol. 199. Prentice hall, Englewood Cliffs (1991)

    Google Scholar 

  48. lbu-Schäffer, A., Ott, C., Hirzinger, G.: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int. J. Robot. Res. 26(1), 23–39 (2007). https://doi.org/10.1177/0278364907073776

    Article  Google Scholar 

  49. Nikoobin, A., Haghighi, R.: Lyapunov-based nonlinear disturbance observer for serial n-link robot manipulators. J. Intell. Robot. Syst. 55(2-3), 135–153 (2009). https://doi.org/10.1007/s10846-008-9298-2

    Article  Google Scholar 

  50. Sadeghian, H., Villani, L., Keshmiri, M., Siciliano, B.: Task-space control of robot manipulators with null-space compliance. IEEE Trans. Robot. 30(2), 493–506 (2013). https://doi.org/10.1109/TRO.2013.2291630

    Article  Google Scholar 

  51. Sun, K., Mou, S., Qiu, J., Wang, T., Gao, H.: Adaptive fuzzy control for non-triangular structural stochastic switched nonlinear systems with full state constraints. IEEE Transactions on Fuzzy Systems. https://doi.org/10.1109/TFUZZ.2018.2883374 (2018)

  52. Qiu, J., Sun, K., Wang, T., Gao, H.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Transactions on Fuzzy Systems. https://doi.org/10.1109/TFUZZ.2019.2895560 (2019)

  53. Qiu, J., Sun, K., Rudas, I.J., Gao, H.: Command filter-based adaptive NN control for MIMO nonlinear systems with full-state constraints and actuator hysteresis. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2019.2944761 (2019)

  54. Aldini, S., Akella, A., Singh, A.K., Wang, Y.K., Carmichael, M., Liu, D., Lin, C.T.: Effect of mechanical resistance on cognitive conflict in physical human-robot collaboration. In: 2019 international conference on robotics and automation (ICRA), pp. 6137–6143 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsieh-Yu Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 31.6 MB)

(XML 386 bytes)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HY., Dharmawan, A.G., Paranawithana, I. et al. A Control Scheme for Physical Human-Robot Interaction Coupled with an Environment of Unknown Stiffness. J Intell Robot Syst 100, 165–182 (2020). https://doi.org/10.1007/s10846-020-01176-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-020-01176-2

Keywords

Navigation