Skip to main content
Log in

Compliant Finger Exoskeleton with Telescoping Super-elastic Transmissions

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents the concept, design, and experimental characterization of a compliant finger exoskeleton with telescoping super-elastic transmissions. Nickel-Titanium (Ni-Ti) rods with the super-elastic feature are adopted as transmission components for the concentric telescoping mechanism to be flexible and safe. The mechanism of this finger exoskeleton is characterized in detail, including the finger connector, the elastic-rod transmission system (ERTS), and the actuator. The performance of compliance is demonstrated by finite element analysis. Then, the finger motion mapping relationship is captured by the experiments for a two-finger prototype. Experiment results show that certain compliance (e.g., 16/2N for the flexion/extension motion of the index finger) can be achieved by the Ni-Ti rods, and reflects in the assisted motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamovich, S.V., Fluet, G.G., Mathai, A., Qiu, Q., Lewis, J., Merians, A.S.: Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study. J. Neuroeng. Rehabil. 6(1), 28 (2009)

    Article  Google Scholar 

  2. Agarwal, P., Fox, J., Yun, Y., O’Malley, M.K., Deshpande, A.D.: An index finger exoskeleton with series elastic actuation for rehabilitation: design, control and performance characterization. Int. J. Robotics Res. 34 (14), 1747–1772 (2015)

    Article  Google Scholar 

  3. Aubin, P., Petersen, K., Sallum, H., Walsh, C., Correia, A., Stirling, L.: A pediatric robotic thumb exoskeleton for at-home rehabilitation: the isolated orthosis for thumb actuation (iota). Int. J. Intell. Comput. Cybern. 7(3), 233–252 (2014)

    Article  MathSciNet  Google Scholar 

  4. Bouteraa, Y., Abdallah, I.B., Elmogy, A.M.: Training of hand rehabilitation using low cost exoskeleton and vision-based game interface. J. Int. Robotic Sys. 96(1), 31–47 (2019)

    Article  Google Scholar 

  5. Bouzit, M., Burdea, G., Popescu, G., Boian, R.: The rutgers master ii-new design force-feedback glove. IEEE/ASME Trans. Mech. 7(2), 256–263 (2002)

    Article  Google Scholar 

  6. Brokaw, E.B., Black, I., Holley, R.J., Lum, P.S.: Hand spring operated movement enhancer (handsome): a portable, passive hand exoskeleton for stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 19(4), 391–399 (2011)

    Article  Google Scholar 

  7. Cempini, M., Cortese, M., Vitiello, N.: A powered finger–thumb wearable hand exoskeleton with self-aligning joint axes. IEEE/ASME Trans. Mech. 20(2), 705–716 (2015)

    Article  Google Scholar 

  8. Cempini, M., Marzegan, A., Rabuffetti, M., Cortese, M., Vitiello, N., Ferrarin, M.: Analysis of relative displacement between the hx wearable robotic exoskeleton and the user’s hand. J. Neuroeng. Rehabil. 11 (1), 147 (2014)

    Article  Google Scholar 

  9. Chiri, A., Vitiello, N., Giovacchini, F., Roccella, S., Vecchi, F., Carrozza, M.C.: Mechatronic design and characterization of the index finger module of a hand exoskeleton for post-stroke rehabilitation. IEEE/ASME Trans. Mech. 17(5), 884–894 (2012)

    Article  Google Scholar 

  10. Conti, R., Meli, E., Ridolfi, A.: A novel kinematic architecture for portable hand exoskeletons. Mechatronics 35, 192–207 (2016)

    Article  Google Scholar 

  11. Grioli, G., Wolf, S., Garabini, M., Catalano, M., Burdet, E., Caldwell, D., Carloni, R., Friedl, W., Grebenstein, M., Laffranchi, M., et al: Variable stiffness actuators: the user’s point of view. Int. J. Robotics Res. 34(6), 727–743 (2015)

    Article  Google Scholar 

  12. Groothuis, S.S., Stramigioli, S., Carloni, R.: Modeling robotic manipulators powered by variable stiffness actuators: a graph-theoretic and port-hamiltonian formalism. IEEE Trans. Robotics 33(4), 807–818 (2017)

    Article  Google Scholar 

  13. Heo, P., Gu, G.M., Lee, S.J., Rhee, K., Kim, J.: Current hand exoskeleton technologies for rehabilitation and assistive engineering. Int. J. Precis. Eng. Manuf. 13(5), 807–824 (2012)

    Article  Google Scholar 

  14. In, H., Jeong, U., Lee, H., Cho, K.J.: A novel slack-enabling tendon drive that improves efficiency, size, and safety in soft wearable robots. IEEE/ASME Trans. Mech. 22(1), 59–70 (2017)

    Article  Google Scholar 

  15. Jo, I., Bae, J.: Design and control of a wearable and force-controllable hand exoskeleton system. Mechatronics 41, 90–101 (2017)

    Article  Google Scholar 

  16. Jo, I., Park, Y., Lee, J., Bae, J.: A portable and spring-guided hand exoskeleton for exercising flexion/extension of the fingers. Mechanism and Machine Theory 135, 176–191 (2019)

    Article  Google Scholar 

  17. Lee, S.H.: Hand biomechanics in skilled pianists playing a scale in thirds. Med. Probl. Perform. Art. 25(4), 167–174 (2010)

    Article  Google Scholar 

  18. Meng, W., Xie, S.Q., Liu, Q., Lu, C.Z., Ai, Q.: Robust iterative feedback tuning control of a compliant rehabilitation robot for repetitive ankle training. IEEE/ASME Trans. Mech. 22(1), 173–184 (2017)

    Article  Google Scholar 

  19. van Meulen, F.B., Reenalda, J., Buurke, J.H., Veltink, P.H.: Assessment of daily-life reaching performance after stroke. Ann. Biomed. Eng. 43(2), 478–486 (2015)

    Article  Google Scholar 

  20. Polygerinos, P., Wang, Z., Galloway, K.C., Wood, R.J., Walsh, C.J.: Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 73, 135–143 (2015)

    Article  Google Scholar 

  21. Prange, G.B., Jannink, M.J., Groothuis-Oudshoorn, C.G., Hermens, H.J., IJzerman, M.J.: Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J. Rehabil. Res. Dev. 43 (2), 171 (2006)

    Article  Google Scholar 

  22. Schabowsky, C.N., Godfrey, S.B., Holley, R.J., Lum, P.S.: Development and pilot testing of hexorr: hand exoskeleton rehabilitation robot. J. Neuroeng. Rehabil. 7(1), 36 (2010)

    Article  Google Scholar 

  23. Shahid, T., Gouwanda, D., Nurzaman, S.G., et al.: Moving toward soft robotics: a decade review of the design of hand exoskeletons. Biomimetics 3(3), 17 (2018)

    Article  Google Scholar 

  24. Sun, H., Zhang, L., Li, C.: Dynamic analysis of horizontal lower limbs rehabilitative robot. In: 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems, vol. 2, pp 656–660 (2017)

  25. Wu, L., Song, S., Wu, K., Lim, C.M., Ren, H.: Development of a compact continuum tubular robotic system for nasopharyngeal biopsy. Medical & Biological Engineering & Computing 55(3), 403–417 (2017)

    Article  Google Scholar 

  26. Xu, W., Chen, J., Lau, H.Y., Ren, H.: Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators. Int. J. Med. Robotics Comput. Assisted Surgery 13(3), e1774 (2017)

    Article  Google Scholar 

  27. Yap, H.K., Kamaldin, N., Lim, J.H., Nasrallah, F.A., Goh, J.C.H., Yeow, C.H.: A magnetic resonance compatible soft wearable robotic glove for hand rehabilitation and brain imaging. IEEE Trans. Neural Sys. Rehabilitation Eng. 25(6), 782–793 (2016)

    Article  Google Scholar 

  28. Zhao, H., Jalving, J., Huang, R., Knepper, R., Ruina, A., Shepherd, R.: A helping hand: soft orthosis with integrated optical strain sensors and emg control. IEEE Robotics & Automation Magazine 23(3), 55–64 (2016)

    Article  Google Scholar 

  29. Zhou, L., Li, Y., Bai, S.: A human-centered design optimization approach for robotic exoskeletons through biomechanical simulation. Robot. Auton. Syst. 91, 337–347 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Singapore Academic Research Fund under Grant R-397-000-297-114, Singapore MOE Tier-1 Academic Research Fund entitled HENA: Hydrogel-matrix expedited nitinol actuation awarded to Dr. Hongliang Ren. We would like to thank Chan Yun Hol and William Hartley for their enthusiastic help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Ren.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Yan, Y. & Ren, H. Compliant Finger Exoskeleton with Telescoping Super-elastic Transmissions. J Intell Robot Syst 100, 435–444 (2020). https://doi.org/10.1007/s10846-020-01186-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-020-01186-0

Keywords

Navigation