
Noname manuscript No.
(will be inserted by the editor)

Trajectory tracking for aerial robots: an optimization-based
planning and control approach

Jose Luis Sanchez-Lopez · Manuel Castillo-Lopez · Miguel A.

Olivares-Mendez · Holger Voos

Received: date / Accepted: date

Abstract In this work, we present an optimization-

based trajectory tracking solution for multirotor aerial

robots given a geometrically feasible path.

A trajectory planner generates a minimum-time kine-

matically and dynamically feasible trajectory that in-

cludes not only standard restrictions such as continuity

and limits on the trajectory, constraints in the way-

points, and maximum distance between the planned

trajectory and the given path, but also restrictions in

the actuators of the aerial robot based on its dynamic

model, guaranteeing that the planned trajectory is achiev-

able. Our novel compact multi-phase trajectory defi-

nition, as a set of two different kinds of polynomials,

provides a higher semantic encoding of the trajectory,

which allows calculating an optimal solution but follow-

ing a predefined simple profile.

Funding: This work was supported by the ”Fonds
National de la Recherche” (FNR), Luxembourg, un-
der the projects C15/15/10484117 (BEST-RPAS) and
PoC16/11565377 (AFI).

Author Contributions: J.L.S.-L. representation of rota-
tions, trajectory definition, trajectory planner, evaluation
and manuscript writing. M.C.-L. trajectory tracking con-
troller, evaluation and manuscript writing. M.A.O.-M. and
H.V. project management and funding acquisition.

� Dr. Jose Luis Sanchez-Lopez
E-mail: joseluis.sanchezlopez@uni.lu

Dr. Jose Luis Sanchez-Lopez · Manuel Castillo-Lopez · Dr.
Miguel A. Olivares-Mendez · Prof. Dr.-Ing. Holger Voos
Automation and Robotics Research Group,
Interdisciplinary Centre for Security, Reliability and Trust,
University of Luxembourg.
29, avenue J. F. Kennedy
L-1855 Luxembourg (Luxembourg)

Prof. Dr.-Ing. Holger Voos
Faculté des Sciences, de la Technologie et de la Communica-
tion, University of Luxembourg.

A Model Predictive Controller ensures that the planned

trajectory is tracked by the aerial robot with the small-

est deviation. Its novel formulation takes as inputs all

the magnitudes of the planned trajectory (i.e. posi-

tion and heading, velocity, and acceleration) to gener-

ate the control commands, demonstrating through in-

lab real flights an improvement of the tracking perfor-

mance when compared with a controller that only uses

the planned position and heading.

To support our optimization-based solution, we dis-

cuss the most commonly used representations of ori-

entations, as well as both the difference as well as the

scalar error between two rotations, in both tridimen-

sional and bidimensional spaces SO(3) and SO(2). We

demonstrate that quaternions and error-quaternions have

some advantages when compared to other formulations.

Keywords Trajectory Tracking · Trajectory Plan-

ning · Aerial Robotics · Multirotor · UAV · MAV ·
Remotely operated vehicles · Mobile robots · Model

Predictive Control · Optimization

1 Introduction

1.1 Motivation

Multiple studies, [57], foresee a great number of civil-

ian applications of multirotor aerial robots (also called

drones or Unmanned Aerial Vehicles, UAVs), such as

their integration in smart cities [40], or aerial inspection

[9], among others. Most of these applications are either

under research and development as prototypes or they

are still simply concepts. Only a few of them have al-

ready become a reality that some service provider com-

panies are commercially exploiting by use the multi-

https://orcid.org/0000-0001-5018-0925
https://orcid.org/0000-0001-8526-4184
https://orcid.org/0000-0001-8824-3231

2 Sanchez-Lopez et al.

rotor aerial vehicles in a remotely piloted way with a

low-level of autonomy. Despite showing great potential,

a high-level of autonomy is required to make most of the

applications become a reality, as well as to increase the

efficiency, usability, and safety of the already existing

ones.

Recent advances in fully autonomous architectures

and software frameworks like Aerostack [48,49], have

demonstrated the high level of autonomy [11] required

to fully integrate aerial robots in daily use. Neverthe-

less, there are still multiple open research problems that

limit the use of aerial robots. Two important ones are

motion planning [19] and control [35,4].

There are two different motion control tasks in robotics

that sometimes are confused in the literature and need

to be differentiated: path following and trajectory track-

ing. Paraphrasing [3], in path-following, the robot is

required to converge to and follow a path that is spec-

ified without a temporal law. On the other hand, in

trajectory-tracking, the robot has to reach and follow

a time parameterized reference. A trajectory is, there-

fore, defined as a time parameterized reference (i.e., a

geometric path with an associated timing law).

Similarly, it needs to be distinguished between two

different motion planning tasks: path planning and tra-

jectory planning. In path planning, the goal is to gener-

ate geometrically feasible (e.g. collision-free) paths, i.e.

without time parametrization. In trajectory planning,

not only geometrical feasibility is considered, but also

kinematic and dynamic limits are taken into account to

generate a trajectory.

To solve the problem of motion planning and con-

trol, we adopt a frequently seen approach in the liter-

ature, [51], [38], [26], [46], by combining three different

components: (1) a collision-free geometric path planner,

(2) a trajectory planner that computes a feasible tra-

jectory from the previously given path, considering the

restrictions of the kinematic and dynamic model of the

robot, and (3) a controller for the trajectory tracking.

1.2 Problem formulation and objectives

In this work, we assume to have a geometrically feasi-

ble (e.g. collision-free) path given by a geometric path

planner such as [51,52]. This path, P , is defined as a

discrete set of waypoints, Wi, that encode the desired

position and heading of the aerial robot, as displayed in

Figure 1. The initial position of the robot is considered

as the first waypoint.

A trajectory planner must generate a trajectory, L,

used by a trajectory tracking controller as a reference,

following an efficiency criterion. This trajectory consists

Fig. 1: Problem formulation. The desired path is repre-

sented with a black dashed line through the waypoints

that encode the desired position (black circles) and de-

sired heading (purple arrows). The planned trajectory

is depicted by a blue dotted line.

of the relationship between time and the desired values

of the position, heading of the aerial robot and all their

derivatives, which the robot has to track. The trajectory

has to pass through the waypoints and it must follow

the given path, with a user-defined bounded maximum

distance between the planned trajectory and the given

path to avoid collisions with the obstacles of the en-

vironment, as a requirement for industrial-oriented ap-

plications. It has also to be feasible (kinematically and

dynamically) by the robot.

A trajectory tracking controller has the responsi-

bility of the generation of the control commands that

ensure the generated trajectory, L, is tracked by the

aerial robot with the smallest deviation, correcting the

effect of the disturbances through the estimated state

of the aerial robot.

1.3 Contributions and outline

In this paper, we present our latest advances in tra-

jectory tracking. This work is the natural continuation

of our previous study [50], where we presented our re-

search on optimization-based trajectory planning. Back

then, we validated our proposed trajectory planner with

in-lab real flight experiments using a trajectory con-

troller that combined a fuzzy-logic based feedback com-

ponent with a feed-forward component that was taking

advantage of the planned trajectory.

As the first contribution of this work, we present a

multi-phase trajectory definition as a set of two differ-

ent kinds of polynomials (i.e. acceleration/deceleration

and constant velocity), more suitable for real appli-

cations such as inspection or package delivery, unlike

other research-oriented aggressive maneuvers shown in

the literature (e.g. [38]). This definition provides a higher

semantic encoding of the trajectory which allows calcu-

lating, without loss of flexibility, an optimal solution

Trajectory tracking for aerial robots 3

but following a predefined simple profile. When com-

paring to our previous work, we have reformulated this

definition, to reduce the number of parameters needed

to describe the trajectory by implicitly including the

continuity restrictions.

Secondly, we have reformulated our previous optimization-

based trajectory planning solution from a given path.

Our formulation is still based on total time minimiza-

tion, instead of energy or snap. Our planner includes re-

strictions such as continuity of the trajectory (i.e. class

Cm), limits on velocity, and higher-order derivatives,

constraints in the waypoints, and maximum distance

between the planned trajectory and the given path. Our

new formulation considers the aforementioned restric-

tions as well as additional restrictions in the actuators

of the aerial robot by using its dynamic model, relaxing

the dependence of setting robot-feasible limits on the

trajectory values (i.e. velocity, acceleration, jerk, etc.),

and guaranteeing that the planned trajectory will be

achievable by the robot.

Third, we present our optimization-based Model Pre-

dictive Controller (MPC) for trajectory tracking. Our

new approach takes from the planner, at each sample

time, all the magnitudes of the planned trajectory (i.e.

position and heading, velocity, and acceleration) as well

as the control command references computed using the

planned trajectory, for all the steps in the prediction

horizon. As confirmed by our in-lab real flight experi-

ments, our formulation has a better performance when

compared with a controller that only uses the planned

position and heading.

As the final contribution, to support our optimization-

based solution in both the planner and controller, we

analyze the most commonly used formulations to rep-

resent orientations and their kinematic relationships in

the tridimensional space SO(3) and in the bidimen-

sional space SO(2). We also include the mathematical

formulations to compute difference between two rota-

tions as well as the definition of a scalar error between

two orientations, which is needed in optimization-based

problems involving rotations. As discussed in the ex-

perimental part, our formulation uses quaternions and

error-quaternions, as it has some advantages when com-

pared to other formulations.

The remainder of the paper is organized as follows:

Sect. 2 discuses the existing related works. Sect. 3 and

Sect. 4 includes the mathematical formulations to work

with orientations in the tridimensional space SO(3) and

in the bidimensional space SO(2). Sect. 5 describes the

aerial robot model, whereas Sect. 6 defines the tra-

jectory model used, to formulate later in Sect. 7 our

proposed trajectory planner by means of an optimiza-

tion problem. In Sect. 8 the model predictive trajectory

tracking controller is presented. An evaluation and dis-

cussion of the results of this work are done in Sect.

9. Finally, Sect. 10 concludes the paper and points out

some future lines of work. In addition to this, Appendix

A and Appendix B provide extra information regard-

ing the trajectory definition and the evaluation, respec-

tively.

2 Related Work

The field of trajectory tracking from a given collision-

free path is a recurrent topic found in the literature.

Most of the existing works divide the trajectory track-

ing task into two parts: trajectory planning (Section

2.1), and trajectory tracking control (Section 2.2).

2.1 Trajectory planning

Regarding the trajectory planning task, it is worth to

mention two different kinds of works that unfortunately

are often confused and mixed in the literature: (1) path

smoothing and (2) trajectory planning. The first set of

works, path smoothing, generate a smoother path given

a desired (collision-free) path. The generated smooth

path is computed following particular design criteria.

In [58], a continuous curvature path smoothing algo-

rithm for fixed-wing aerial robots is presented. In [26,

27], the authors propose a splines-based optimization

to plan a path for multirotor aerial robots. In [27] the

path is planned over a grid, whereas in [26], the path is

planned with the help of Voronoi diagrams. The out-

come of these works is not a trajectory, but simply

a smooth path, i.e. there is no time dependence and

therefore, velocity and higher-order derivatives are not

computed. The main drawback of these approaches is

that kinematic and dynamic constraints, e.g. velocity

and acceleration bounds and continuity, are not guar-

anteed to be satisfied, and only the curvature of the

path is considered.

If we consider only the trajectory planning problem

itself, as the generation of time parameterized refer-

ences given desired paths, different application domains

should be analyzed to have a complete overview of the

state of the art, since most of the ideas are exportable

from one field to another. One of the first application

domains and still a quite active one is comprised of

the robotic manipulators: In [22], the authors gener-

ate smooth velocity and acceleration-bounded trajecto-

ries for robotic manipulators by replacing parts of the

given path by closed-form time-optimal collision-free

segments. In [36,21,16], the authors propose an analyti-

cal closed-form algorithm for the generation of velocity,

4 Sanchez-Lopez et al.

acceleration, and jerk-bounded trajectories. The pro-

posed trajectory is formed by a set of polynomials and

is defined by different phases, i.e. acceleration incre-

ment, sustained acceleration, acceleration decrement,

and constant velocity. The waypoints can include any

arbitrary desired command, i.e. velocities and acceler-

ations.

Trajectory planning for mobile robots is as well a

quite active research field. In [12], the authors present a

time-optimal algorithm for velocity planning of wheeled

ground robots (e.g. autonomous driving cars). Their

proposal discretize the trajectory and apply a closed-

form optimization real-time capable method, consider-

ing kinematic constraints and some bounds on linear

normal acceleration. In [37], the authors propose a kine-

matically feasible trajectory for fixed-wing aerial robots

that connects a series of waypoints.

Multirotor aerial robots have some particular fea-

tures that make them being different from another kind

of mobile robots, as they can move in the 3D space,

or they can reach any position in a holonomic way. In

[43], the authors propose a closed-form analytical tra-

jectory planning approach to transition from one state

to another state checking feasibility and minimizing the

jerk. The planned trajectory is defined as a polyno-

mial. [8] is an extension of the previous work for fully-

actuated multirotor aerial robots. In [7,5,6], the au-

thors propose a closed-form analytical trajectory plan-

ning approach from a given path. The trajectory has a

multiple phases polynomial definition, like some other

works mentioned above. In [5,6], the proposed trajec-

tory is jerk-bounded but jerk discontinuous. Despite be-

ing faster, and more suitable for real-time applications,

having a closed-form analytical solution limits the ver-

satility of the trajectory planning, being impossible to

add newer constraints such as the maximum distance

between the trajectory and the original path, a dynamic

model of the aerial robot, or certain requirements of the

waypoints.

Another approach to trajectory planner for multi-

rotor aerial robots is based on optimization algorithms.

In [46,38,1], an optimization-based trajectory planning

approach for multirotor aerial robot is presented. The

trajectory is defined as a set of polynomials. Differen-

tial flatness is used to model the robot. Authors of [46]

incorporate a collision-free check, while [1] simply im-

pose some distance to path limitations in certain dis-

crete trajectory parts. In [46,38], the snap is minimized,

whereas in [1] the energy (acceleration) is optimized but

with the requirement to have a continuous snap. These

works are very suitable for aggressive maneuvers, but

the fact of not imposing distance to path restrictions

difficult its usage in cluttered environments. Moreover,

in [38,1], the time to pass for the waypoints is imposed

externally and not computed by the planner.

Interestingly, trajectory planning has been extended

to multi-robot applications. In [55,23], the authors com-

bine a collision-free path planner with an optimization-

based trajectory planner using a polynomial description

of the trajectory.

Finally, it is worth to mention that there exist some

approaches that combine in the same component the

trajectory planner and the trajectory tracking controller,

taking advantage of optimization-based control tech-

niques. For example, [42] propose a Model Predictive

based Control (MPC), to make the multirotor aerial

robot transition from the current state to another given

state. Despite the proposed controller is generating a

(discretized) trajectory for this transition, it cannot be

fully compared with a trajectory planner since it does

only consider one desired state and not a full path. The

main drawback of these approaches is the tightness be-

tween the trajectory planner and the controller. This

enforces the need for constantly re-planning at the con-

trol frequency which is unachievable for long and com-

plex trajectories. Therefore, despite being theoretically

feasible, it is not currently achievable in real-time, being

this the main reason to have two different components,

one for planning and another one for control.

2.2 Trajectory tracking control

Trajectory tracking control of multirotors has been an

active topic of research during the last decade, as sur-

veyed in [32]. Specifically, Model Predictive Control (MPC)

approaches have shown to outperform traditional ap-
proaches in terms of tracking performance and robust-

ness [41]. To increase the tracking performance, a cas-

cade control hierarchy is often used, where feed-forward

control commands are given to the MPC algorithm as

control references. For instance, in [28] they design a

hierarchical control structure for aerial robots where a

linear quadratic regulator provides a steady-state refer-

ence to a model predictive controller to perform aggres-

sive attitude tracking of aerial robots. Unlike our work,

they don’t incorporate heading control in the MPC ap-

proach, which limits its planning capabilities when the

planned trajectory involves heading maneuvers. In [44]

they present a unified trajectory optimization frame-

work based on model predictive control, where a se-

quential linear quadratic trajectory optimization is per-

formed to generate a steady-state reference state. How-

ever, they do not include control saturations nor path

constraints. In [2,53] they perform inversion-based po-

sition control and trajectory following for micro aerial

vehicles, but they do not include control saturations nor

Trajectory tracking for aerial robots 5

path constraints since they employ a linear quadratic

regulator for position control. In [29] linear and nonlin-

ear MPC for trajectory tracking are compared, comput-

ing a feed-forward control reference from the planned

acceleration. However, the heading is not controlled by

the MPC algorithm, which leads to prediction errors

when wide heading maneuvers are needed.

The use of unit quaternions for attitude representa-

tion is limited in the MPC literature on aerial robots.

To properly employ this representation one must define

integration and error functions based on the quater-

nion algebra. However, different works make use of stan-

dard algebra and a post-normalization as a workaround.

In [18] the quaternion kinematics are considered in an

MPC approach to include perception objectives into

the optimal control problem. However, the attitude er-

ror is posed as a difference of quaternions, which is an

ill-defined notion since unit quaternions are closed un-

der composition, not sum or difference. Outside of the

optimization-based control, there are different works

with a proper quaternion-based error formulation. For

instance, in [15] they formulate a quaternion-based er-

ror vector by extracting the eigenaxis rotation, and in

[56] they induce error formulations from rotation ma-

trices. However, these methods lack control saturations

and path constraints.

3 Representation of rotations in SO(3)

In this section we compile some mathematical prop-

erties relative to the representation of orientations in

the tridimensional space SO(3). Most of the informa-

tion here presented has been carefully extracted and

summarized from multiple sources that deeply address

the previously mentioned problem. Some of the used

sources include [20], [24], [31], [59], and specially [54].

The reader must note that this section has been in-

cluded to create a self-contained paper that is easy to

follow and understand, but it could be partially skipped

if the reader is familiar with the topic. Special atten-

tion requires Section 3.3, which presents, as part of this

work’s contributions, two proposals on how to compute

a scalar error between two orientation for optimization

problems.

3.1 Orientation of a rigid body

The orientation of a rigid body, B, in an inertial refer-

ence frame, W, can be represented using multiple dif-

ferent formalisms.

One widely used formalism is the unit quaternion,

also called rotation quaternion:

q =

[
qw
qv

]
=


qw
qx
qy
qz

 (1)

where qw is the scalar part, and qv is the vectorial part

of the quaternion.

Quaternions follow a well defined particular algebra

which extends the two-dimensional complex numbers

to four dimensions. Unit quaternions are a sub kind of

quaternions that have a unitary norm, i.e. ‖q‖ = 1 and

that are used to represent orientations, being possible

to use their algebra to easily carry out geometric trans-

formations, e.g. rotations composition or rotation inver-

sion. Therefore, unit quaternions represent rotations on

the tridimensional space SO(3) using four variables and

one constraint. Unit quaternions allow having a contin-

uous and singularity-free representation of the orienta-

tion of the body (unlike for instance Euler angles) with

a reduced number of variables (unlike rotation matri-

ces). Nevertheless, unit quaternions do not represent

the rotation uniquely, being q and −q, two valid repre-

sentations of the same orientation.

The Euler’s rotation theorem states that any rota-

tion can be expressed as a single rotation of an angle

φ about an axis u. This rotation formalism is called

axis-angle representation. The rotation axis u ∈ R3 is

a unitary vector. The rotation angle is defined as φ ∈ R,

and therefore, there are infinite axis-angle values that

correspond to the same rotation. We define the rota-

tion angle ψ ∈ R[−π, π], as the rotation angle that has

the minimum absolute value of all the ones that encode

the same orientation. Therefore, all the rotation angles

with the value φ = ψ+2·π ·k, for any integer k, ∀k ∈ Z,

encode exactly the same rotation. It is worth to high-

light that the axis-angle representation, similarly than

quaternions, requires four variables and one constraint

to represent the tridimensional space SO(3).

The rotation vector, also called Euler vector, is com-

puted from the axis-angle representation as:

φ = φ · u (2)

Similarly than the axis-angle, infinite rotation vectors

correspond to the same rotation. Concretely, all the ro-

tation vectors of length φ = ψ+2·π·k, for any integer k,

∀k ∈ Z, encode exactly the same rotation. The reader

must note that rotation vectors only require three vari-

ables to represent rotations on the tridimensional space

SO(3), nevertheless, unlike quaternions, performing ge-

ometric operations with them is not straightforward.

6 Sanchez-Lopez et al.

The axis-angle representation can be calculated from

the rotation vector as:

φ = ‖φ‖ (3)

u =
φ

‖φ‖
(4)

Nevertheless, as the reader may have noticed, it can

only be computed in the case that φ 6= 0, being other-

wise undefined the rotation axis u.

The unit quaternion can be calculated from the axis-

angle rotation and the rotation vector, using the follow-

ing relationships:

q =

[
qw
qv

]
=

[
cos φ2

sin φ
2 · u

]
=

[
cos ‖φ‖2

sin ‖φ‖2 ·
φ
‖φ‖

]
(5)

which is only valid for the rotation vector, in the case

of φ = ‖φ‖ 6= 0.

In the case of a small rotation, φ ≈ 0, then, the unit

quaternion can be approximated to:

q =

[
qw
qv

]
=

[
cos φ2

sin φ
2 · u

]
≈
[

1
1
2 · φ · u

]
=

[
1

1
2 · φ

]
(6)

It is important to highlight that it is required that qw =

cos φ2 ≥ 0, i.e. φ ∈ [−π, π] + 2 · π · k, k ∈ Z. Otherwise,

we need to use the equivalent quaternion −q.

The rotation vector and the axis-angle can be com-

puted from equation 5 using the following expression:

φ = 2 · arctan

(
‖qv‖
qw

)
︸ ︷︷ ︸

φ

· qv
‖qv‖︸ ︷︷ ︸
u

(7)

which is valid only if ‖qv‖ 6= 0.

In case that ‖qv‖ ≈ 0, the small rotation approxi-

mation presented in equation 6 can be used, obtaining:

φ ≈ 2 · qv (8)

3.2 Difference between two orientations

The rotation existing between two different orientations

can be represented employing the quaternion difference.

The quaternion difference, δq, encodes the difference

between the two quaternions qa and qb and it is calcu-

lated as:

δq = q∗a ⊗ qb (9)

where q∗a is the conjugate of qa and ⊗ is the quaternion

product.

To overcome the fact that the quaternions use four

variables to represent the tridimensional space SO(3),

the rotation vector of the quaternion difference, δφ, can

be used following equations 7 and 8.

The rotation vector obtained from a quaternion dif-

ference, applying the small rotation angle approxima-

tion presented in equation 6, is often called in the lit-

erature error-quaternion, δθ, as:

δq =

[
δqw
δqv

]
≈
[

1
1
2 · δθ

]
⇔ δθ ≈ 2 · δqv (10)

The approximation presented in equation 10, is of-

ten used for non small angles, |δφ| > 0. In this case,

it is needed to take into account the same consider-

ation mentioned in equation 6 that δqw = cos δφ2 ≥ 0,

and otherwise, we need to use the equivalent quaternion

−δq.

3.3 Scalar error between two orientations

When dealing with optimization problems, it is often

needed to have a scalar magnitude, e.g. for the cost

function, representing the difference between two ori-

entations, e.g. the current and the desired orientations

in control problems.

A first possibility is to compute the norm of the

rotation vector difference, δφ, obtaining:

eφ = ‖δφ‖2 = δφT · δφ = 4 · arctan2

(
‖δqv‖
δqw

)
(11)

The reader must note that this expression is valid for

all the values of the quaternion δq, no matter the value

of ‖δqv‖, unlike equations 7 and 8.
Another option is to use the error-quaternion, δθ,

obtaining:

eθ = ‖δθ‖2 = δθT · δθ = 4 · δqTv · δqv (12)

The reader must note that in this case, no special pre-

caution has to be adopted, unlike equation 10.

Other possibilities have been studied in the liter-

ature, as the function Ψ proposed in equation (8) of

[34], which is proportional to our eθ, or the function Ψ

proposed in equation (9) of [33], which has a certain

resemblance to our eφ.

3.4 Time-derivatives of the orientation

The angular velocity of the rigid body in coordinates

of the inertial reference frame, is defined as the time

derivative of the rotation vector of the body:

ω =
dφ

dt
=

d

dt
(φ · u) (13)

Trajectory tracking for aerial robots 7

The relation between the unit quaternion that rep-

resents the orientation of a rigid body and its angular

velocity is:

q̇ =
dq

dt
=

1

2
· ω̄WB ⊗ q =

1

2
· q ⊗ ω̄BB (14)

where ωWB = ω represents the angular velocity of the

body in coordinates of the inertial reference frame; ωBB
represents the angular velocity of the body in body co-

ordinates; ω̄ represents the pure quaternion associated

to the angular velocity ω; and ⊗ is the quaternion prod-

uct.

The l-th derivative of the orientation of the body in

the inertial reference frame is given by:

ω(l−1) =
d(l−1)ω

dt(l−1)
=


dω(l−1)

x

dt(l−1)

dω(l−1)
y

dt(l−1)

dω(l−1)
z

dt(l−1)

 , ∀l ∈ N, l > 1 (15)

4 Representation of rotations in SO(2)

The tridimensional space SO(3) can be reduced to the

bidimensional space SO(2) in the case we only inter-

ested in considering the yaw angle, omitting the value

of the other two angles. As presented in Section 5, this

is the case, when using some differential flatness prop-

erties of multirotor aerial robots.

Along this section, we present some mathematical

properties relative to the representation of orientations

in SO(2), by adapting the ones developed in Section

3. The mathematical tools introduced in this section

represent the foundations of the following sections when

dealing with orientations.

4.1 Orientation of a rigid body

In the case that we omit the value of the pitch and roll

angles, retaining only the value of the yaw, the unit

quaternion, q, that represents the attitude of the body,

B, in the inertial reference frame, W, presented in equa-

tion 1, has the following shape:

q =


qw
0

0

qz

 (16)

The attitude of the rigid body can be, therefore,

represented by the following simplified unit quaternion,

q̃:

q̃ =

[
qw
qz

]
(17)

and therefore, it requires two values and one restriction

to represent rotations in SO(2).

In the case of the angle-axis representation, the ro-

tation axis is simplified to u = [0, 0, 1]
T

, and therefore

the rotation vector is simplified to:

φ = φ · u = φ ·

0

0

1

 =

 0

0

φ

 (18)

and therefore, the rotation vector in SO(2) is a scalar

magnitude, φ̃ = φ.

As mentioned in Section 3, the rotation angle is de-

fined as φ ∈ R, and therefore, there are infinite axis-

angle values that correspond to the same rotation. Sim-

ilarly, we extend the definition of the rotation angle

ψ ∈ R[−π, π], as the rotation angle that has the mini-

mum absolute value of all the ones that encode the same

orientation as all the infinite possible values of φ. There-

fore, all the rotation angles with the value φ = ψ+2·π·k,

for any integer k, ∀k ∈ Z, encode exactly the same ro-

tation. This rotation angle, φ, is equivalent to the yaw

angle used in aviation and aerial robotics.

We define the orientation value, pψ ∈ R, as the ro-

tation angle that encodes the total angular state of the

rigid body, i.e. it encodes the total angle rotated by

the body since its initial state has been defined. It is,

therefore, a continuous real number, unlike the previ-

ously defined rotation angles ψ or φ.

Following equation 5, the simplified unit quaternion

can be calculated from the rotation vector as:

q̃ =

[
qw
qz

]
=

[
cos
(
1
2 · φ

)
sin
(
1
2 · φ

)] (19)

=

[
cos
(
1
2 · ψ

)
sin
(
1
2 · ψ

)] (20)

The reader must note that qw is always positive when

computed using the angle ψ as ψ ∈ R(−π, π], what is

not always the case when computed using φ. Neverthe-

less, both simplified unit quaternion represent the same

rotation.

The yaw angle, ψ, represented by a simplified quater-

nions, can be obtained from equation 20, as:

ψ = 2 · arctan

(
qz
qw

)
(21)

Similarly, the simplified unit quaternion can be com-

puted from the orientation value, pψ, as:

q̃ =

[
qw
qz

]
=

[
cos
(
1
2 · pψ

)
sin
(
1
2 · pψ

)] (22)

The reader must note that the simplified quaternion q̃

can be calculated from the orientation value pψ, but

8 Sanchez-Lopez et al.

not the other way around. Equation 19 is, therefore, a

surjection q̃ = f(pψ).

Finally, combining equations 21 and 22, the yaw an-

gle, ψ, can be computed from the orientation value, pψ,

as:

ψ = 2 · arctan

(
tan

(
1

2
· pψ

))
(23)

Similarly than equation 22, equation 23 is a surjection.

The reader must note that the simplified quater-

nion, q̃, the yaw angle, ψ, and the orientation value, pψ,

represent the same orientation (see Fig. 2). It is impor-

tant to remember that the orientation value, pψ, cannot

be calculated from the other two representations, while

the other two representations can be calculated from

any other representation.

0 5 10 15
Time (s)

-10

0

10

20

A
ng

le
 (

ra
d)

p

0 5 10 15
Time (s)

-1

-0.5

0

0.5

1

Q
ua

te
rn

io
n

q
w

q
z

Fig. 2: The three different discussed representations

in SO(2) for the same rotations. Top: Simplified unit

quaternion, being qw the solid blue and qz the dotted

red. Bottom: pψ in solid blue, and ψ in dotted red.

4.2 Difference between two orientations

Equation 9 for the quaternion difference is simplified

to:

δq̃ = q̃∗a ⊗ q̃b =

[
qaw · qbw + qaz · qbz
qaw · qbz − qaz · qbw

]
=

[
δqw
δqz

]
(24)

Combining equations 22 and 24, the quaternion dif-

ference is calculated in terms of the orientation value

as:

δq̃ = q̃∗a ⊗ q̃b =

[
cos
(
1
2 ·
(
pbψ − paψ

))
sin
(
1
2 ·
(
pbψ − paψ

))] (25)

Similarly, combining equations 20 and 24, the quater-

nion difference is calculated in terms of the yaw angle

as:

δq̃ = q̃∗a ⊗ q̃b =

[
cos
(
1
2 · (ψb − ψa)

)
sin
(
1
2 · (ψb − ψa)

)] (26)

The error-quaternion can be calculated for the sim-

plified quaternions, following equation 10, as:

δq̃ =

[
δqw
δqz

]
≈
[

1
1
2 · δθ

]
⇔ δθ ≈ 2 · δqz (27)

which, as mentioned before, requires δqw ≥ 0, other-

wise, the quaternion −q̃ must be used.

Combining equations 27 and 26, the error-quaternion

is calculated in terms of the yaw angle, ψ, as:

δθ ≈ 2 · sin
(

1

2
· (ψb − ψa)

)
(28)

where, in this case, δqw = cos
(
1
2 · (ψb − ψa)

)
≥ 0 is

always satisfied.

Similarly, combining equations 27 and 25, the error-

quaternion is calculated in terms of the orientation value,
pψ, as:

δθ ≈

{
2 · sin

(
1
2 ·
(
pbψ − paψ

))
⇔ δqw ≥ 0

−2 · sin
(
1
2 ·
(
pbψ − paψ

))
⇔ δqw < 0

(29)

where δqw = cos
(
1
2 ·
(
pbψ − paψ

))
.

The yaw angle difference δψ can be calculated as:

δψ =2 · arctan

(
δqz
δqw

)
(30)

=2 · arctan

(
tan

(
1

2
·
(
pbψ − paψ

)))
(31)

=2 · arctan

(
tan

(
1

2
· (ψb − ψa)

))
(32)

Figure 3 plots the yaw angle difference, δψ, and the

error-quaternion, δθ. As stated in Section 3.2, the error-

quaternion approximation is often used for large rota-

tion differences. The reader must note that this approx-

imation is only equivalent to δψ, in the environment

where δψ ≈ 0.

Trajectory tracking for aerial robots 9

-6 -4 -2 0 2 4 6
p

b
-p

a
 (rad)

-4

-3

-2

-1

0

1

2

3

4

A
ng

ul
ar

 e
rr

or

Fig. 3: Yaw angle difference, δψ, in dashed red and

error-quaternion, δθ, in solid blue.

4.3 Scalar error between two orientations

The norm of the rotation vector difference, δφ, pre-

sented in equation 11, is simplified to:

eφ = ‖δφ‖2 = 4 · arctan2

(
‖δqz‖
δqw

)
(33)

= 4 · arctan2

(
tan

(
1

2
· (ψb − ψa)

))
(34)

= 4 · arctan2

(
tan

(
1

2
·
(
pbψ − paψ

)))
(35)

The norm of the error-quaternion, δθ, presented in

equation 12, is simplified to:

eθ = ‖δθ‖2 = 4 · δqzT · δqz (36)

= 4 · sin2

(
1

2
· (ψb − ψa)

)
(37)

= 4 · sin2

(
1

2
·
(
pbψ − paψ

))
(38)

Figure 4 plots both presented scalar rotation errors,

the norm of the rotation vector difference, eψ, and the

norm of the error-quaternion ,eθ. Since the norm of

the error-quaternion, it is only an approximation of the

norm of the rotation vector difference, it does not have

a good performance when the difference of the rotation

angle is not δψ ≈ 0.

4.4 Time-derivatives of the orientation

The expression of the angular velocity of the rigid body

in coordinates of the inertial reference frame, intro-

-6 -4 -2 0 2 4 6
p

b
-p

a
 (rad)

0

1

2

3

4

5

6

7

8

9

10

S
ca

la
r

an
gu

la
r

er
ro

r

e

e

Fig. 4: eψ, in dashed red and eθ, in solid blue.

duced in equation 13, is simplified to:

ω =
dφ

dt
=

d

dt
(φ · u) =

d

dt

φ ·
0

0

1

 =
dφ

dt
·

0

0

1


=ω̃ ·

0

0

1

 =

 0

0

ωψ

 (39)

being the simplified angular velocity ω̃ = ω̃ = ωψ.

It is important to highlight that, from equation 39,

the rotation angle, φ, is required to be continuous and

derivable. To guarantee this derivability, we prefer to

define the angular velocity in terms of the orientation

value, pψ, as:

ωψ =
dpψ
dt
⇒ pψ =

∫ tf

t0

ωψ · dt (40)

Equation 14 that relates the unit quaternion with

its angular velocity is simplified to:

dq̃

dt
=

1

2
· ¯̃ωWB ⊗ q̃ =

1

2
· q̃ ⊗ ¯̃ωBB (41)

Equation 15, to calculate the l-th derivative of the

orientation of the rigid body in the inertial reference

frame is simplified to:

ω̃(l−1) =
d(l−1)ω̃

dt(l−1)
=
[

dω
(l−1)
ψ

dt(l−1)

]
, ∀l ∈ Z, l > 1 (42)

Using the algebra of the quaternions, reduced to the

case of the simplified quaternion, and considering its

unity property when representing rotations, ‖q̃‖ = 1,

equation 41 is reduced to:

dq̃

dt
=

[dqw
dt
dqz
dt

]
=

[
− 1

2 · ωψ ·
√

1− q2w
1
2 · ωψ ·

√
1− q2z

]
(43)

10 Sanchez-Lopez et al.

5 Aerial Robot Model

5.1 Reference frames

The reference frames involved in the aerial robot mod-

eling are represented in Figure 1. The world reference

frame, W , is arbitrary defined, attached to the ground

and being its z-axis parallel to gravity. The body refer-

ence frame, B, is rigidly attached to the center of the

robot, being its x-axis pointing to the front of the plat-

form, and its z-axis perpendicular to the plane of the

rotors. Finally, the robot horizontal reference frame, R,

has its origin attached to the center of the platform and

its x-axis is pointing to the front of the platform, but

unlike the robot reference frame, its z-axis remains par-

allel to gravity, i.e. pitch and roll angles are zero. All

the reference frames are right-handed.

5.2 Dynamical model

The dynamics of multirotor aerial platforms are often

modeled, [38,17], considering their mechanical proper-

ties such as its mass, moment of inertia, distance from

the axis of rotation of the rotors to the center of the

quadrotor, drag coefficient of the propellers, etc., and

the fact that it is possible to command directly the de-

sired spinning speed of the rotors.

Since this model very accurately represents the dy-

namics of multirotor aerial platforms, its complexity is

very high, being especially critical the accurate identi-

fication of the value of its mechanical properties. In ad-

dition, most of the out-of-the-box industrial multirotor

aerial platforms, such as DJI1, are equipped with a ro-

bust and efficient autopilot that provides embedded at-

titude and velocity controllers. A large amount of these

industrial autopilots behave, from the final user point of

view, like black-boxes with inputs-outputs and configu-

ration parameters. It is therefore impossible to modify

these autopilots further than what their manufacturers

allow. It is highly uncommon that these autopilots offer

the possibility to directly command, from a companion

computer connected to it, the desired spinning speed of

the rotors.

To overcome the aforementioned difficulties, exploit-

ing the high-performance of the embedded autopilots,

the dynamics of multirotor aerial platforms can be rep-

resented employing simplified models that include the

dynamic response of the autopilot, as in [10,53]. In

these models, the control command given to the plat-

form is the desired velocity of the aerial platform (both

1 DJI webpage: https://www.dji.com

linear, and heading):

u =


ux
uy
uz
uψ

 =

[
uxyz
uψ

]
(44)

where uj represents the desired velocity of the aerial

platform in the axis j of the reference frame attached

to the aerial platform that is parallel to the ground

(robot horizontal reference frame).

The dynamics of the aerial platform is represented

with a simple first-order model as in [10]:

aRR = Kv · vRR +Kuxyz · uxyz (45)

αψ
R
R = Kω · ωψRR +Kuψ · uψ (46)

where vRR, and aRR are the linear velocity and accelera-

tion of the robot in robot coordinates. ωψ
R
R, and αψ

R
R

are the angular velocity and acceleration of the robot

in robot coordinates. The robot model parameters are

defined as:

Kv =

−
1
τx

0 0

0 − 1
τy

0

0 0 − 1
τz

 (47)

Kuxyz =


kx
τx

0 0

0
ky
τy

0

0 0 kz
τz

 (48)

Kω =

[
− 1

τψ

]
(49)

Kuψ =

[
kψ
τψ

]
(50)

where ki and τi are the gain and time constants of each

first-order velocity reference model. The remainder of

the model of the aerial platform is calculated by using

Kinematic relationships2, as follows:{
ṗWR = vWR
v̇WR = aWR

(51){
˙̃qWR = 1

2 · ωψ
W
R ⊗ q̃

W
R = 1

2 · q̃
W
R ⊗ ωψRR

ω̇ψ
W
R = αψ

W
R

(52){
vWR = q̃WR ⊗ vRR ⊗

(
q̃WR
)∗

= RW
R · vRR

aWR = q̃WR ⊗ aRR ⊗
(
q̃WR
)∗

= RW
R · aRR

(53){
ωψ

W
R = ωψ

R
R

αψ
W
R = αψ

R
R

(54)

where RW
R is the rotation matrix associated to the sim-

plified quaternion q̃WR . The reader should note the fol-

lowing relationships: pWR = pWB , vWR = vWB , and aWR =

aWB .

2 The notation νBA represents the value of the magnitude ν
of the system A represented in coordinates of the system B.

https://www.dji.com

Trajectory tracking for aerial robots 11

The nominal state of the aerial robot platform can

be defined using the different rotation conventions pre-

sented in Section 4, as one of the following:

xR =
[
pWR , pψ

W
R , v

R
R, ωψ

R
R

]T
(55)

=
[
pWR , ψ

W
R , v

R
R, ωψ

R
R

]T
(56)

=
[
pWR , q̃

W
R , v

R
R, ωψ

R
R

]T
(57)

The reader should note that the state in equation 55

and 56 has dimension 8, while the state in equation 57

has dimension 9, as the unit simplified quaternion, q̃WR ,

comes along with one restriction.

The dynamical model of the aerial robot platform

can be reformulated to the standard non-linear state

space representation as ẋR = f(xR,u). This represen-

tation will be useful for the trajectory controller pre-

sented in Sect. 8.

We define the state difference, δx, also called error-

state, as the difference between two states, xa and xb,

as:

δx = xa 	 xb (58)

where 	 represents the difference operation between

two states, what is a vectorial difference for all the ele-

ments of the state vector, except for the elements that

represent rotations, in which case, we use the operations

presented in Section 4.2.

The error-state has therefore, the following shape:

δxR =
[
δpWR , δq̃

W
R , δv

R
R, δωψ

R
R

]T
(59)

=
[
δpWR , δψ

W
R , δv

R
R, δωψ

R
R

]T
(60)

=
[
δpWR , δθ

W
R , δv

R
R, δωψ

R
R

]T
(61)

The reader should note that the error-state in equa-

tion 60 and 61 has dimension 8, while the error-state

in equation 59 has dimension 9, as the unit simplified

quaternion, δq̃WR , comes along with one restriction.

5.3 Differential flatness

According to [38,17], the dynamics of an underactuated

multirotor aerial robot is differentially flat. This means

that the states and the inputs appearing in its model

can be written as algebraic functions of four carefully

selected flat outputs and their derivatives.

A common choice of the flat outputs, [38,17], are the

position of the center of mass of the body of the aerial

robot in world coordinates, pWB = [px, py, pz]
T

, and

its continuous yaw (heading) angle, here represented as

the orientation value, pψ
W
R , introduced in Sect. 4.1.

This property facilitates the generation of trajecto-

ries since any smooth trajectory (with reasonably bounded

derivatives, due to actuator limits) in the space of flat

outputs can be followed by the aerial robot.

5.4 Control command references

Due to the differential flatness property presented in

the previous Section 5.3, the inputs that appear in the

model of an underactuated multirotor aerial robot, can

be written as an algebraic function of the flat outputs

and their derivatives. These inputs are the control com-

mand references needed to follow a given trajectory,

and they can be computed by inverting the dynamical

model of the aerial robot platform presented in Section

5.2 (equations 45 and 46):

urxyz =
(
Kuxyz

)−1 · (aRR −Kv · vRR
)

(62)

urψ =
(
Kuψ

)−1 · (αψRR −Kω · ωψRR
)

(63)

Thus, we can penalize deviations from the optimal

controls by defining the following control error:

δu = u− ur (64)

The reader must note that these control command

references will never perform an accurate trajectory

tracking when inputted to the real aerial platform. This

is due to the fact that the real dynamics of the aerial

robot platform is never going to be perfectly repre-

sented by the aforementioned dynamic model, on ac-

count of modeling simplifications and errors, as well

as unconsidered external disturbances. Therefore, the

trajectory tracking task requires a trajectory tracking

controller compensating these errors, like the one pre-

sented in Section 8.

6 Trajectory Definition

6.1 General description of the trajectory

The trajectory, L, is defined as a piecewise set of ns
segments, si, that depend on the time, ti, which is de-

limited within a time range, ti ∈
[
ti0, tif

]
:

L = {si(ti), ti ∈
[
ti0, tif

]
, ∀i = {1..ns}}

The number of segments, ns, of the trajectory, L,

depends on the number of waypoints, nw, of the given

path, P .

Carrying out the following change on the time vari-

able:

τi = ti − ti0, τi ∈
[
0, ∆τi = tif − ti0

]

12 Sanchez-Lopez et al.

the trajectory, L, is redefined as:

L = {s̃i(τi), τi ∈ [0, ∆τi] , ∀i = {1..ns}}

All the segments, s̃i(τi), are defined in the space of

the flat outputs, R3 × SO(2), defined in section 5.3:

s̃i (τi) : [0, ∆τi]→ R3 × SO(2) (65)

where

s̃i(τi) =

[
pi,:(τi)

pi,ψ(τi)

]
=


pi,x(τi)

pi,y(τi)

pi,z(τi)

pi,ψ(τi)

 , ∀i = {1..ns} (66)

The value of the orientation, q̃i,ψ(τi), is calculated

following equation 22.

Each of the dimension, pi,j of the segments s̃i, being

j = {x, y, z, ψ}, are defined as polynomial functions of

order mi, i.e. the (mi + 1)-th derivative of the position,

pi,j , with respect to the time, τi, is zero:

pi,j(τi) =

k=mi∑
k=0

(
bi,j,k · τki

)
(67)

where bi,j,k are the coefficients of the polynomial.

The lm-th time-derivative of the each polynomial is

calculated by differentiation of equation 67 as:

p
(lm)
i,j (τi) =

dlmpi,j

dτ lmi
=

=

k=mi∑
k=0

bi,j,k ·
 k∏
l=k−(lm−1)

l

 · τk−lmi


(68)

This definition of the trajectory allows to calculate

a trajectory that is continuous up to nd-th order, i.e.

T ∈ Cnd . In other words, all the segments and their

derivatives up to the nd-th order are continuous.

6.2 Continuity of the trajectory

As mentioned in Sect. 6.1, the proposed definition of

the trajectory allows to calculate a trajectory that is

continuous up to nd-th order, i.e. T ∈ Cnd .

This continuity imposition, allows to make a distinc-

tion in the initial state of every segment: (1) the part

that is given by the continuity restriction, xi,j,0:nd(0);

and (2) the part that is not influenced by the continuity

restriction, xi,j,(nd+1):mi(0):

xi,j,0:mi (0) =

[
xi,j,0:nd(0)

xi,j,(nd+1):mi(0)

]
(69)

Similarly, the final state of the segment, xi,j,0:mi (∆τi),

has two parts, and it can be calculated, given its initial

state (see equation 108 of Appendix A).

The initial state of the segment i+ 1, xi+1,j,0:nd(0)

can be computed applying the continuity property to

the final state of the segment i, xi,j,0:nd(∆τi).

We have ∀i = {1..(ns − 1)}, ∀j = {x, y, z, ψ}, and

∀l = {0..nd}, the following expression:

p
(l)
i+1,j (0) = p

(l)
i,j (∆τi) (70)

and using the compact formulation (see Appendix A):

xi+1,j,0:nd (0) = xi,j,0:nd (∆τi)

The reader must note that for the orientation, there

is no need to use simplified quaternions when analyz-

ing the continuity of the trajectory, as the orientation

values pi,ψ (∆τi) and pi+1,ψ (0) can be computed, and

since they are continuous variables, they can be com-

pared in the same way than the rest of the magnitudes.

6.3 Compact description of the trajectory

As mentioned in Sect. 6.1, every segment i, ∀i = {1..ns},
of the trajectory T is represented by four polynomials,

∀j = {x, y, z, ψ}, of degree mi. Every segment requires,

therefore, the following variables to be completely de-

fined:

– The time intervals of the segment, ∆τi.

– The coefficients of the polynomials, bi,j,:.

being the number of variables:

ny =
∑
∀i

(4 · (mi + 1) + 1) (71)

The coefficients of the polynomials can be calculated

by using the initial state of the segment, xi,j,0:mi (0),

(see equation 106 of Appendix A) and therefore, every

segment can be completely defined by using:

– The time intervals of the segment, ∆τi.

– The initial state of the segment, xi,j,0:mi (0).

By imposing the continuity restriction presented in

Sect. 6.2, every segment of the trajectory can be com-

pletely defined by using the following simplified set of

variables:

– The time intervals of the segment, ∆τi.

– The initial state of the segment that is not influ-

enced by the continuity restriction, xi,j,(nd+1):mi (0).

Trajectory tracking for aerial robots 13

being the number of variables in this case:

ny =
∑
∀i

(4 ·max ((mi − nd) , 0) + 1) (72)

Thanks to this formulation that incorporates the

continuity restrictions in the definition, the trajectory

can be described more compactly with less number of

variables.

The reader must note that the initial state of the

segment that is influenced by the continuity restriction

can be calculated with the previous segment as pre-

sented in Sect. 6.2. The only exception to this is the

computation of the initial state of the first segment of

the trajectory, which requires the state in the first way-

point.

6.4 Proposed particular description of the trajectory

Our particular trajectory proposal has three segments

between every two existing waypoints, which, as ex-

plained below, represent three different phases: acceler-

ation, constant velocity, and deceleration. The number

of segments is therefore calculated as:

ns = 3 · (nw − 1) (73)

We propose to have two kinds of polynomial seg-

ments, the ones that are connected to the waypoints,

and the ones that are not. We have therefore two way-

point connected polynomials, per each intermediate one.

For the waypoint connected polynomials, we pro-

pose to force the seventh derivative, i.e. the lock, to

be zero, obtaining for the position and the orientation-

related value a 6th-degree polynomial, mi = 6, with 7

coefficients per dimension and segment. These segments

are used to represent the acceleration and deceleration

movements of the robot.

For the intermediate polynomials, we force the sec-

ond derivative, i.e. the acceleration, to be zero, obtain-

ing for the position and the orientation-related value a

1st-degree polynomial, mi = 1, with 2 coefficients per

dimension and segment. These segments are used to

represent a constant velocity movement of the robot.

As mentioned in Sect. 6.1, the definition of the tra-

jectory allows to calculate a trajectory that is contin-

uous up to nd-th order, i.e. T ∈ Cnd . Although our

presented solution is general enough, we propose a con-

tinuous trajectory, up to third order, nd = 3, that is,

the third derivative, i.e. the jerk, is continuous but not

derivable.

The advantage of this multi-phase trajectory defini-

tion as a set of two different kinds of polynomials (i.e.

acceleration/deceleration and constant velocity), is that

is more suitable for real applications such as inspection

or package delivery, unlike other research-oriented ag-

gressive maneuvers shown in the literature (e.g. [38]).

This definition provides a higher semantic encoding of

the trajectory which on the other hand, allows calculat-

ing, without loss of flexibility, an optimal solution but

following a predefined simple profile.

7 Trajectory Planner

The trajectory planner calculates the suboptimal tra-

jectory, L∗, defined by the parameters, x∗f , and ∆τ ∗,

as illustrated in Sect. 6, by solving the following single-

objective nonlinear multivariable constrained minimiza-

tion problem:

x∗f , ∆τ
∗ = arg min

xf∈X,∆τ∈T
(J(∆τ))

subject to:

Time feasibility: −∆τ ≤ 0

Continuity of the trajectory: cs(xf , ∆τ) = 0

Waypoints: w(xf , ∆τ , P) = 0

Dynamics of the traj.: ‖νT (xf , ∆τ)‖2 − ‖νmax‖2 ≤ 0

Actuators of the robot: uR(xf , ∆τ)− umax ≤ 0

umin − uR(xf , ∆τ) ≤ 0

Distance to path: d(xf , ∆τ , P)− dmax ≤ 0

The proposed optimization problem is detailed in

the following Sects. 7.1 to 7.5.

7.1 Optimization variables

The optimization variables, y, also called unknowns,

gather all the parameters that describe the trajectory,

L, introduced in Sect. 6.3, i.e.:

– The initial state of the polynomials of the segments

that are set to free, xf = {x(k)i,j (0)} ∈ X, ∀i =

{1..ns}, ∀j = {x, y, z, ψ}, and ∀k = {(nd + 1)..mi},
where mi = 6 for the case of waypoint connected

polynomials, and mi = 1 for the case of intermedi-

ate polynomials.

– The time intervals of the segments, ∆τ = {∆τi} ∈
T , ∀i = {1..ns}.

being, therefore, the number of unknowns, ny = 27 ·
(nw − 1). All the unknowns are real numbers, i.e. y ∈
Rny .

14 Sanchez-Lopez et al.

7.2 Objective function

The objective function, J(y), also called cost function,

that has to be minimized, is the total time of the tra-

jectory tracking. It is calculated as

J(∆τ) =
∑
∀i

∆τi (74)

Other objectives like the minimization of the snap,

as in [39], could be included in this objective function.

Nevertheless, we will experimentally see in Section 9

that our proposed approach, also influences the snap

while minimizing the total time.

7.3 Constraints

Two kinds of constraints, cin(y) ≤ 0, and ceq(y) = 0,

are included in the optimization problem formulation

and are detailed below.

7.3.1 Time feasibility

The time intervals of all the segments, ∆τi, must be

feasible, i.e. cannot be negative:

∆τi ≥ 0, ∀i = {1..ns} (75)

7.3.2 Continuity of the trajectory

As mentioned in Sect. 6, the trajectory has to be con-

tinuous up to nd-th order, i.e. T ∈ Cnd . In other words,

all the segments and their derivatives up to the nd-th

order (in our case, nd = 3) have to be continuous.

The continuity of the trajectory has been implic-

itly imposed in the trajectory definition (see Sect. 6.2).

Including this constraint explicitly might be useful to

overcome the possible issues appearing due to the fact

that there are two kind of polynomial with different

degree mi.

We represent this set of restrictions as cs(xf , ∆τ) =

0, and are computed following the equations presented

in Sect. 6.2.

7.3.3 Waypoints

The trajectory has to pass through the waypoints of

the given path, P . The reader must remember that the

waypoint n, Wn, is characterized by is position, pWn
=

[pWn,x, pWn,y, pWn,z]
T

and orientation, q̃Wn
= [qWn,w, qWn,z]

T
.

We represent this set of restrictions as w(xf , ∆τ , P) =

0.

For the position, we have ∀j = {x, y, z}, ∀n ∈ P ,

and ∀i−, i+ connecting polynomials, the following ex-

pressions:

pi−,j
(
∆τi−

)
= pWn,j

pi+,j (0) = pWn,j

Obtaining:

w(xf , ∆τ , P) = pi−,j
(
∆τi−

)
− pwn,j = 0 (76)

w(xf , ∆τ , P) = pi+,j (0)− pwn,j = 0 (77)

The value of pi−,j
(
∆τi−

)
and pi+,j (0) can be calculated

by combining equations 89 and 106 of Appendix A.

Similarly, for the orientation, we have:

q̃i−,ψ
(
∆τi−

)
= q̃wn

q̃i+,ψ (0) = q̃wn

As presented in Section 4.2, we have two options to

compute the reduced dimensionality difference between

two rotation:

On the one hand, we can use the yaw angle differ-

ence, δψ, defined in equation 30:

w(xf , ∆τ , P) = fδψ

(
q̃i−,ψ

(
∆τi−

)
, q̃wn

)
= 0 (78)

w(xf , ∆τ , P) = fδψ

(
q̃i+,ψ (0) , q̃wn

)
= 0 (79)

On the other hand, we can use the error-quaternion,

δθ, defined in equation 27:

w(xf , ∆τ , P) = fδθ

(
q̃i−,ψ

(
∆τi−

)
, q̃wn

)
= 0 (80)

w(xf , ∆τ , P) = fδθ

(
q̃i+,ψ (0) , q̃wn

)
= 0 (81)

Similarly than before, the value of q̃i−,ψ
(
∆τi−

)
and

q̃i+,ψ (0) can be calculated by combining equations 89

and 106 of Appendix A.

The reader must note that one of the equations 76

and 77, and one of the equations 78 and 79, or 80 and

81, are redundant and therefore might be omitted for

simplicity.

7.3.4 Dynamics of the trajectory

Certain limits need to be imposed on the dynamics of

the trajectory, i.e. limit on velocity, acceleration, jerk,

snap, crackle, pop, ... This may be needed due to re-

quirements of the application (e.g. tracking a trajectory

with a certain maximum velocity), or due to an incom-

plete (or too simple) model of the dynamics of the robot

that does not consider higher-order derivatives or non-

linear limits, as mentioned in Sect. 5.3.

Trajectory tracking for aerial robots 15

These limits are represented as

‖νT (xf , ∆τ)‖2 ≤ ‖νmax‖2

Which is equivalent to:

cT (xf , ∆τ , νmax) = ‖νT (xf , ∆τ)‖22 − ‖νmax‖
2
2 ≤ 0

(82)

where ‖νT (xf , ∆τ)‖22 can be calculated by combining

equation 97 and 122, with equation 106 of Appendix A.

7.3.5 Actuators of the robot

The actuators of the robots have physical limits that

cannot be exceeded.

The control commands, uR(xf , ∆τ), are calculated

following the dynamic model of the robot expressed in

equations 62 and 63, and the following constraints are

applied:

umin ≤ uR(xf , ∆τ) ≤ umax (83)

Which is equivalent to

uR(xf , ∆τ)− umax ≤ 0 (84)

umin − uR(xf , ∆τ) ≤ 0 (85)

7.3.6 Linear distance to path

The euclidean linear distance between the given path

and the position variables of the trajectory has to be

lower than the value, dmax.

We represent this restriction as d(xf , ∆τ , P)−dmax ≤
0, and it is calculated as:∣∣∣∣∣∣pi,: (τi)− pPn,n+1

∣∣∣∣∣∣
2
≤ dmax (86)

∀τi ∈ [0, ∆τi], ∀i = {1..ns}, and for all the position

subpaths, pPn,n+1
, that form the complete path P . The

value pi,: (τi) can be calculated by combining equation

110 and equation 106 of Appendix A.

The reader must note that this restriction might

only be applied to any user-defined sub-path of the

given path P .

7.4 Initialization

The initialization of the unknowns is essential for the

fast convergence of the optimization algorithm to a lo-

cal minimum. The initial value of the unknowns, y0,

has to be feasible from the optimization problem point

of view, i.e. it has to fulfill the constraints described in

Sect. 7.3.

We propose an initial trajectory, L0, that exactly

follows the given path, P , by setting to zero the ve-

locity and all the continuous higher-order derivatives

in the waypoints. This means that, between every two

waypoints, the three following stages take place: accel-

eration from zero velocity, constant velocity movement,

and deceleration to zero velocity. By definition, this ini-

tial trajectory pass through all the waypoints, and the

linear distance to the path is zero. The acceleration and

deceleration stages are carried out following the limits

on the dynamics and actuators of the robot.

The aforementioned initial trajectory, L0, is, there-

fore, feasible from the optimization problem point of

view. It can be calculated analytically but for the sake

of brevity, a complete expound of its computation method

is omitted.

7.5 Recursive sequential optimization

To boost the computation of suboptimal trajectory, the

aforementioned large optimization problem can be di-

vided into a set of small optimization problems that can

be solved sequentially.

The full path is sequentially divided into sub-paths

of three waypoints, solving the optimization problem

for only these three waypoints. Once the trajectory is

computed for these three waypoints, we advance to the

next waypoint of the path, and we solve the optimiza-

tion problem for the sub-path formed by the previous

last two waypoints and the new waypoint. The com-

puted trajectory in every iteration of the sequence up-

dates the value of the initial trajectory calculated as

mentioned in Sect. 7.4, which is used in the following

sequence as the initial sub-trajectory of the small opti-

mization problem. This process continues until the last

waypoint is reached.

In order to improve the optimality of the computed

trajectory, the full sequential optimization problem is

solved again in a recursive way, always using the last

computed trajectory, as the initial trajectory of the op-

timization problem.

A later joint optimization of the full trajectory could

be done, using the last computed trajectory, as the ini-

tial trajectory of the optimization problem, to improve

even more the optimality of the computed trajectory.

8 Trajectory Tracking Controller

To maximize the trajectory tracking performance, we

design a Model Predictive Control (MPC) approach

that, each sample time, obtains the control commands

16 Sanchez-Lopez et al.

u by solving the following optimal control problem (OCP):

min.
u(t),x(t)

J =

∫ T

0

(
‖δxR(t)‖2P + ‖δu(t)‖2Q + ks2

)
dt

(87a)

s.t. ẋR(t) = f(xR(t),u(t)) (87b)

‖q‖2 = 1− s (87c)

umin(t) ≤ u(t) ≤ umax(t) (87d)

where xR and δxR are the state and the error-state of

the system as defined in equations 57 and 61 respec-

tively. Similarly, the control commands u and δu are

defined in equations 44 and 64 respectively. The state-

space formulation of the dynamical model of the aerial

robot is included in 87b, as developed in Section 5.2.

The weighting matrices P and Q, and the weighting

scalar k are tuning parameters for the desired objective

function (Equation 87a). As discussed by [13], Equa-

tion 87c needs to be included to prevent large violation

of the quaternion’s norm during optimization. In this

work, we introduce it as a soft constraint [30], where the

slack variable s minimizes the deviations of the quater-

nion from being unitary.

As a result, the MPC produces a predicted com-

manded trajectory x and control commands u that

minimizes the tracking performance along the horizon

T . The feasibility of this commanded trajectory is en-

sured through the dynamical model constraint (equa-

tion 87b) and the control saturations (equation 87d).

One of the key facts of this formulation is to include

δu(t) instead of u(t) in the cost function to minimize

the deviations from the optimal control command refer-

ences (computed given the planned trajectory following

equations 62 and 63), which improves the tracking per-

formance for two reasons. First, the controller follows

feasible time-optimal control references instead of stabi-

lizing ones. Second, the feasible evolution of the control

reference improves the convergence of the optimization

problem, since the state of the system is closer to the

optimal one.

The other key fact is the incorporation of the quater-

nion algebra developed in Section 4, concretely the re-

sults of equation 36. This provides a singularity-free

attitude control, whose rotation-matrix equivalent has

been shown to be asymptotically stable for large atti-

tude deviations [34].

To solve the OCP we employ direct optimization,

where the problem is discretized through a multiple-

shooting algorithm overN steps with a 4th order Runge-

Kutta integration of the dynamics (Equation 87b). This

integration scheme The resulting nonlinear program (NLP)

is solved through a sequential quadratic programming

(SQP) algorithm as described in [14].

9 Evaluation and Results

9.1 Evaluation methodology

The validation of the proposed trajectory tracking ap-

proach is done considering two different aspects.

On the one hand, in Sect. 9.3, we illustrate and eval-

uate the proposed trajectory planner. We analyze both

qualitatively and quantitatively the optimization pro-

cess of the trajectory planner together with the proper-

ties of the calculated trajectories. Additionally, we com-

pare the two different presented options to compute the

reduced dimensionality difference between two rotation

when applying the waypoints restriction of the trajec-

tory planner (discussed in Section 7.3.3).

We use the concept of the energy value, νenergy,

applied to different magnitudes, ν, of the trajectory:

νenergy =

∫ tf

0

‖ν(t)‖2 · dt (88)

On the other hand, we exemplify and evaluate the

proposed trajectory tracking controller in Sect. 9.4 by

means of in-lab real flight experiments. We study both

qualitatively and quantitatively its different performance

when taking advantage of the whole output of the tra-

jectory planner (i.e. pose and higher-order derivatives,

and control command references) and when only con-

sidering the desired pose.

We use the following well-known four error metrics:

– Mean Squared Error (MSE)

– Root Mean Square Error (RMSE)

– Mean Absolute Error (MAE)

– Max Absolute Error (MaAE)

We have defined two paths for evaluation purposes.

Both paths are limited by the dimensions of our flying

arena that are 5.5× 5.0× 4.5 m (W × L × H).

The first path is defined by the 8 waypoints pre-

sented in Table 1, and can be visualized in Figure 5

This path emulates a kind of spiral in position, with

a constant rotation on the desired robot heading along

with the waypoints. This spiral, apart from evolving in

the horizontal coordinates, has also changes both up

and down in the vertical coordinate z.

Table 1: List of waypoints of the first path used for the

evaluation. The path can be visualized in Figure 5.

W1 W2 W3 W4 W5 W6 W7 W8

px (m) -1.35 1.35 1.35 -1.35 1.35 1.35 -1.35 -1.35
py (m) -1.35 -1.35 1.35 1.35 -1.35 1.35 1.35 -1.35
pz (m) 1.25 1.25 1.25 1.25 2 2 2 1.25
ψ (◦) 0 -90 180 90 -90 180 90 0

Trajectory tracking for aerial robots 17

1.5

2

z
(m

)

2

1
2

y (m)

0 1

x (m)

0-1
-1

-2-2

Fig. 5: 3D view of the first path used for the evaluation.

The path is represented with a dashed black line, being

its waypoints, listed in Table 1, represented by a circle

(position) and a red arrow (heading).

The second path used for the evaluation is defined

by the 10 waypoints listed in Table 2 and it is shown in

Fig. 6. This path aims to have a relatively large number

of waypoints with a high complexity in the available re-

duced space, combining in some cases changes between

waypoints in just one or two dimensions in a relatively

short distance (e.g. W1 to W2 or W2 to W3), together

with changes up to the four dimensions in larger dis-

tances (e.g. W5 to W6 or W6 to W7).

Table 2: List of waypoints of the second path used for

the evaluation. The path can be visualized in Figure 6.

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

px (m) -1.5 0 1.5 1.5 0 -1.5 1.5 -1.5 -1.5 -1.5
py (m) -1.5 -1.5 0 1.5 1.5 1.5 -1.5 1.5 -1.5 -1.5
pz (m) 1.25 1.25 1.25 1.25 1.25 1.25 2 2 2 1.25
ψ (◦) 0 45 45 90 135 180 0 -90 0 0

In both cases, we assume the aerial robot to be ini-

tially hovering with a pose that coincides with the first

waypoint.

For comparison purposes, our trajectory planner has

been configured with two different maximum linear dis-

tance to the path, dmax, (see Section 7.3.6), and with

four different sets of limits on the dynamics of the tra-

jectory, ‖νmax‖2, (see Section 7.3.4). The two maximum

linear distance to the path, indicated in Table 3, are

named accurate and inaccurate. The four sets of limits

on the dynamics of the trajectory, summarized in Ta-

ble 4, are called Slow, Medium-Slow, Medium-Fast, and

Fast.

The total number of trajectories considering the two

paths and all the previously mentioned configuration

parameters combinations is 16. This number is doubled

to 32 when taking into account that we have two dif-

1.5

z
(m

)

2

2

1 2

y (m)

1

x (m)

0 0

-1
-1

-2

Fig. 6: 3D view of the second path used for the evalua-

tion. The path is represented with a dashed black line,

being its waypoints, listed in Table 2, represented by a

circle (position) and a red arrow (heading).

Table 3: The two configuration parameters of the tra-

jectory planner for the maximum linear distance to the

path, dmax.

accurate inaccurate
(m) (m)

dpath 0.05 0.5

Table 4: The four set of configuration parameters of the

trajectory planner for the limits on the dynamics of the

trajectory, ‖νmax‖2.

SLOW (S)
vWR|W aWR|W jWR|W sWR|W cWR|W pWR|W

(m·s−1) (m·s−2) (m·s−3) (m·s−4) (m·s−5) (m·s−6)
1 2 6 15 90 600

ωψWR|W αψWR|W jψWR|W sψWR|W cψWR|W pψWR|W
(rad·s−1) (rad·s−2) (rad·s−3) (rad·s−4) (rad·s−5) (rad·s−6)

1 2 6 15 90 600

MEDIUM-SLOW (MS)
vWR|W aWR|W jWR|W sWR|W cWR|W pWR|W

(m·s−1) (m·s−2) (m·s−3) (m·s−4) (m·s−5) (m·s−6)
1.5 3 9 27 135 810

ωψWR|W αψWR|W jψWR|W sψWR|W cψWR|W pψWR|W
(rad·s−1) (rad·s−2) (rad·s−3) (rad·s−4) (rad·s−5) (rad·s−6)

1.5 3 9 27 135 810

MEDIUM-FAST (MF)
vWR|W aWR|W jWR|W sWR|W cWR|W pWR|W

(m·s−1) (m·s−2) (m·s−3) (m·s−4) (m·s−5) (m·s−6)
1.75 3.5 11 35 145 880

ωψWR|W αψWR|W jψWR|W sψWR|W cψWR|W pψWR|W
(rad·s−1) (rad·s−2) (rad·s−3) (rad·s−4) (rad·s−5) (rad·s−6)

1.75 3.5 11 35 145 880

FAST (F)
vWR|W aWR|W jWR|W sWR|W cWR|W pWR|W

(m·s−1) (m·s−2) (m·s−3) (m·s−4) (m·s−5) (m·s−6)
2 4 12 40 155 900

ωψWR|W αψWR|W ιψWR|W sψWR|W cψWR|W pψWR|W
(rad·s−1) (rad·s−2) (rad·s−3) (rad·s−4) (rad·s−5) (rad·s−6)

2 4 12 40 155 900

18 Sanchez-Lopez et al.

ferent options to compute the reduced dimensionality

difference between two rotation when applying the way-

points restriction of the trajectory planner, as discussed

in Section 7.3.3.

Despite the limits on the dynamics of the trajectory

may seem relatively small, the reader must note that

they are quite challenging when considering the reduced

size of our flying arena and the comparatively large size

of our aerial robot, presented in Section 9.2.

9.2 Experimental setup

Our aerial robot platform is a DJI Matrice 1003 quadro-

tor (see Fig. 7). It is equipped with a DJI N1 flight con-

troller, that does not only stabilizes the platform but

also provides a velocity controller that uses only on-

board sensors as feedback (including a DJI Guidance4).

This autopilot allows us to input a command in terms of

the desired velocity of the platform (i.e. linear velocity

and heading velocity, both in robot coordinates), unlike

[38,17], where the control commands are the spinning

velocity of the motors of the aerial platform. Moreover,

our aerial robot platform is equipped with some extra

sensors and a companion computer.

Fig. 7: The aerial robot platform used for the experi-

mental validation.

The reader might note that our aerial robot (see

Fig. 7) is considerably larger and heavier (Size: 890 ×
890× 340 mm3, MTOW: 3600 g.) than the aerial plat-

forms used in works like [46,38,1] that focus on ag-

gressive maneuvering (e.g. AscTec Hummingbird5. Size:

540× 540× 85.5 mm3, MTOW: 710 g.). Moreover, the

reader must take into consideration, as previously pre-

sented in Section 9.1, the substantially small size of our

flying arena when compared with the size of our aerial

robot (our flying arena is only about 5 times larger than

the aerial robot). Fig. 8 shows our aerial robot flying

3 https://www.dji.com/matrice100
4 https://www.dji.com/guidance
5 Source: http://www.asctec.de/en/

uav-uas-drones-rpas-roav/asctec-hummingbird/

autonomously inside our flight arena during an experi-

mental validation test.

Fig. 8: Our aerial robot flying autonomously inside our

flight arena during an experimental validation test. A

video with several real flight experiments can be visu-

alized in: https://youtu.be/peR2cTX02Ww.

The values of the parameters kj and τj presented

in Sect. 5.2, have been calculated empirically, following

the procedure described in [10], and are shown in Table

5.

Table 5: Empirically calculated values of the dynamic

model of our aerial platform.

x y z ψ
kj 1.0 1.0 1.0 π/180
τj 0.8355 0.7701 0.5013 0.5142

Both the trajectory planner and the trajectory track-

ing controller have been configured with the control

command (i.e. actuator) limits (see Sections 7.3.5 and

8) presented in Table 6. The reader must note that we

have set the trajectory controller limits higher than the

planner ones, to let the controller a margin to com-

pensate model errors and disturbances and therefore

improve the performance of the trajectory tracking.

Table 6: Configuration control commands (i.e. actua-

tor) limits of our aerial platform used in both the tra-

jectory planner and the trajectory tracking controller.

ux uy uz uψ
Pla. Ctr. Pla. Ctr. Pla. Ctr. Pla. Ctr.

Min. −3.0 −4.0 −3.0 −4.0 −3.0 −4.0 −100.0 −100.0
Max. 3.0 4.0 3.0 4.0 3.0 4.0 100.0 100.0

Fig. 9 shows the proposed system architecture for

the experimental evaluation. All the components, ex-

cept the trajectory planner, have been implemented in

C++ using ROS [45] as middleware.

https://www.dji.com/matrice100
https://www.dji.com/guidance
http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-hummingbird/
http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-hummingbird/
https://youtu.be/peR2cTX02Ww

Trajectory tracking for aerial robots 19

Fig. 9: System architecture setup for the experimental

evaluation of the proposed trajectory planner.

Our trajectory planner is executed offline and we

have implemented it in MATLAB, using the single-

objective nonlinear multivariable constrained minimiza-

tion solver provided by the function fmincon. It has

been configured to use the interior-point (IP) method,

computing the Hessian by a dense quasi-Newton ap-

proximation. The trajectory tracking controller has been

implemented using ACADO Toolkit [25], which exports

efficient C code to solve the problem 87 efficiently through

embedded integrators and sequential quadratic program-

ming (SQP).

We collect information about the state of our aerial

platform through an Optitrack motion capture system

installed in our flying arena, which provides the mea-

surements of its position and orientation at a frequency

of 200 Hz. The state of the robot (i.e. pose and velocity)

is estimated using [47].

9.3 Trajectory planning results

In this section, we illustrate and evaluate the proposed

trajectory planner, analyzing the optimization process

and the properties of the calculated trajectories. Ad-

ditionally, we compare the two different presented op-

tions to compute the reduced dimensionality difference

between two rotation when applying the waypoints re-

striction of the trajectory planner (discussed in Section

7.3.3).

For the first part of this section, the 32 possible tra-

jectories presented in Section 9.1 have been computed

using the proposed trajectory planner until the objec-

tive has converged to a stable value, or until a maximum

number of iterations (i.e. 100) has been reached.

As described in Section 7, the trajectory planner

consists of an optimization process that computes a

feasible trajectory that minimizes the total time of tra-

jectory. The initial trajectory is computed analytically,

and modified over the iterations carried out by the op-

timizer until the optimum trajectory is found. Figure

10 illustrates this optimization process displaying the

first 4 waypoints of the first path, configured with an

inaccurate maximum linear distance to the path, and

using the error-quaternion, δθ, to compute the differ-

ence between two rotation.

It can be seen in Figure 10 that the initial trajectory

(depicted in solid red) is coincident with the path (in

solid black). The intermediate trajectories (in dashed

cyan) computed at different iterations of the optimiza-

tion process are calculated by increasing the maximum

values of the trajectories (e.g. distance to the path) to

minimize the total trajectory time. The final optimum

computed trajectory (in solid blue) is the one that min-

imizes the total trajectory time.

Table 7 gathers the average for all the trajectories of

the total time of the trajectory computed by the trajec-

tory planner. The initial and final values, together with

the intermediate values at 1%, 5% and 10% of the final

value are provided along with their required number of

iterations. The columns δψ and δθ gather the average of

the 16 planned trajectories per each of the two meth-

ods to compute the reduced dimensionality difference

between two rotations, the yaw angle difference, δψ,

and the error-quaternion, δθ. The last column shows

the difference between the two previous ones. The raw

data (before averaging) can be found in the Appendix

B, in Table 12 and Figure 29 for the first path, and in

Table 13 and Figure 30 for the second path.

Table 7: Total time of the trajectory computed by the

trajectory planner, average for all the trajectories. The

initial and final values, together with the intermediate

values at 1%, 5% and 10% of the final value are provided

along with their required number of iterations.

Rot. error δψ δθ δψ - δθ

Fin
it. 37.4375 42.3750 -4.9375
t (s) 18.9438 18.8494 0.0944

1 %
it. 20.4375 17.4375 3.0000
t (s) 19.0694 18.9694 0.1000

5 %
it. 11.2500 9.0625 2.1875
t (s) 19.4719 19.4831 -0.0112

10 %
it. 7.3125 5.8750 1.4375
t (s) 20.4737 20.1388 0.3350

Init
it. 0 0 0
t (s) 43.0763 43.0763 0

% improv. -56.0581 -56.2369 0.1787

In all of the cases, except one, the trajectory planner

converged to an optimum solution before the maximum

allowed number of iterations is reached. In all of the

cases, the total time of the trajectory computed by the

trajectory planner, using the yaw angle difference, δψ,

and the error-quaternion, δθ, to compute the difference

between two rotation, converge to a similar value with a

difference lower than 3 %. Based on these experimental

data summarized in Table 7, we can conclude that the

20 Sanchez-Lopez et al.

(a) Slow. Inaccurate (b) Medium-Slow. Inaccurate (c) Medium-Fast. Inaccurate (d) Fast. Inaccurate

Fig. 10: Illustration of the optimization process of the trajectory planner displaying the first 4 waypoints of the

first path, configured with an inaccurate maximum linear distance to the path, and using the error-quaternion, δθ,

to compute the difference between two rotation. In solid red, the initial trajectory that is coincident with the path

(in solid black). In dashed cyan, the intermediate trajectories computed at different iterations of the optimization

process. In solid blue, the final optimum computed trajectory.

error-quaternion, δθ, converges to a slightly better opti-

mum than the yaw angle difference, δψ, but it requires

more iterations.

As it is expected, the optimization process carried

out by the trajectory planner eventually converges to

a feasible local solution that minimizes the total time

of trajectory. It is worth to highlight that in case of

real-time constraints and / or limited computational re-

sources availability, the user would be able to limit the

maximum number of iterations of the optimization pro-

cess. In such a case, the calculated trajectory would still

be feasible (i.e. all the constraints would be fulfilled),

but it would not have converged to a local minimum of

the total time of trajectory. Nevertheless, this solution

would be a better choice than the initial trajectory. Ac-

cording to the experimental data summarized in Table

7, the error-quaternion, δθ, is faster than the yaw an-

gle difference, δψ, reaching the 1%, 5% and 10% of the

optimum value. Therefore, it is preferable to use the

error-quaternion, δθ, as the method to compute the re-

duced dimensionality difference between two rotation,

for real-time applications.

Table 8 shows the percentage of the configuration

parameters with respect to their the maximum value for

the magnitudes of the planned trajectories. The column

Init shows the average of the eight initial trajectories

(four per each of the two evaluation paths). The first

two columns of the column named as Planned gather

the average of the 16 planned trajectories per each of

the two methods to compute the reduced dimension-

ality difference between two rotations, the yaw angle

difference, δψ, and the error-quaternion, δθ. The last

column shows the difference between the two previous

ones. The raw data (before averaging) can be found in

the Appendix B, in Tables 14 and 16 for the first path,

and in Tables 15 and 17 for the second path.

Table 8: Percentage of the configuration parameters

with respect to their maximum value for the magni-

tudes of the planned trajectories. Average for all the

trajectories, differentiating between the two proposed

methods to compute the reduced dimensionality differ-

ence between two rotations.

Init Planned
Rot. error δψ δθ δψ - δθ

Max. d 0.0 85.4219 83.7288 1.6931

Vel.
Lin. 52.9375 99.9906 99.9950 -0.0044
Ang. 40.6075 73.2269 73.5100 -0.2831

Acc.
Lin. 39.7900 99.5219 99.6637 -0.1419
Ang. 30.5350 53.1075 51.5856 1.5219

Jer.
Lin. 32.3912 69.8181 70.8212 -1.0031
Ang. 24.8713 52.0438 47.4475 4.5962

Sna.
Lin. 90.7938 99.9819 99.9750 0.0069
Ang. 69.7375 89.3981 85.7806 3.6175

Cra.
Lin. 97.7763 95.5644 94.0231 1.5412
Ang. 71.7413 86.0206 85.9800 0.0406

Pop
Lin. 30.9637 34.6644 31.7262 2.9381
Ang. 19.0962 25.8731 27.7581 -1.8850

Average
Lin. 57.4412 83.1937 82.7219 0.4719
Ang. 42.7550 63.1544 62.0531 1.1013
Total 50.0962 73.2369 72.3250 0.9119

ux
Min. 40.1887 84.0950 85.0294 -0.9344
Max. 41.7762 86.7287 86.3931 0.3356

uy
Min. 31.8000 69.0350 67.7144 1.3206
Max. 26.5700 66.2706 63.4663 2.8044

uz
Min. 11.6212 24.6281 25.1250 -0.4969
Max. 6.9437 12.0381 13.1019 -1.0637

uψ
Min. 50.5938 82.6463 81.7556 0.8906
Max. 22.2375 41.2031 39.3550 1.8481

Average 28.9650 58.3312 57.6487 0.6825

Average 39.6625 68.1400 67.3719 0.7681

As it can be extracted from the experiments, the

maximum values of the planned trajectories increase

Trajectory tracking for aerial robots 21

with respect to the ones of the initial one, as the opti-

mization process increases them (without over exceed-

ing them) to minimize the total trajectory time. The

reader should observe that any of the values of the

planned trajectories are higher than 100 %, which means

that the maximum values have never been exceeded.

It is desirable that, for the same total trajectory

time, the maximum values are the lower possible. The

last column of Table 8 can be used to determine which

method to compute the reduced dimensionality differ-

ence between two rotations is better. A positive number

on the last column of the table means that the error-

quaternion, δθ, generates lower maximum values than

the yaw angle difference, δψ. According to the experi-

mental data, the error-quaternion, δθ, is slightly better

than the yaw angle difference, δψ.

Table 9 displays the percentage of the energy (com-

puted with equation 88) of the planned trajectory mag-

nitudes with respect to the initial trajectories. The columns

δψ and δθ gather the average of the 16 planned trajec-

tories per each of the two methods to compute the re-

duced dimensionality difference between two rotations,

the yaw angle difference, δψ, and the error-quaternion,

δθ. The last column shows the difference between the

two previous ones. The raw data (before averaging) can

be found in the Appendix B, in Table 18 for the first

path, and in Table 19 for the second path.

Table 9: Percentage of the energy (equation 88) of the

planned trajectory magnitudes with respect to the ini-

tial trajectories. Average for all the trajectories, differ-

entiating between the two proposed methods to com-

pute the reduced dimensionality difference between two

rotations.

Rot. error δψ δθ δψ - δθ

Vel.
Lin. 17.6225 24.5913 -6.9687
Ang. 100.7581 100.7419 0.0162

Acc.
Lin. -11.2225 -6.6869 -4.5356
Ang. 153.3263 148.7037 4.6225

Jer.
Lin. -31.2831 -28.6687 -2.6144
Ang. 90.3188 90.9425 -0.6238

Sna.
Lin. -38.2250 -36.6337 -1.5913
Ang. 53.7319 51.5231 2.2087

Cra.
Lin. -35.1731 -34.0381 -1.1350
Ang. -8.7419 -11.1669 2.4250

Pop
Lin. -21.5456 -20.7713 -0.7744
Ang. -31.2850 -27.2587 -4.0263

Average
Lin. -19.9719 -16.9750 -2.9969
Ang. 59.6847 58.9350 0.7497
Total 19.8564 20.9800 -1.1236

It can be extracted from the experiments, summa-

rized in Table 9, that on average, the total energy is

increased with respect to the initial trajectory, as the

planned trajectory is more aggressive than the initial

one. It is interesting to highlight that the total en-

ergy of the higher-order derivatives is reduced with re-

spect to the initial trajectory, while the lower order ones

have the opposite behavior. We can, therefore, confirm,

based on the experimental data, that our trajectory

planner reduces the total energy of the higher-order

derivatives when minimizing the total trajectory time

at the cost of increasing the total energy lower order

derivatives. This behavior emerges without been explic-

itly programmed.

It is desirable that, for the same total trajectory

time, the total energy values are the lower possible. The

last column of Table 9 can be used to determine which

method to compute the reduced dimensionality differ-

ence between two rotations is better. A positive number

on the last column of the table means that the error-

quaternion, δθ, generates lower total energy values than

the yaw angle difference, δψ. According to the experi-

mental data, on average, the yaw angle difference, δψ, is

slightly better than the error-quaternion, δθ. Neverthe-

less, it is worth to highlight that the error-quaternion,

δθ, has a better performance in the angular magnitudes

than in the linear ones.

Table 10 displays the percentage of the energy (com-

puted with equation 88) of the planned control com-

mand references with respect to the initial trajectories.

The columns δψ and δθ gather the average of the 16

planned trajectories per each of the two methods to

compute the reduced dimensionality difference between

two rotations, the yaw angle difference, δψ, and the

error-quaternion, δθ. The last column shows the dif-

ference between the two previous ones. The raw data

(before averaging) can be found in the Appendix B,

in Table 20 for the first path, and in Table 21 for the

second path.

Table 10: Percentage of the energy (equation 88) of the

planned control commands references with respect to

the initial trajectories. Average for all the trajectories,

differentiating between the two proposed methods to

compute the reduced dimensionality difference between

two rotations.

Rot. error δψ δθ δψ - δθ

ux 195.5856 196.5512 -0.9656
uy 182.3600 181.0913 1.2687
uz 149.4519 171.6263 -22.1744
uψ 108.4969 108.2475 0.2494

Average 158.9737 164.3788 -5.4050

Similarly than for the case of the trajectory mag-

nitudes, for the case of control command references, it

22 Sanchez-Lopez et al.

can be extracted from the experiments, summarized in

Table 10, that on average, the total energy is increased

with respect to the initial trajectory, as the planned

trajectory is more aggressive than the initial one.

It is desirable that, for the same total trajectory

time, the total energy values are the lower possible.

The last column of Table 10 can be used to determine

which method to compute the reduced dimensionality

difference between two rotations is better. A positive

number on the last column of the table means that the

error-quaternion, δθ, generates lower total energy val-

ues than the yaw angle difference, δψ. According to the

experimental data, on average, the yaw angle difference,

δψ, is slightly better than the error-quaternion, δθ. The

reader must note that this difference is especially high

in the uz control command reference.

After the deep analysis of the experimental data

presented above, we cannot conclude that there ex-

ists a clear dominant method to compute the differ-

ence between two rotation. We prefer to use the error-

quaternion, δθ, over the yaw angle difference, δψ, since

it is more suitable for real-time applications without

a significant difference in performance. In the remain-

der experimental part of the paper, we use the error-

quaternion, δθ, to compute the difference between two

rotation.

The second part of the trajectory planning results

aims to deeply illustrate the trajectory planning process

by using two example trajectories. The first example

trajectory has the first path as reference (see Table 1),

the inaccurate maximum linear distance to the path,

dmax (see Table 3) and the Medium-Fast limits on the

dynamics of the trajectory (see Table 4). We have set 10

as maximum number of iterations, but the optimization

converged at 9 iterations. The second example trajec-

tory has the second path as reference (see Table 2), the

accurate maximum linear distance to the path, dmax
(see Table 3) and the Medium-Slow limits on the dy-

namics of the trajectory (see Table 4). We have set 4 as

the maximum number of iterations, finishing the opti-

mization process before reaching the optimum value.

Fig. 11 and Fig. 12 plot the values (pose and deriva-

tives up to jerk) of the initial trajectory used in our

trajectory planner (see Sect. 7.4) for the first example

trajectory. The total time of this initial trajectory is

t = 36.29 s.

Fig. 13 shows the 3D view of the calculated trajec-

tory after the optimization process has ended for the

first example trajectory. The values (pose and deriva-

tives up to jerk) of this trajectory are plotted in Fig. 14

and Fig. 15. The total time of the planned trajectory is

t = 14.93 s.

As expected, the planned trajectory after the op-

timization process still fulfills all the constraints, but

its total trajectory time has decreased by 58.86% from

the initial trajectory (t = 36.29 s.) to the optimized

one (t = 14.93 s.). The reader is encourage to deeply

compare the values of the initial trajectory, Fig. 11 and

Fig. 12, with the values of the planned trajectory, Fig.

14 and Fig. 15, to perceive the difference between the

two trajectories.

Fig. 16 and Fig. 17 plot the values (pose and deriva-

tives up to jerk) of the initial trajectory used in our

trajectory planner for the second example trajectory.

The total time of this initial trajectory is t = 44.36 s.

Fig. 18 shows the 3D view of the calculated trajec-

tory once the optimization process ended for the second

example trajectory.. The values (pose and derivatives

up to snap) of this trajectory are plotted in Fig. 19

and Fig. 20. The total time of the planned trajectory is

t = 19.46 s.

As expected, despite forcing to finish the optimiza-

tion before reaching the optimum value, the planned

trajectory after the optimization process finished, still

fulfills all the constraints and it total time has decreased

by 56.13% from the initial trajectory (t = 44.36 s.) to

the optimized one (t = 19.46 s.). The reader is encour-

age to deeply compare the values of the initial trajec-

tory, Fig. 16 and Fig. 17, with the values of the planned

trajectory, Fig. 19 and Fig. 20, to perceive the difference

between the two trajectories.

9.4 Trajectory tracking results

In this section, we illustrate and evaluate the proposed

trajectory tracking controller. To analyze the impact

of our trajectory planner on the tracking performance,

we compare the effect of providing the augmented ref-

erences (full state and control command) against the

traditional pose reference. We have selected 4 of the tra-

jectories presented in Section 9.1 and 9.3 for real flights

with the aerial robot platform presented in Section 9.2.

The estimated pose tracking error is evaluated sta-

tistically with the metrics presented in 9.1. In Table 11

we compare the tracking performance of the controller

when providing the augmented reference instead of the

pose reference along the 4 selected trajectories. For all

experiments, we observe that the controller’s tracking

performance increases considerably when applying the

augmented reference instead of the pose reference. From

the experimental data, we can conclude that the addi-

tional information (references) generated by the plan-

ner actively increases the tracking performance of the

controller.

Trajectory tracking for aerial robots 23

0 5 10 15 20 25 30 35
time (s)

-2

-1

0

1

2

p x (
m

/s
)

Position x

0 5 10 15 20 25 30 35
time (s)

-1

0

1

v x (
m

/s
)

Velocity x

0 5 10 15 20 25 30 35
time (s)

-2

0

2

a x (
m

/s
2
)

Acceleration x

0 5 10 15 20 25 30 35
time (s)

-10

-5

0

5

10

j x (
m

/s
3
)

Jerk x

(a) x.

0 5 10 15 20 25 30 35
time (s)

-2

-1

0

1

2

p y (
m

/s
)

Position y

0 5 10 15 20 25 30 35
time (s)

-1

0

1

v y (
m

/s
)

Velocity y

0 5 10 15 20 25 30 35
time (s)

-2

0

2

a y (
m

/s
2
)

Acceleration y

0 5 10 15 20 25 30 35
time (s)

-10

-5

0

5

10

j y (
m

/s
3
)

Jerk y

(b) y.

0 5 10 15 20 25 30 35
time (s)

1.4

1.6

1.8

2

p z (
m

/s
)

Position z

0 5 10 15 20 25 30 35
time (s)

-1

0

1

v z (
m

/s
)

Velocity z

0 5 10 15 20 25 30 35
time (s)

-2

0

2

a z (
m

/s
2
)

Acceleration z

0 5 10 15 20 25 30 35
time (s)

-10

-5

0

5

10

j z (
m

/s
3
)

Jerk z

(c) z.

Fig. 11: Initial trajectory (first example trajectory). Position, and its derivatives up to jerk, plotted in solid blue.

The blue dots and squares illustrate the beginning and end of a segment of the trajectory. The vertical dashed

black lines represent the waypoints. Its total trajectory time is t = 36.29 s.

Table 11: Comparison between the planned and the estimated executed trajectories for the four selected trajectories

using the metrics presented in Section 9.1, for the two configurations of the trajectory tracking controller: with

and without reference.

Path First Path Second Path
Velocity M-F F S M-S
Distance Ina Acc Acc Acc

it. (Traj. Plan) 9* (10) 10 30 4
Reference w/ ref wo/ ref w/ ref wo/ ref w/ ref wo/ ref w/ ref wo/ ref

δtx

MSE 0.015422 0.031328 0.019823 0.063096 0.0061054 0.033262 0.012565 0.050249
RMSE 0.12419 0.177 0.14079 0.25119 0.078137 0.18238 0.11209 0.22416
MAE 0.10423 0.14443 0.10594 0.18916 0.065277 0.15574 0.087567 0.18229
MaAE 0.26897 0.36199 0.34667 0.50079 0.18314 0.39258 0.30958 0.48297

δty

MSE 0.043384 0.12033 0.071807 0.20902 0.0088249 0.040129 0.010901 0.066206
RMSE 0.20829 0.34689 0.26797 0.45718 0.093941 0.20032 0.10441 0.25731
MAE 0.16852 0.29603 0.2131 0.38576 0.067312 0.16351 0.083794 0.20809
MaAE 0.51019 0.59049 0.62389 0.84786 0.26408 0.44502 0.22116 0.53269

δtz

MSE 0.00023072 0.0013665 0.00048445 0.001859 0.00016056 0.00088256 0.00042386 0.0019874
RMSE 0.01519 0.036967 0.02201 0.043116 0.012671 0.029708 0.020588 0.044581
MAE 0.01174 0.027411 0.018388 0.030916 0.010181 0.018185 0.01525 0.028506
MaAE 0.036588 0.10118 0.048547 0.13187 0.029855 0.12026 0.065029 0.17138

δt
MSE 0.059037 0.15302 0.092114 0.27397 0.015091 0.074274 0.02389 0.11844
RMSE 0.24298 0.39118 0.3035 0.52342 0.12284 0.27253 0.15456 0.34416
MAE 0.21559 0.35288 0.2609 0.46822 0.10658 0.25601 0.13658 0.31635
MaAE 0.53832 0.62114 0.63117 0.90611 0.26687 0.4654 0.3125 0.55515

δψ

MSE 0.002323 0.023846 0.0079 0.059133 0.0023006 0.011252 0.0018696 0.019394
RMSE 0.048197 0.15442 0.088882 0.24317 0.047964 0.10608 0.043239 0.13926
MAE 0.038429 0.13726 0.069809 0.22115 0.038009 0.087457 0.035343 0.10996
MaAE 0.12029 0.26095 0.24615 0.43667 0.11551 0.22884 0.092931 0.30698

24 Sanchez-Lopez et al.

0 5 10 15 20 25 30 35

time (s)

-10

-5

0

 (
ra

d)

-1

0

1

q
(a

di
m

)

Orientation

p

qw

qz

0 5 10 15 20 25 30 35

time (s)

-1

0

1

 (
ra

d/
s)

Angular Velocity

0 5 10 15 20 25 30 35

time (s)

-2

0

2

 (
ra

d/
s2

)

Angular Acceleration

0 5 10 15 20 25 30 35

time (s)

-10

0

10

j
 (

ra
d/

s3
)

Angular Jerk

Fig. 12: Initial trajectory (first example trajectory).

Heading, and its derivatives up to jerk, plotted in

dashed red and magenta and in solid blue. The blue

dots and squares illustrate the beginning and end of

a segment of the trajectory. The vertical dashed black

lines represent the waypoints. Its total trajectory time

is t = 36.29 s.

Fig. 13: 3D view of the planned trajectory (first exam-

ple trajectory). The position values are drawn with a

solid blue line, whereas the heading is represented with

magenta arrows. The path is displayed with a dashed

black line, being its waypoints represented by a circle

(position) and a red arrow (heading).

It is worth to mention that the high values of the tra-

jectory tracking error, when compared to another state

of the art controllers, is originated from two facts. First,

the trajectories are designed with sharp corners and

high velocity, which are difficult to track. Second, the

modeling errors of the first-order approximation of the

robot dynamics, as presented in Section 5. We strongly

believe that a more accurate (and complex) model of

the aerial robot will drastically reduce the trajectory

tracking errors. Nevertheless, as mentioned in Section

5, using such complex models of the aerial robot is out

of the scope of the paper.

For illustrative purposes, we have selected two real

experiments from 9.3 to plot the trajectory tracking

performance of the proposed method: (1) First example

trajectory: first path, velocity medium-fast, distance in-

accurate; (2) Second example trajectory: second path,

velocity medium-slow, distance accurate. Different ex-

ecutions of the two example trajectories can be visual-

ized in the video: https://youtu.be/peR2cTX02Ww.

Figure 21 plots the 3D view of the trajectory track-

ing for the first example trajectory. It presents the con-

figured path, the planned trajectory computed by the

planner, and the estimated executed trajectory, using

the two different reference configurations for the trajec-

tory controller.

Figure 22 and Figure 23 show the values of the posi-

tion, orientation and velocity (both linear and angular)

involved in the trajectory tracking task for the first ex-

ample trajectory. These figures plot the planned trajec-

tory computed by the planner, and the estimated exe-

cuted trajectory, using the two different configurations

of the trajectory controller.

Figure 24 show the control command references for

the first example trajectory. This figure plots the planned

control command reference computed by the planner,

and the executed control command reference by the

controller, using its two different configurations.

Figure 25 plots the 3D view of the trajectory track-

ing for the second example trajectory. It presents the

configured path, the planned trajectory computed by

the planner, and the estimated executed trajectory, us-

ing the two different configurations of the trajectory

controller.

Figure 26 and Figure 27 show the values of the posi-

tion, orientation and velocity (both linear and angular)

involved in the trajectory tracking task for the second

example trajectory. These figures plot the planned tra-

jectory computed by the planner, and the estimated

executed trajectory, using the two different configura-

tions of the trajectory controller.

Figure 28 show the control command references for

the first example trajectory. This figure plots the planned

control command reference computed by the planner,

and the executed control command reference by the

controller, using its two different configurations.

From the experimental plots and data (Table 11) we

conclude that, for a given control approach and robot

model, the tracking performance can be considerably

increased by augmenting the reference information pro-

https://youtu.be/peR2cTX02Ww

Trajectory tracking for aerial robots 25

0 2 4 6 8 10 12 14
time (s)

-2

-1

0

1

2

p x (
m

/s
)

Position x

0 2 4 6 8 10 12 14
time (s)

-1

0

1

v x (
m

/s
)

Velocity x

0 2 4 6 8 10 12 14
time (s)

-2

0

2

a x (
m

/s
2
)

Acceleration x

0 2 4 6 8 10 12 14
time (s)

-10

-5

0

5

10

j x (
m

/s
3
)

Jerk x

(a) x.

0 2 4 6 8 10 12 14
time (s)

-2

-1

0

1

2

p y (
m

/s
)

Position y

0 2 4 6 8 10 12 14
time (s)

-1

0

1

v y (
m

/s
)

Velocity y

0 2 4 6 8 10 12 14
time (s)

-2

0

2

a y (
m

/s
2
)

Acceleration y

0 2 4 6 8 10 12 14
time (s)

-10

-5

0

5

10

j y (
m

/s
3
)

Jerk y

(b) y.

0 2 4 6 8 10 12 14
time (s)

1

1.5

2

p z (
m

/s
)

Position z

0 2 4 6 8 10 12 14
time (s)

-1

0

1

v z (
m

/s
)

Velocity z

0 2 4 6 8 10 12 14
time (s)

-2

0

2

a z (
m

/s
2
)

Acceleration z

0 2 4 6 8 10 12 14
time (s)

-10

-5

0

5

10

j z (
m

/s
3
)

Jerk z

(c) z.

Fig. 14: Planned trajectory (first example trajectory). Position, and its derivatives up to jerk, plotted in solid blue.

The blue dots and squares illustrate the beginning and end of a segment of the trajectory. The vertical dashed

black lines represent the waypoints. Its total trajectory time is t = 14.93 s.

0 2 4 6 8 10 12 14

time (s)

-10

-5

0

 (
ra

d)

-1

0

1

q
(a

di
m

)

Orientation

p

qw

qz

0 2 4 6 8 10 12 14

time (s)

-1

0

1

 (
ra

d/
s)

Angular Velocity

0 2 4 6 8 10 12 14

time (s)

-2

0

2

 (
ra

d/
s2

)

Angular Acceleration

0 2 4 6 8 10 12 14

time (s)

-10

0

10

j
 (

ra
d/

s3
)

Angular Jerk

Fig. 15: Planned trajectory (first example trajectory).

Heading, and its derivatives up to jerk, plotted in

dashed red and magenta and in solid blue. The blue

dots and squares illustrate the beginning and end of

a segment of the trajectory. The vertical dashed black

lines represent the waypoints. Its total trajectory time

is t = 14.93 s.

vided from the planning step. Then, the controller finds

the optimal trade-off between the different references:

pose, velocities, control commands, etc.

10 Conclusions and Future Work

In this paper, we have presented an optimization-based

trajectory tracking solution for multirotor aerial robots

given a geometrically feasible path, as the continuation

of our previous work [50].

Our trajectory planner minimizes the trajectory time

and includes not only restrictions such as continuity of

the trajectory (i.e. class Cm), limits on velocity, and

higher-order derivatives, constraints in the waypoints,

and maximum distance between the planned trajectory

and the given path, but also restrictions in the actuators

of the aerial robot based on its dynamic model, guar-

anteeing that the planned trajectory will be achievable

by the robot. We proposed a novel compact multi-phase

trajectory definition as a set of two different kinds of

polynomials, providing a higher semantic encoding of

the trajectory, which allows calculating, without loss of

flexibility, an optimal solution but following a prede-

fined simple profile.

Our Model Predictive Controller (MPC) for trajec-

tory tracking has been formulated to take as inputs

all the magnitudes of the planned trajectory (i.e. po-

sition and heading, velocity, and acceleration) as well

as the control command references computed using the

planned trajectory, to generate the control commands,

improving the tracking performance when compared

with a controller that only uses the planned position

and heading.

26 Sanchez-Lopez et al.

0 5 10 15 20 25 30 35 40
time (s)

-2

-1

0

1

2

p x (
m

/s
)

Position x

0 5 10 15 20 25 30 35 40
time (s)

-1

0

1

v x (
m

/s
)

Velocity x

0 5 10 15 20 25 30 35 40
time (s)

-2

0

2

a x (
m

/s
2
)

Acceleration x

0 5 10 15 20 25 30 35 40
time (s)

-5

0

5

j x (
m

/s
3
)

Jerk x

(a) x.

0 5 10 15 20 25 30 35 40
time (s)

-2

-1

0

1

2

p y (
m

/s
)

Position y

0 5 10 15 20 25 30 35 40
time (s)

-1

0

1

v y (
m

/s
)

Velocity y

0 5 10 15 20 25 30 35 40
time (s)

-2

0

2

a y (
m

/s
2
)

Acceleration y

0 5 10 15 20 25 30 35 40
time (s)

-5

0

5

j y (
m

/s
3
)

Jerk y

(b) y.

0 5 10 15 20 25 30 35 40
time (s)

1.4

1.6

1.8

2

p z (
m

/s
)

Position z

0 5 10 15 20 25 30 35 40
time (s)

-1

0

1

v z (
m

/s
)

Velocity z

0 5 10 15 20 25 30 35 40
time (s)

-2

0

2

a z (
m

/s
2
)

Acceleration z

0 5 10 15 20 25 30 35 40
time (s)

-5

0

5

j z (
m

/s
3
)

Jerk z

(c) z.

Fig. 16: Initial trajectory (second example trajectory). Position, and its derivatives up to jerk, plotted in solid blue.

The blue dots and squares illustrate the beginning and end of a segment of the trajectory. The vertical dashed

black lines represent the waypoints. Its total trajectory time is t = 44.36 s.

0 5 10 15 20 25 30 35 40

time (s)

-2

0

2

 (
ra

d)

-1

0

1

q
(a

di
m

)

Orientation

p

qw

qz

0 5 10 15 20 25 30 35 40

time (s)

-1

0

1

 (
ra

d/
s)

Angular Velocity

0 5 10 15 20 25 30 35 40

time (s)

-2

0

2

 (
ra

d/
s2

)

Angular Acceleration

0 5 10 15 20 25 30 35 40

time (s)

-5

0

5

j
 (

ra
d/

s3
)

Angular Jerk

Fig. 17: Initial trajectory (second example trajectory).

Heading, and its derivatives up to jerk, plotted in

dashed red and magenta and in solid blue. The blue

dots and squares illustrate the beginning and end of

a segment of the trajectory. The vertical dashed black

lines represent the waypoints. Its total trajectory time

is t = 44.36 s.

Both planner and controller quaternions and error-

quaternions to mathematical represent orientations, as

it has been shown that have some advantages when

Fig. 18: 3D view of the calculated trajectory (second ex-

ample trajectory). The position values are drawn with a

solid blue line, whereas the heading is represented with

magenta arrows. The path is displayed with a dashed

black line, being its waypoints represented by a circle

(position) and a red arrow (heading).

compared to other formulations. To arrive to this con-

clusion, we have analyzed the most commonly used

mathematical representations of orientations and their

kinematic relationships in the tridimensional space SO(3)

and in the bidimensional space SO(2), together with

the computations of the difference between two rota-

tions as well as the definitions of a scalar error between

two orientations.

We have validated our trajectory tracking approach

thanks to an extensive qualitative and quantitative eval-

Trajectory tracking for aerial robots 27

0 2 4 6 8 10 12 14 16 18
time (s)

-2

-1

0

1

2

p x (
m

/s
)

Position x

0 2 4 6 8 10 12 14 16 18
time (s)

-1

0

1

v x (
m

/s
)

Velocity x

0 2 4 6 8 10 12 14 16 18
time (s)

-2

0

2

a x (
m

/s
2
)

Acceleration x

0 2 4 6 8 10 12 14 16 18
time (s)

-5

0

5

j x (
m

/s
3
)

Jerk x

(a) x.

0 2 4 6 8 10 12 14 16 18
time (s)

-2

-1

0

1

2

p y (
m

/s
)

Position y

0 2 4 6 8 10 12 14 16 18
time (s)

-1

0

1

v y (
m

/s
)

Velocity y

0 2 4 6 8 10 12 14 16 18
time (s)

-2

0

2

a y (
m

/s
2
)

Acceleration y

0 2 4 6 8 10 12 14 16 18
time (s)

-5

0

5

j y (
m

/s
3
)

Jerk y

(b) y.

0 2 4 6 8 10 12 14 16 18
time (s)

1.4

1.6

1.8

2

p z (
m

/s
)

Position z

0 2 4 6 8 10 12 14 16 18
time (s)

-1

0

1

v z (
m

/s
)

Velocity z

0 2 4 6 8 10 12 14 16 18
time (s)

-2

0

2

a z (
m

/s
2
)

Acceleration z

0 2 4 6 8 10 12 14 16 18
time (s)

-5

0

5

j z (
m

/s
3
)

Jerk z

(c) z.

Fig. 19: Calculated trajectory (second example trajectory). Position, and its derivatives up to jerk, plotted in

solid blue. The blue dots and squares illustrate the beginning and end of a segment of the trajectory. The vertical

dashed black lines represent the waypoints. Its total trajectory time is t = 19.46 s.

0 2 4 6 8 10 12 14 16 18

time (s)

-2

0

2

 (
ra

d)

-1

0

1

q
(a

di
m

)

Orientation

p

qw

qz

0 2 4 6 8 10 12 14 16 18

time (s)

-1

0

1

 (
ra

d/
s)

Angular Velocity

0 2 4 6 8 10 12 14 16 18

time (s)

-2

0

2

 (
ra

d/
s2

)

Angular Acceleration

0 2 4 6 8 10 12 14 16 18

time (s)

-5

0

5

j
 (

ra
d/

s3
)

Angular Jerk

Fig. 20: Calculated trajectory (second example trajec-

tory). Heading, and its derivatives up to jerk, plotted

in dashed red and magenta and in solid blue. The blue

dots and squares illustrate the beginning and end of

a segment of the trajectory. The vertical dashed black

lines represent the waypoints. Its total trajectory time

is t = 19.46 s.

uation. On the one hand, we analyzed the proposed

trajectory planner, including its optimization process

as well as the properties of the calculated trajectories.

Fig. 21: 3D view of the trajectory tracking (first exam-

ple trajectory). The planned trajectory is represented

with a dotted blue line. The estimated executed tra-

jectory with the controller using the full reference is

represented with a solid red line. The estimated exe-

cuted trajectory with the controller using only the pose

reference is represented with a dashed green line. The

path is displayed with a dashed black line, being its

waypoints represented by a circle (position) and a red

arrow (heading).

On the other hand, we studied the proposed trajectory

tracking controller through real flights, comparing its

performance with a formulation that takes advantage

of the whole output of the trajectory planner (i.e. pose

and higher-order derivatives, and control command ref-

erences) and when only considering the desired pose.

28 Sanchez-Lopez et al.

0 2 4 6 8 10 12 14 16
time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t (
m

)

tx

t
d

t
w-ref

t
wo-ref

(a) tx.

0 2 4 6 8 10 12 14 16
time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t (
m

)

ty

t
d

t
w-ref

t
wo-ref

(b) ty.

0 2 4 6 8 10 12 14 16
time (s)

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

t (
m

)

tz

t
d

t
w-ref

t
wo-ref

(c) tz.

0 2 4 6 8 10 12 14 16
time (s)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

v x (
m

/s
)

vxR
W

v
d

v
w-ref

v
wo-ref

(d) vx.

0 2 4 6 8 10 12 14 16
time (s)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

v
(m

/s
)

vyR
W

v
d

v
w-ref

v
wo-ref

(e) vy.

0 2 4 6 8 10 12 14 16
time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

v
(m

/s
)

vzR
W

v
d

v
w-ref

v
wo-ref

(f) vz.

Fig. 22: Position and linear velocity of trajectory tracking (first example trajectory). The planned trajectory is

represented with a dotted blue line. The estimated executed trajectory with the controller using the full reference

is represented with a solid red line. The estimated executed trajectory with the controller using only the pose

reference is represented with a dashed green line.

0 2 4 6 8 10 12 14 16
time (s)

-3

-2

-1

0

1

2

3

 (
ra

d)

d

w-ref

wo-ref

(a) ψ.

0 2 4 6 8 10 12 14 16
time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

 (
m

/s
)

z

d

w-ref

wo-ref

(b) ωψ.

Fig. 23: Heading (angle) and angular velocity of trajec-

tory tracking (first example trajectory). The planned

trajectory is represented with a dotted blue line. The

estimated executed trajectory with the controller us-

ing the full reference is represented with a solid red

line. The estimated executed trajectory with the con-

troller using only the pose reference is represented with

a dashed green line.

0 2 4 6 8 10 12 14 16
time (s)

-4

-3

-2

-1

0

1

2

3

4

u
(m

/s
)

ux

u
d

u
w-ref

u
wo-ref

(a) ux.

0 2 4 6 8 10 12 14 16
time (s)

-4

-3

-2

-1

0

1

2

3

4

u
(m

/s
)

uy

u
d

u
w-ref

u
wo-ref

(b) uy.

0 2 4 6 8 10 12 14 16
time (s)

-4

-3

-2

-1

0

1

2

3

4

u
(m

/s
)

uz

u
d

u
w-ref

u
wo-ref

(c) uz.

0 2 4 6 8 10 12 14 16
time (s)

-100

-80

-60

-40

-20

0

20

40

60

80

100

u
(d

eg
/s

)

u

u
d

u
w-ref

u
wo-ref

(d) uψ.

Fig. 24: Control command references (first example tra-

jectory). The planned control command reference is

represented with a dotted blue line. The executed con-

trol command reference by the controller using the full

reference is represented with a solid red line. The exe-

cuted control command reference by the controller us-

ing only the pose reference is represented with a dashed

green line.

Some future work lines cover the usage, in both the

planner and controller, of a more complex robot model

to improve the tracking performance. Specifically re-

lated to the trajectory planner include its online execu-

tion, a multi-objective optimization (for example min-

Trajectory tracking for aerial robots 29

Fig. 25: 3D view of the trajectory tracking (second

example trajectory). The planned trajectory is repre-

sented with a dotted blue line. The estimated executed

trajectory with the controller using the full reference is

represented with a solid red line. The estimated exe-

cuted trajectory with the controller using only the pose

reference is represented with a dashed green line. The

path is displayed with a dashed black line, being its

waypoints represented by a circle (position) and a red

arrow (heading).

imizing time and snap simultaneously), and the incor-

poration of constraints in the derivatives of linear and

angular magnitudes in the waypoints (e.g. velocity in

the waypoints). The trajectory controller will be ex-

tended in the future to include a full dynamic model

of the robot with SO(3) attitude control. In addition,

online model estimation and disturbance rejection are

supplementary properties that could be developed to

increase tracking performance.

References

1. Achtelik, M.W., Lynen, S., Chli, M., Siegwart, R.: Inver-
sion based direct position control and trajectory follow-
ing for micro aerial vehicles. In: 2013 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 2933–2939 (2013). DOI 10.1109/IROS.2013.6696772

2. Achtelik, M.W., Lynen, S., Chli, M., Siegwart, R.: Inver-
sion based direct position control and trajectory follow-
ing for micro aerial vehicles. In: 2013 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 2933–2939. IEEE (2013)

3. Aguiar, A.P., Hespanha, J.P.: Trajectory-tracking and
path-following of underactuated autonomous vehicles
with parametric modeling uncertainty. IEEE Transac-
tions on Automatic Control 52(8), 1362–1379 (2007).
DOI 10.1109/TAC.2007.902731

4. Alvarenga, J., Vitzilaios, N.I., Valavanis, K.P., Ruther-
ford, M.J.: Survey of unmanned helicopter model-based
navigation and control techniques. Journal of Intelli-
gent & Robotic Systems 80(1), 87–138 (2015). DOI
10.1007/s10846-014-0143-5. URL https://doi.org/10.

1007/s10846-014-0143-5
5. Beul, M., Behnke, S.: Analytical time-optimal trajec-

tory generation and control for multirotors. In: 2016 In-

ternational Conference on Unmanned Aircraft Systems
(ICUAS), pp. 87–96 (2016). DOI 10.1109/ICUAS.2016.
7502532

6. Beul M. Behnke, S.: Fast full state trajectory generation
for multirotors. In: 2017 International Conference on Un-
manned Aircraft Systems (ICUAS), pp. 408–416 (2017).
DOI 10.1109/ICUAS.2017.7991304

7. Boeuf, A., Cortés, J., Alami, R., Siméon, T.: Planning ag-
ile motions for quadrotors in constrained environments.
In: 2014 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pp. 218–223 (2014). DOI
10.1109/IROS.2014.6942564

8. Brescianini, D., D’Andrea, R.: Computationally efficient
trajectory generation for fully actuated multirotor ve-
hicles. IEEE Transactions on Robotics 34(3), 555–571
(2018). DOI 10.1109/TRO.2018.2813373

9. Carrio, A., Pestana, J., Sanchez-Lopez, J.L., Suarez-
Fernandez, R., Campoy, P., Tendero, R., Garćıa-De-
Viedma, M., González-Rodrigo, B., Bonatti, J., Rejas-
Ayuga, J.G., Mart́ınez-Maŕın, R., Marchamalo-Sacristán,
M.: UBRISTES: UAV-Based Building Rehabilitation
with Visible and Thermal Infrared Remote Sensing,
pp. 245–256. Springer International Publishing, Cham
(2016). DOI 10.1007/978-3-319-27146-0 19. URL http:

//dx.doi.org/10.1007/978-3-319-27146-0_19

10. Castillo-Lopez, M., Olivares-Mendez, M.A., Voos, H.:
Evasive maneuvering for uavs: An mpc approach. In:
A. Ollero, A. Sanfeliu, L. Montano, N. Lau, C. Cardeira
(eds.) ROBOT 2017: Third Iberian Robotics Conference,
pp. 829–840. Springer International Publishing, Cham
(2018)

11. Chen, H., Wang, X., Li, Y.: A survey of autonomous con-
trol for uav. In: 2009 International Conference on Arti-
ficial Intelligence and Computational Intelligence, vol. 2,
pp. 267–271 (2009). DOI 10.1109/AICI.2009.147

12. Consolini, L., Locatelli, M., Minari, A., Piazzi, A.: An
optimal complexity algorithm for minimum-time veloc-
ity planning. Systems & Control Letters 103, 50 –
57 (2017). DOI https://doi.org/10.1016/j.sysconle.2017.
02.001. URL http://www.sciencedirect.com/science/

article/pii/S0167691117300245

13. Diebel, J.: Representing attitude: Euler angles, unit
quaternions, and rotation vectors (2006)

14. Diehl, M., Ferreau, H.J., Haverbeke, N.: Efficient numer-
ical methods for nonlinear mpc and moving horizon esti-
mation. In: Nonlinear model predictive control, pp. 391–
417. Springer (2009)

15. Dvořák, J., de Lellis, M., Hurák, Z.: Advanced control of
quadrotor using eigenaxis rotation. In: 2011 IEEE Inter-
national Conference on Control Applications (CCA), pp.
153–158. IEEE (2011)

16. Ezair, B., Tassa, T., Shiller, Z.: Planning high order
trajectories with general initial and final conditions
and asymmetric bounds. The International Journal of
Robotics Research 33(6), 898–916 (2014). DOI 10.1177/
0278364913517148

17. Faessler, M., Franchi, A., Scaramuzza, D.: Differential
flatness of quadrotor dynamics subject to rotor drag
for accurate tracking of high-speed trajectories. IEEE
Robotics and Automation Letters 3(2), 620–626 (2018).
DOI 10.1109/LRA.2017.2776353

18. Falanga, D., Foehn, P., Lu, P., Scaramuzza, D.: Pampc:
Perception-aware model predictive control for quadro-
tors. In: 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 1–8. IEEE
(2018)

https://doi.org/10.1007/s10846-014-0143-5
https://doi.org/10.1007/s10846-014-0143-5
http://dx.doi.org/10.1007/978-3-319-27146-0_19
http://dx.doi.org/10.1007/978-3-319-27146-0_19
http://www.sciencedirect.com/science/article/pii/S0167691117300245
http://www.sciencedirect.com/science/article/pii/S0167691117300245

30 Sanchez-Lopez et al.

0 2 4 6 8 10 12 14 16 18 20
time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t (
m

)

tx

t
d

t
w-ref

t
wo-ref

(a) tx.

0 2 4 6 8 10 12 14 16 18 20
time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t (
m

)

ty

t
d

t
w-ref

t
wo-ref

(b) ty.

0 2 4 6 8 10 12 14 16 18 20
time (s)

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

t (
m

)

tz

t
d

t
w-ref

t
wo-ref

(c) tz.

0 2 4 6 8 10 12 14 16 18 20
time (s)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

v x (
m

/s
)

vxR
W

v
d

v
w-ref

v
wo-ref

(d) vx.

0 2 4 6 8 10 12 14 16 18 20
time (s)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

v
(m

/s
)

vyR
W

v
d

v
w-ref

v
wo-ref

(e) vy.

0 2 4 6 8 10 12 14 16 18 20
time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

v
(m

/s
)

vzR
W

v
d

v
w-ref

v
wo-ref

(f) vz.

Fig. 26: Position and linear velocity of trajectory tracking (second example trajectory). The planned trajectory is

represented with a dotted blue line. The estimated executed trajectory with the controller using the full reference

is represented with a solid red line. The estimated executed trajectory with the controller using only the pose

reference is represented with a dashed green line.

0 2 4 6 8 10 12 14 16 18 20
time (s)

-3

-2

-1

0

1

2

3

 (
ra

d)

d

w-ref

wo-ref

(a) ψ.

0 2 4 6 8 10 12 14 16 18 20
time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

 (
m

/s
)

z

d

w-ref

wo-ref

(b) ωψ.

Fig. 27: Heading (angle) and angular velocity of trajec-

tory tracking (second example trajectory). The planned

trajectory is represented with a dotted blue line. The

estimated executed trajectory with the controller us-

ing the full reference is represented with a solid red

line. The estimated executed trajectory with the con-

troller using only the pose reference is represented with

a dashed green line.

0 2 4 6 8 10 12 14 16 18 20
time (s)

-4

-3

-2

-1

0

1

2

3

4

u
(m

/s
)

ux

u
d

u
w-ref

u
wo-ref

(a) ux.

0 2 4 6 8 10 12 14 16 18 20
time (s)

-4

-3

-2

-1

0

1

2

3

4

u
(m

/s
)

uy

u
d

u
w-ref

u
wo-ref

(b) uy.

0 2 4 6 8 10 12 14 16 18 20
time (s)

-4

-3

-2

-1

0

1

2

3

4

u
(m

/s
)

uz

u
d

u
w-ref

u
wo-ref

(c) uz.

0 2 4 6 8 10 12 14 16 18 20
time (s)

-100

-80

-60

-40

-20

0

20

40

60

80

100

u
(d

eg
/s

)

u

u
d

u
w-ref

u
wo-ref

(d) uψ.

Fig. 28: Control command references (second example

trajectory). The planned control command reference is

represented with a dotted blue line. The executed con-

trol command reference by the controller using the full

reference is represented with a solid red line. The exe-

cuted control command reference by the controller us-

ing only the pose reference is represented with a dashed

green line.

19. Goerzen, C., Kong, Z., Mettler, B.: A survey of motion
planning algorithms from the perspective of autonomous
uav guidance. Journal of Intelligent and Robotic Systems
57(1), 65 (2009). DOI 10.1007/s10846-009-9383-1. URL
https://doi.org/10.1007/s10846-009-9383-1

https://doi.org/10.1007/s10846-009-9383-1

Trajectory tracking for aerial robots 31

20. Hamilton, W.R.: Elements of Quaternions. Cambridge
Library Collection - Mathematics. Cambridge University
Press (2010). DOI 10.1017/CBO9780511707162

21. Haschke, R., Weitnauer, E., Ritter, H.: On-line plan-
ning of time-optimal, jerk-limited trajectories. In:
2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 3248–3253 (2008). DOI
10.1109/IROS.2008.4650924

22. Hauser, K., Ng-Thow-Hing, V.: Fast smoothing of manip-
ulator trajectories using optimal bounded-acceleration
shortcuts. In: 2010 IEEE International Conference on
Robotics and Automation, pp. 2493–2498 (2010). DOI
10.1109/ROBOT.2010.5509683

23. Hönig, W., Preiss, J.A., Kumar, T.K.S., Sukhatme, G.S.,
Ayanian, N.: Trajectory planning for quadrotor swarms.
IEEE Transactions on Robotics 34(4), 856–869 (2018).
DOI 10.1109/TRO.2018.2853613

24. Horn, B.K.: Closed-form solution of absolute orientation
using unit quaternions. Josa a 4(4), 629–642 (1987)

25. Houska, B., et al.: ACADO Toolkit – An Open Source
Framework for Automatic Control and Dynamic Opti-
mization. Optimal Control Applications and Methods
(2011)

26. Judd, K.B., McLain, T.W.: Spline based path planning
for unmanned air vehicles. In: AIAA Guidance, Naviga-
tion, and Control Conference and Exhibit, vol. 9. Mon-
treal, Canada (2001)

27. Jung, D., Tsiotras, P.: On-line path generation for small
unmanned aerial vehicles using b-spline path templates.
In: AIAA Guidance, Navigation and Control Conference,
AIAA, vol. 7135 (2008)

28. Kamel, M., Alexis, K., Achtelik, M., Siegwart, R.: Fast
nonlinear model predictive control for multicopter at-
titude tracking on so (3). In: 2015 IEEE Conference
on Control Applications (CCA), pp. 1160–1166. IEEE
(2015)

29. Kamel, M., Burri, M., Siegwart, R.: Linear vs nonlin-
ear mpc for trajectory tracking applied to rotary wing
micro aerial vehicles. IFAC-PapersOnLine 50(1), 3463–
3469 (2017)

30. Kerrigan, E.C., Maciejowski, J.M.: Soft constraints and
exact penalty functions in model predictive control. In:
Proc. UKACC International Conference (Control. Cite-
seer (2000)

31. Kuipers, J.B., et al.: Quaternions and rotation sequences,
vol. 66. Princeton university press Princeton (1999)

32. Lee, H., Kim, H.J.: Trajectory tracking control of mul-
tirotors from modelling to experiments: A survey. In-
ternational Journal of Control, Automation and Systems
15(1), 281–292 (2017)

33. Lee, T.: Exponential stability of an attitude tracking
control system on so(3) for large-angle rotational ma-
neuvers. Systems & Control Letters 61(1), 231 – 237
(2012). DOI https://doi.org/10.1016/j.sysconle.2011.
10.017. URL http://www.sciencedirect.com/science/

article/pii/S0167691111002829
34. Lee, T., Leoky, M., McClamroch, N.H.: Geometric track-

ing control of a quadrotor uav on se (3). In: Decision
and Control (CDC), 2010 49th IEEE Conference on, pp.
5420–5425. IEEE (2010)

35. Li, Y., Song, S.: A survey of control algorithms for
quadrotor unmanned helicopter. In: 2012 IEEE Fifth In-
ternational Conference on Advanced Computational In-
telligence (ICACI), pp. 365–369 (2012). DOI 10.1109/
ICACI.2012.6463187

36. Macfarlane, S., Croft, E.A.: Jerk-bounded manipulator
trajectory planning: design for real-time applications.

IEEE Transactions on Robotics and Automation 19(1),
42–52 (2003). DOI 10.1109/TRA.2002.807548

37. Manyam, S.G., Rathinam, S., Casbeer, D., Garcia, E.:
Tightly bounding the shortest dubins paths through
a sequence of points. Journal of Intelligent &
Robotic Systems 88(2), 495–511 (2017). DOI 10.1007/
s10846-016-0459-4

38. Mellinger, D., Kumar, V.: Minimum snap trajectory gen-
eration and control for quadrotors. In: 2011 IEEE Inter-
national Conference on Robotics and Automation, pp.
2520–2525 (2011). DOI 10.1109/ICRA.2011.5980409

39. Mellinger, D., Kumar, V.: Minimum snap trajectory gen-
eration and control for quadrotors. In: Robotics and Au-
tomation (ICRA), 2011 IEEE International Conference
on, pp. 2520–2525. IEEE (2011)

40. Mohammed, F., Idries, A., Mohamed, N., Al-Jaroodi, J.,
Jawhar, I.: Uavs for smart cities: Opportunities and chal-
lenges. In: Unmanned Aircraft Systems (ICUAS), 2014
International Conference on, pp. 267–273 (2014). DOI
10.1109/ICUAS.2014.6842265

41. Morari, M., Lee, J.H.: Model predictive control: past,
present and future. Computers & Chemical Engineering
23(4-5), 667–682 (1999)

42. Mueller, M.W., D’Andrea, R.: A model predictive con-
troller for quadrocopter state interception. In: 2013 Eu-
ropean Control Conference (ECC), pp. 1383–1389 (2013)

43. Mueller, M.W., Hehn, M., D’Andrea, R.: A compu-
tationally efficient algorithm for state-to-state quadro-
copter trajectory generation and feasibility verification.
In: 2013 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pp. 3480–3486 (2013). DOI
10.1109/IROS.2013.6696852

44. Neunert, M., De Crousaz, C., Furrer, F., Kamel, M.,
Farshidian, F., Siegwart, R., Buchli, J.: Fast nonlinear
model predictive control for unified trajectory optimiza-
tion and tracking. In: 2016 IEEE international confer-
ence on robotics and automation (ICRA), pp. 1398–1404.
IEEE (2016)

45. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source
robot operating system. In: ICRA workshop on open
source software, vol. 3, p. 5 (2009)

46. Richter, C., Bry, A., Roy, N.: Polynomial Trajectory
Planning for Aggressive Quadrotor Flight in Dense
Indoor Environments, pp. 649–666. Springer Inter-
national Publishing, Cham (2016). DOI 10.1007/
978-3-319-28872-7 37

47. Sanchez-Lopez, J.L., Arellano-Quintana, V., Tognon, M.,
Campoy, P., Franchi, A.: Visual marker based multi-
sensor fusion state estimation. IFAC-PapersOnLine
50(1), 16,003 – 16,008 (2017). DOI https://doi.org/10.
1016/j.ifacol.2017.08.1911. 20th IFAC World Congress

48. Sanchez-Lopez, J.L., Fernández, R.A.S., Bavle, H.,
Sampedro, C., Molina, M., Pestana, J., Campoy, P.:
Aerostack: An architecture and open-source software
framework for aerial robotics. In: 2016 International
Conference on Unmanned Aircraft Systems (ICUAS), pp.
332–341 (2016). DOI 10.1109/ICUAS.2016.7502591

49. Sanchez-Lopez, J.L., Molina, M., Bavle, H., Sampedro,
C., Suárez Fernández, R.A., Campoy, P.: A multi-layered
component-based approach for the development of aerial
robotic systems: The aerostack framework. Journal of
Intelligent & Robotic Systems pp. 1–27 (2017). DOI
10.1007/s10846-017-0551-4

50. Sanchez-Lopez, J.L., Olivares-Mendez, M.A., Castillo-
Lopez, M., Voos, H.: Towards trajectory planning from a

http://www.sciencedirect.com/science/article/pii/S0167691111002829
http://www.sciencedirect.com/science/article/pii/S0167691111002829

32 Sanchez-Lopez et al.

given path for multirotor aerial robots trajectory track-
ing. In: 2018 International Conference on Unmanned
Aircraft Systems (ICUAS), pp. 1342–1351 (2018). DOI
10.1109/ICUAS.2018.8453428

51. Sanchez-Lopez, J.L., Pestana, J., Campoy, P.: A ro-
bust real-time path planner for the collision-free navi-
gation of multirotor aerial robots in dynamic environ-
ments. In: 2017 International Conference on Unmanned
Aircraft Systems (ICUAS), pp. 316–325 (2017). DOI
10.1109/ICUAS.2017.7991354

52. Sanchez-Lopez, J.L., Wang, M., Olivares-Mendez, M.A.,
Molina, M., Voos, H.: A real-time 3d path planning so-
lution for collision-free navigation of multirotor aerial
robots in dynamic environments. Journal of Intelli-
gent & Robotic Systems 93(1), 33–53 (2019). DOI
10.1007/s10846-018-0809-5. URL https://doi.org/10.

1007/s10846-018-0809-5

53. Santos, M.C.P., Rosales, C.D., Sarapura, J.A., Sarcinelli-
Filho, M., Carelli, R.: An adaptive dynamic controller
for quadrotor to perform trajectory tracking tasks. Jour-
nal of Intelligent & Robotic Systems 93(1), 5–16 (2019).
DOI 10.1007/s10846-018-0799-3. URL https://doi.

org/10.1007/s10846-018-0799-3

54. Sola, J.: Quaternion kinematics for the error-state kalman
filter. arXiv preprint arXiv:1711.02508 (2017)

55. Tang, S., Thomas, J., Kumar, V.: Hold or take opti-
mal plan (hoop): A quadratic programming approach
to multi-robot trajectory generation. The International
Journal of Robotics Research 37(9), 1062–1084 (2018).
DOI 10.1177/0278364917741532. URL https://doi.

org/10.1177/0278364917741532

56. Tayebi, A., McGilvray, S.: Attitude stabilization of a four-
rotor aerial robot. In: 2004 43rd IEEE Conference on De-
cision and Control (CDC)(IEEE Cat. No. 04CH37601),
vol. 2, pp. 1216–1221. Ieee (2004)

57. Valavanis, K.P., Vachtsevanos, G.J.: Handbook of un-
manned aerial vehicles. Springer (2015)

58. Yang, K., Sukkarieh, S.: An analytical continuous-
curvature path-smoothing algorithm. IEEE Transactions
on Robotics 26(3), 561–568 (2010). DOI 10.1109/TRO.
2010.2042990

59. Zhang, F.: Quaternions and matrices of quaternions. Lin-
ear algebra and its applications 251, 21–57 (1997)

A Appendix to Trajectory Definition

To ease the formulation of the trajectory planner presented in
Sect. 7, the definition of the trajectory can be expressed using
the compact formulation presented along with this appendix.

A.1 Position and derivatives of a polynomial

The position of a polynomial segment defined in equation 67,
can be written using the following compact nomenclature:

pi,j(τi) = lx,mi,0(τi) · bi,j,: =

=
[
1 τi τ2i ... τmi

i

]
·


bi,j,0
bi,j,1
bi,j,2
...

bi,j,mi

 (89)

pi,j(τi) = (bi,j,:)
T · rx,mi,0(τi) =

= [bi,j,0 bi,j,1 bi,j,2 ... bi,j,mi
] ·


1
τi
τ2i
...
τmi

i

 (90)

The lm-th time-derivative of the position defined in equa-
tion 68, can be written as:

p
(lm)
i,j (τi) =

dlmpi,j

dτ lmi
= lx,mi,lm(τi) · bi,j,: (91)

= (bi,j,:)
T · rx,mi,lm(τi) (92)

where the k-th element of the matrices:

lx,mi,lm(τi)1,k = rx,mi,lm(τi)k,1 =

=

 k∏
l=k−(lm−1)

l

 · τk−lmi (93)

The following equivalence can be easily extracted:

rx,mi,lm(τi) = (lx,mi,lm(τi))
T (94)

Additionally, it can be easily demonstrated that:

dlx,mi,lm(τi)

dτi
= lx,mi,lm+1

(τi) (95)

drx,mi,lm(τi)

dτi
= rx,mi,lm+1

(τi) (96)

The norm of the magnitude, p
(lm)
i,j (τi), can be calculated

as:

‖p(lm)
i,j (τi)‖

2

2
=
(
p
(lm)
i,j (τi)

)T
· p(lm)
i,j (τi) =

= (bi,j,:)
T · rx,mi,lm(τi) · lx,mi,lm(τi) · bi,j,: =

= (bi,j,:)
T · rlx,mi,lm(τi) · bi,j,: (97)

A.2 State of a polynomial

The state xi,j,l0:lm of a polynomial can be defined as:

xi,j,l0:lm(τi) =
[
p
(l0)
i,j p

(l1)
i,j ... p

(lm)
i,j

]T
(98)

Which is calculated using the following compact nomencla-
ture:

xi,j,l0:lm(τi) = Lx,mi,l0:lm(τi) · bi,j,: (99)

(xi,j,l0:lm(τi))
T = (bi,j,:)

T ·Rx,mi,l0:lm(τi) (100)

where

Lx,mi,l0:lm(τi) =


lx,mi,l0(τi)
lx,mi,l1(τi)

...
lx,mi,lm(τi)

 (101)

Rx,mi,l0:lm(τi) = (Lx,mi,l0:lm(τi))
T (102)

In the same way than in equation 95 and 96, it can be
easily demonstrated that:

dLx,mi,l0:lm(τi)

dτi
= Lx,mi,l1:lm+1

(τi) (103)

dRx,mi,l0:lm(τi)

dτi
= Rx,mi,l1:lm+1

(τi) (104)

https://doi.org/10.1007/s10846-018-0809-5
https://doi.org/10.1007/s10846-018-0809-5
https://doi.org/10.1007/s10846-018-0799-3
https://doi.org/10.1007/s10846-018-0799-3
https://doi.org/10.1177/0278364917741532
https://doi.org/10.1177/0278364917741532

Trajectory tracking for aerial robots 33

A.3 Coefficients of a polynomial

Given the state of a polynomial, xi,j,l0:lm , at a certain time
τi, the coefficients of the polynomial, bi,j,:, can be calculated
using equation 99, as:

bi,j,: = (Lx,mi,l0:lm(τi))
−1 · xi,j,l0:lm(τi) (105)

with the condition that l0 = 0 and lm = mi.
The coefficients of a polynomial, bi,j,:, can be calculated

from its initial state, xi,j,0:mi
(0), using equation 105.

bi,j,: = (Lx,mi,0:mi
(0))−1 · xi,j,0:mi

(0) (106)

being therefore the value of the coefficients, independent of
the time, ∆τi.

A.4 Initial and final states of a polynomial

The initial state of a polynomial, xi,j,0:mi
(0), can be calcu-

lated following equation 99, as:

xi,j,0:mi
(0) = Lx,mi,0:mi

(0) · bi,j,: (107)

The final state of a polynomial, xi,j,0:mi
(∆τi), can be

calculated from its initial state as follows:

xi,j,0:mi
(∆τi) = Lx,mi,0:mi

(∆τi) · bi,j,: =

= Lx,mi,0:mi
(∆τi) · (Lx,mi,0:mi

(0))−1 · xi,j,0:mi
(0)

(108)

A.5 Linear variables of a segment

The full-dimensional position of the segment is defined as:

pi,: (τi) = [pi,x (τi) pi,y (τi) pi,z (τi)]
T (109)

Which is calculated using the following compact nomencla-
ture:

pi,: (τi) = lx,mi,0(τi) · bi,xyz,: (110)(
pi,: (τi)

)T
=
(
bi,xyz,:

)T
· rx,mi,0(τi) (111)

where

bi,xyz,: =

 bi,x,:bi,y,:
bi,z,:

 (112)

lx,mi,0(τi) =

 lx,mi,0(τi) 01×(mi+1) 01×(mi+1)

01×(mi+1) lx,mi,0(τi) 01×(mi+1)

01×(mi+1) 01×(mi+1) lx,mi,0(τi)

 (113)

rx,mi,0(τi) =
(
lx,mi,0(τi)

)T
(114)

The lm-th time-derivative of the position can be expressed
as:

p
(lm)
i,: (τi) =

dlmpi,:

dτ lmi
=
[
p
(lm)
i,x (τi) p

(lm)
i,y (τi) p

(lm)
i,z (τi)

]T
(115)

Which is calculated using the following compact nomen-
clature:

p
(lm)
i,: (τi) = lx,mi,lm(τi) · bi,xyz,: (116)(

p
(lm)
i,: (τi)

)T
=
(
bi,xyz,:

)T
· rx,mi,lm(τi) (117)

where

lx,mi,lm(τi) =

 lx,mi,lm(τi) 01×(mi+1) 01×(mi+1)

01×(mi+1) lx,mi,lm(τi) 01×(mi+1)

01×(mi+1) 01×(mi+1) lx,mi,lm(τi)


(118)

rx,mi,lm(τi) =
(
lx,mi,lm(τi)

)T
(119)

It can be easily demonstrated that:

dlx,mi,lm(τi)

dτi
= lx,mi,lm+1

(τi) (120)

drx,mi,lm(τi)

dτi
= rx,mi,lm+1

(τi) (121)

The norm of the magnitude, p
(lm)
i,: (τi), can be calculated

as:

‖p(lm)
i,: (τi)‖

2

2
=
(
p
(lm)
i,: (τi)

)T
· p(lm)
i,: (τi) =

=
(
bi,xyz,:

)T
· rx,mi,lm(τi) · lx,mi,lm(τi) · bi,xyz,: =

=
(
bi,xyz,:

)T
· rlx,mi,lm(τi) · bi,xyz,: (122)

B Appendix to Evaluation and Results

This appendix gathers extra information and the raw data of
the experiments presented in Section 9.

Figure 29 and Figure 30 graphically represent the total
time of the trajectory tracking computed by the trajectory
planner during the optimization process for the first and sec-
ond evaluation paths respectively.

Table 12 and Table 13 show the summarized information
of the total time of the trajectory tracking computed during
the optimization process of the trajectory planner for the first
and second evaluation paths respectively.

Table 14 and Table 15 gather the percentage of the con-
figuration parameters with respect to their maximum value
for the magnitudes of the initial trajectories of the first and
second evaluation paths respectively.

Table 16 and Table 17 collect the percentage of the con-
figuration parameters with respect to their maximum value
for the magnitudes of the planned trajectories of the first and
second evaluation paths respectively.

Table 18 and Table 19 display the percentage of the en-
ergy (computed with equation 88) of the planned trajectory
magnitudes with respect to the initial trajectories of the first
and second evaluation paths respectively.

Table 20 and Table 21 show the percentage of the energy
(equation 88) of the planned control commands references
with respect to the initial trajectories of the first and second
evaluation paths respectively..

34 Sanchez-Lopez et al.

Table 12: Total time of the trajectory tracking computed by the trajectory planner for the first evaluation path.

The initial and final values, together with the intermediate values at 1%, 5% and 10% of the final value are provided

along with their required number of iterations.

Velocity S M-S M-F F
Distance Acc Ina Acc Ina Acc Ina Acc Ina
Rot. error δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ

Fin
it. 69 35 37 30 33 19 39 42 35 100* 23 9 27 50 17 16
t (s) 25.00 24.98 24.99 23.35 20.91 20.90 17.60 17.33 16.11 16.12 14.91 14.93 15.00 14.89 14.18 14.04

1 %
it. 51 16 15 27 29 7 34 30 25 12 17 7 19 22 7 8
t (s) 25.19 25.06 25.23 23.57 20.94 21.10 17.63 17.48 16.20 16.23 14.92 14.99 15.11 15.00 14.22 14.04

5 % # it. 48 6 5 27 26 4 19 8 7 4 17 3 7 6 6 3
t (s) 25.41 26.08 26.20 23.57 21.32 21.92 18.41 18.01 16.64 16.86 14.92 15.41 15.58 15.45 14.35 14.37

10 %
it. 35 5 3 27 14 3 9 4 4 4 15 3 4 4 5 3
t (s) 27.31 24.44 27.12 23.57 22.82 26.05 18.81 18.77 17.42 16.86 16.31 15.41 16.36 16.10 15.44 14.37

Init
it. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t (s) 51.92 51.92 51.92 51.92 36.98 36.98 36.98 36.98 36.29 36.29 36.29 36.29 34.84 34.84 34.84 34.84

% improv. -51.85 -51.88 -51.86 -55.03 -43.45 -43.48 -52.42 -53.12 -55.61 -55.59 -58.93 -58.86 -56.94 -57.28 -59.32 -59.74

Table 13: Total time of the trajectory tracking computed by the trajectory planner for the second evaluation

path. The initial and final values, together with the intermediate values at 1%, 5% and 10% of the final value are

provided along with their required number of iterations.

Velocity S M-S M-F F
Distance Acc Ina Acc Ina Acc Ina Acc Ina
Rot. error δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ

Fin
it. 75 87 49 55 27 84 54 23 45 46 18 20 23 46 28 16
t (s) 25.52 25.59 24.68 24.29 19.07 18.93 18.40 18.44 17.45 18.54 16.75 16.82 16.72 16.57 15.81 15.87

1 %
it. 40 39 21 21 13 47 23 8 11 8 9 10 4 9 9 8
t (s) 25.76 25.75 24.89 24.29 19.25 19.07 18.52 18.61 17.62 18.67 16.87 16.96 16.80 16.72 15.96 15.97

5 %
it. 6 33 7 6 7 16 6 8 8 7 4 8 3 3 4 3
t (s) 25.46 26.47 25.54 25.36 19.34 19.79 19.27 18.61 18.21 18.94 17.36 17.03 17.07 17.33 16.47 16.53

10 %
it. 4 15 3 4 5 5 3 5 4 3 3 3 3 3 3 3
t (s) 27.75 27.74 26.60 25.94 20.22 20.60 20.20 20.03 19.00 20.14 17.77 18.34 17.07 17.33 17.38 16.53

Init
it. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t (s) 58.28 58.28 58.28 58.28 43.36 43.36 43.36 43.36 42.31 42.31 42.31 42.31 40.63 40.63 40.63 40.63

% improv. -56.21 -56.09 -57.65 -58.32 -56.02 -56.34 -57.56 -57.47 -58.76 -56.18 -60.41 -60.25 -58.85 -59.22 -61.09 -60.94

Trajectory tracking for aerial robots 35

0 10 20 30 40 50 60 70
Iterations

20

25

30

35

40

45

50

55

T
ra

je
ct

or
y

tim
e

(s
)

Sequential optimization

Accurate
Accurate
Inaccurate
Inaccurate

(a) Slow.

0 5 10 15 20 25 30 35 40 45
Iterations

15

20

25

30

35

40

T
ra

je
ct

or
y

tim
e

(s
)

Sequential optimization

Accurate
Accurate
Inaccurate
Inaccurate

(b) Medium-Slow.

0 10 20 30 40 50 60 70 80 90 100
Iterations

10

15

20

25

30

35

40

T
ra

je
ct

or
y

tim
e

(s
)

Sequential optimization

Accurate
Accurate
Inaccurate
Inaccurate

(c) Medium-Fast.

0 5 10 15 20 25 30 35 40 45 50
Iterations

10

15

20

25

30

35

T
ra

je
ct

or
y

tim
e

(s
)

Sequential optimization

Accurate
Accurate
Inaccurate
Inaccurate

(d) Fast.

Fig. 29: Total time of the trajectory tracking computed

by the trajectory planner during the optimization pro-

cess for the first evaluation path.

0 10 20 30 40 50 60 70 80 90
Iterations

20

25

30

35

40

45

50

55

60

T
ra

je
ct

or
y

tim
e

(s
)

Sequential optimization

Accurate
Accurate
Inaccurate
Inaccurate

(a) Slow.

0 10 20 30 40 50 60 70 80 90
Iterations

15

20

25

30

35

40

45

T
ra

je
ct

or
y

tim
e

(s
)

Sequential optimization

Accurate
Accurate
Inaccurate
Inaccurate

(b) Medium-Slow.

0 5 10 15 20 25 30 35 40 45 50
Iterations

15

20

25

30

35

40

45

T
ra

je
ct

or
y

tim
e

(s
)

Sequential optimization

Accurate
Accurate
Inaccurate
Inaccurate

(c) Medium-Fast.

0 5 10 15 20 25 30 35 40 45 50
Iterations

15

20

25

30

35

40

45

T
ra

je
ct

or
y

tim
e

(s
)

Sequential optimization

Accurate
Accurate
Inaccurate
Inaccurate

(d) Fast.

Fig. 30: Total time of the trajectory tracking computed

by the trajectory planner during the optimization pro-

cess for the second evaluation path.

36 Sanchez-Lopez et al.

Table 14: Percentage of the configuration parameters

with respect to their maximum value for the magni-

tudes of the initial trajectories of the first evaluation

path.

Velocity S M-S M-F F

Max. d 0.0 0.0 0.0 0.0

Vel.
Lin. 54.02 55.79 49.81 45.90
Ang. 43.61 45.04 40.21 37.05

Acc.
Lin. 39.17 42.53 38.50 35.61
Ang. 31.62 34.34 31.08 28.75

Jer.
Lin. 31.10 35.50 31.10 30.24
Ang. 25.11 28.66 25.10 24.42

Sna.
Lin. 100.0 100.0 83.75 78.04
Ang. 80.73 80.73 67.61 63.00

Cra.
Lin. 82.21 100.0 100.0 100.0
Ang. 62.45 78.78 80.73 80.73

Pop
Lin. 20.27 28.81 28.88 30.30
Ang. 14.90 21.35 21.94 23.10

Average
Lin. 54.46 60.44 55.34 53.35
Ang. 43.00 48.15 44.45 42.83
Total 48.73 54.29 49.89 48.09

ux
Min. 28.04 43.24 44.35 46.82
Max. 28.04 43.24 44.35 46.82

uy
Min. 23.11 38.13 40.14 42.58
Max. 14.81 21.84 22.19 23.31

uz
Min. 5.73 8.82 9.03 9.52
Max. 4.74 7.52 7.88 8.31

uψ
Min. 34.55 54.78 57.43 60.59
Max. 9.56 16.06 17.11 18.13

Average 18.57 29.20 30.31 32.01

Average 34.92 42.15 40.06 39.67

Table 15: Percentage of the configuration parameters

with respect to their maximum value for the magni-

tudes of the initial trajectories of the second evaluation

path.

Velocity S M-S M-F F

Max. d 0.0 0.0 0.0 0.0

Vel.
Lin. 56.84 58.71 53.31 49.12
Ang. 41.45 42.81 38.87 35.82

Acc.
Lin. 40.53 44.00 40.51 37.47
Ang. 29.55 32.08 29.54 27.32

Jer.
Lin. 31.63 36.10 32.17 31.29
Ang. 23.07 26.33 23.46 22.82

Sna.
Lin. 100.0 100.0 85.18 79.38
Ang. 72.92 72.92 62.11 57.88

Cra.
Lin. 100.0 100.0 100.0 100.0
Ang. 55.45 69.95 72.92 72.92

Pop
Lin. 30.53 35.66 35.75 37.51
Ang. 12.92 18.64 19.48 20.44

Average
Lin. 59.92 62.41 57.82 55.79
Ang. 39.23 43.79 41.06 39.53
Total 49.57 53.10 49.44 47.66

ux
Min. 25.27 41.67 44.70 47.42
Max. 29.23 45.86 47.03 49.64

uy
Min. 18.66 28.91 30.62 32.25
Max. 21.73 34.14 36.31 38.23

uz
Min. 12.16 15.36 15.74 16.61
Max. 4.48 7.09 7.56 7.97

uψ
Min. 32.59 51.65 55.07 58.09
Max. 20.07 31.25 31.98 33.74

Average 20.52 31.99 33.63 35.49

Average 36.15 42.53 41.06 40.76

Trajectory tracking for aerial robots 37

Table 16: Percentage of the configuration parameters with respect to their maximum value for the magnitudes of

the planned trajectories of the first evaluation path.

Velocity S M-S M-F F
Distance Acc Ina Acc Ina Acc Ina Acc Ina
Rot. error δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ

Max. d 99.89 99.97 57.59 64.30 99.95 99.74 59.05 67.65 99.99 100.0 83.37 71.48 100.0 100.0 65.39 75.56

Vel.
Lin. 99.99 100.0 99.99 99.98 100.0 99.99 99.99 100.0 100.0 100.0 99.99 99.99 99.99 99.99 99.99 99.99
Ang. 77.59 74.76 76.26 76.27 74.15 74.95 73.51 73.97 83.83 83.43 77.14 73.95 75.04 78.58 73.36 78.16

Acc.
Lin. 98.38 100.0 97.20 95.80 100.0 99.98 100.0 99.99 100.0 100.0 99.99 99.98 99.89 99.99 97.01 99.31
Ang. 49.79 33.01 33.63 34.86 33.86 34.51 35.82 33.10 48.08 45.18 35.53 35.95 46.33 44.70 41.53 43.70

Jer.
Lin. 53.73 55.59 59.87 61.50 68.89 64.27 57.39 62.29 75.16 74.71 67.79 60.89 86.64 90.90 86.58 63.95
Ang. 74.88 29.66 34.90 26.89 46.16 61.03 51.76 47.75 70.12 73.52 45.12 39.90 60.91 60.47 60.08 51.44

Sna.
Lin. 99.98 99.98 99.99 99.94 99.98 99.84 99.99 100.0 99.97 100.0 99.97 99.98 99.97 100.0 99.98 99.98
Ang. 91.33 63.62 72.54 72.19 78.50 85.39 96.14 76.77 85.53 98.36 71.72 65.00 98.98 96.29 79.69 82.39

Cra.
Lin. 75.82 74.46 72.85 72.53 100.0 100.0 99.70 95.41 99.89 100.0 99.78 98.67 99.95 100.0 99.99 99.30
Ang. 76.92 65.77 57.40 51.55 75.23 78.00 65.30 76.08 92.29 91.46 90.92 75.00 98.33 99.95 90.85 95.83

Pop
Lin. 20.70 20.63 20.60 17.10 30.11 29.69 37.85 34.05 31.14 29.23 43.38 30.39 30.48 29.66 36.15 52.76
Ang. 24.57 28.81 14.87 14.89 19.09 21.12 16.67 21.99 25.47 20.32 26.02 24.50 30.98 34.31 22.05 24.75

Average
Lin. 74.77 75.44 75.08 74.48 83.16 82.30 82.49 81.96 84.36 83.99 85.15 81.65 85.15 86.74 86.62 85.88
Ang. 65.85 48.11 48.27 46.11 54.50 59.17 56.53 54.94 67.55 68.71 57.74 52.38 68.43 69.05 61.26 62.71
Total 70.31 61.77 61.67 60.29 68.83 70.73 69.51 68.45 75.96 76.35 71.45 67.02 76.79 77.90 73.94 74.30

ux
Min. 51.84 61.24 58.95 52.62 93.30 93.59 89.13 91.81 99.91 100.0 99.93 99.97 100.0 100.0 99.99 100.0
Max. 52.65 53.26 54.48 54.39 83.37 83.38 84.13 89.32 96.04 98.14 99.68 99.99 99.98 100.0 100.0 99.98

uy
Min. 50.42 50.61 51.30 51.52 78.06 78.01 84.25 80.60 95.43 96.94 98.72 99.78 99.99 99.96 99.98 99.82
Max. 30.63 30.27 30.86 34.51 41.79 41.35 58.86 53.86 47.56 46.31 70.12 69.16 63.79 61.62 82.98 67.19

uz
Min. 11.21 10.95 6.75 10.66 16.78 16.85 12.11 13.81 20.11 19.94 19.97 19.85 22.07 22.69 20.81 22.38
Max. 7.22 7.40 9.64 12.59 12.22 12.06 13.68 10.50 14.29 14.35 13.41 13.66 15.32 15.13 17.04 17.73

uψ
Min. 54.01 50.78 47.31 46.73 79.24 80.88 72.10 76.72 99.94 99.93 93.97 81.48 99.95 99.99 99.97 97.17
Max. 10.96 8.06 7.28 8.43 13.68 13.98 11.68 13.17 17.14 21.81 14.53 15.26 16.45 14.25 17.28 17.29

Average 33.62 30.07 33.32 33.93 52.31 52.51 53.24 53.72 61.30 62.18 63.79 62.39 64.69 64.21 67.26 65.20

Average 57.74 53.04 50.68 50.44 64.02 65.17 62.81 62.80 71.52 72.08 69.10 65.47 73.29 73.73 70.99 70.89

Table 17: Percentage of the configuration parameters with respect to their maximum value for the magnitudes of

the planned trajectories of the second evaluation path.

Velocity S M-S M-F F
Distance Acc Ina Acc Ina Acc Ina Acc Ina
Rot. error δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ

Max. d 99.98 99.99 72.08 66.02 99.98 99.99 79.41 48.25 100.0 99.99 100.0 98.33 100.0 100.0 50.07 48.39

Vel.
Lin. 100.0 100.0 100.0 100.0 99.97 100.0 99.99 100.0 100.0 100.0 100.0 99.99 99.99 99.99 99.96 100.0
Ang. 70.89 70.52 72.17 69.80 69.31 72.12 70.18 72.12 68.23 69.51 68.84 68.50 72.24 65.80 68.89 73.72

Acc.
Lin. 100.0 99.97 99.98 99.98 100.0 100.0 99.99 99.96 99.99 100.0 99.99 99.99 99.99 99.68 99.94 99.99
Ang. 69.09 66.62 67.94 67.70 66.84 68.48 70.23 66.15 64.79 63.57 67.27 64.26 63.08 57.54 55.91 66.04

Jer.
Lin. 54.83 54.57 70.00 57.13 65.90 58.46 72.35 85.96 68.51 98.13 83.08 86.42 73.45 66.21 72.92 92.16
Ang. 41.65 41.81 43.19 41.45 54.34 54.35 44.03 39.87 52.88 53.82 38.43 38.24 73.10 44.82 41.15 54.14

Sna.
Lin. 99.99 99.99 99.96 99.96 99.98 100.0 99.98 99.99 100.0 99.97 99.99 100.0 100.0 99.99 99.98 99.98
Ang. 99.86 97.25 98.68 99.09 92.57 81.94 89.93 99.98 86.22 86.13 89.20 77.21 99.95 90.90 99.53 99.98

Cra.
Lin. 86.49 92.07 94.67 72.95 99.96 99.95 99.99 99.09 100.0 99.98 99.99 99.99 99.99 99.99 99.96 99.98
Ang. 91.48 57.03 68.99 99.26 91.69 97.74 79.89 99.74 99.94 99.96 97.91 88.53 99.83 99.81 99.36 99.97

Pop
Lin. 28.42 25.64 41.00 23.42 33.91 33.87 47.68 34.10 35.36 33.82 38.55 42.80 39.73 35.00 39.57 35.46
Ang. 28.40 18.27 18.13 31.22 20.10 19.91 22.60 45.68 30.03 32.87 40.05 24.13 30.30 37.56 44.64 43.80

Average
Lin. 78.29 78.71 84.27 75.57 83.29 82.05 86.66 86.52 83.98 88.65 86.93 88.20 85.51 83.48 85.39 87.93
Ang. 66.90 58.58 61.52 68.09 65.81 67.76 62.81 70.59 67.02 67.64 66.95 60.15 73.08 65.92 66.25 72.94
Total 72.59 68.65 72.89 71.83 74.55 73.90 74.74 78.55 75.50 78.15 76.94 74.17 79.30 74.70 76.82 80.44

ux
Min. 53.44 50.83 50.20 54.28 80.20 77.00 79.21 83.81 94.43 96.93 95.08 98.55 99.99 99.87 99.92 99.97
Max. 63.34 63.29 61.64 62.04 96.55 96.66 96.04 81.95 100.0 100.0 100.0 99.93 99.78 99.99 99.98 99.97

uy
Min. 32.91 32.89 44.77 34.68 49.35 49.37 53.30 49.49 56.56 57.17 81.76 76.65 64.45 61.08 63.31 64.86
Max. 50.27 50.13 46.77 53.16 80.35 83.00 83.22 76.69 94.53 75.86 89.16 87.93 98.48 96.87 90.96 87.55

uz
Min. 26.67 26.27 30.39 28.33 32.82 33.64 32.95 19.94 36.15 35.78 29.08 41.66 36.08 35.96 40.10 43.29
Max. 6.87 6.84 9.58 8.03 10.37 10.76 10.36 14.78 12.55 11.96 12.55 13.73 13.90 14.18 13.61 25.93

uψ
Min. 53.86 57.56 59.05 48.78 80.98 88.50 86.18 86.63 98.70 97.23 98.20 97.33 99.20 99.80 99.68 98.58
Max. 40.97 40.69 42.69 42.37 59.06 55.45 61.26 61.78 82.78 91.31 86.78 78.52 99.68 72.31 77.03 75.00

Average 41.04 41.06 43.14 41.46 61.21 61.80 62.82 61.88 71.96 70.78 74.08 74.29 76.45 72.51 73.07 74.39

Average 61.88 59.63 61.52 59.98 70.68 70.53 70.42 70.76 75.32 76.38 76.95 75.37 79.20 75.07 74.12 76.61

38 Sanchez-Lopez et al.

Table 18: Percentage of the energy (equation 88) of the planned trajectory magnitudes with respect to the initial

trajectories of the first evaluation path.

Velocity S M-S M-F F
Distance Acc Ina Acc Ina Acc Ina Acc Ina
Rot. error δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ

Vel.
Lin. 95.56 108.59 21.39 94.02 80.83 70.07 13.31 18.33 47.79 40.74 52.94 45.43 109.55 124.24 131.93 164.41
Ang. 90.82 88.67 91.54 99.04 70.50 71.48 84.73 86.55 101.66 102.85 112.97 112.33 112.00 115.45 117.05 120.22

Acc.
Lin. 31.98 40.43 -11.93 30.91 27.05 23.47 -16.62 -10.21 9.13 4.47 9.15 6.39 42.00 47.30 50.38 75.53
Ang. 27.11 -25.63 -39.10 -39.66 -3.01 14.29 -34.42 -35.44 52.13 70.84 -7.75 -1.48 75.17 90.29 40.77 45.00

Jer.
Lin. -9.36 -4.90 -33.49 -9.98 -9.42 -11.28 -37.31 -30.77 -20.17 -23.25 -22.61 -22.79 -3.58 -3.30 -3.20 14.67
Ang. 44.96 -34.10 -40.39 -51.61 3.07 33.13 -22.79 -27.86 77.47 103.85 1.32 13.27 125.84 161.02 63.49 61.97

Sna.
Lin. -27.65 -26.13 -41.13 -27.86 -25.17 -25.90 -44.56 -37.70 -31.93 -34.21 -36.23 -35.11 -21.97 -23.71 -26.12 -13.78
Ang. 16.74 -43.41 -47.75 -55.90 -15.48 14.98 -25.66 -27.86 48.48 72.59 -13.27 1.36 108.21 147.64 38.92 39.79

Cra.
Lin. -29.62 -29.97 -36.70 -29.37 -26.49 -26.50 -40.18 -33.32 -30.60 -32.21 -36.40 -34.39 -24.25 -26.19 -30.15 -23.23
Ang. -31.63 -49.98 -57.66 -60.43 -40.92 -34.49 -52.87 -49.84 -17.51 -21.85 -40.75 -32.45 -4.64 13.11 -33.18 -24.31

Pop
Lin. -18.29 -18.95 -19.70 -17.00 -16.43 -16.23 -22.71 -18.58 -18.79 -19.50 -22.11 -20.16 -16.68 -17.58 -19.39 -17.40
Ang. -28.16 -38.42 -48.82 -51.17 -37.99 -40.87 -57.01 -46.44 -28.70 -42.73 -37.60 -30.58 -24.61 -9.76 -49.47 -42.78

Average.
Lin. 7.10 11.51 -20.26 6.79 5.06 3.10 -24.68 -18.58 -7.43 -10.66 -9.21 -10.10 14.18 16.79 17.24 33.37
Ang. 19.97 -17.15 -23.90 -26.62 -3.97 9.75 -18.00 -16.47 38.92 47.59 2.49 10.41 65.33 86.29 29.60 33.32
Total 13.54 -2.82 -21.98 -9.92 0.54 6.43 -21.34 -17.53 15.75 18.47 -3.36 0.15 39.75 51.54 23.42 33.34

Table 19: Percentage of the energy (equation 88) of the planned trajectory magnitudes with respect to the initial

trajectories of the second evaluation path.

Velocity S M-S M-F F
Distance Acc Ina Acc Ina Acc Ina Acc Ina
Rot. error δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ

Vel.
Lin. 20.55 20.76 41.81 33.10 -56.58 -56.90 -53.43 -36.49 -63.76 -63.46 -58.96 -56.18 -47.86 -61.74 -53.11 -51.46
Ang. 99.44 98.38 103.79 105.84 88.80 90.09 94.43 91.50 107.07 99.04 106.90 103.53 119.61 110.32 110.82 116.58

Acc.
Lin. -8.51 -8.37 11.73 4.08 -58.29 -59.03 -51.63 -40.29 -61.38 -61.64 -57.52 -53.50 -45.30 -57.47 -49.80 -49.06
Ang. 301.02 269.69 276.25 254.63 238.23 236.64 237.77 245.18 311.18 326.98 311.81 277.25 378.35 295.10 287.71 355.58

Jer.
Lin. -29.24 -29.03 -12.19 -18.02 -58.96 -60.16 -50.50 -44.42 -59.18 -60.03 -56.76 -52.28 -45.40 -54.46 -49.16 -48.70
Ang. 161.73 129.07 140.28 105.14 115.83 109.98 110.28 118.82 163.40 196.05 106.69 129.43 249.53 163.07 144.39 243.85

Sna.
Lin. -37.63 -37.37 -24.86 -28.50 -54.53 -56.10 -46.17 -43.95 -52.95 -53.97 -52.31 -47.89 -42.28 -48.51 -46.11 -45.45
Ang. 74.13 42.33 73.17 48.44 53.02 44.01 43.81 58.83 88.08 99.98 85.13 59.54 219.53 98.61 112.65 223.44

Cra.
Lin. -35.17 -35.31 -28.78 -29.55 -43.88 -45.37 -38.61 -38.77 -42.30 -41.91 -43.32 -40.32 -36.09 -39.11 -40.23 -39.09
Ang. -4.90 -28.08 -11.86 4.75 -8.81 -12.87 -9.91 14.53 -6.15 1.75 29.78 2.53 91.03 17.94 60.11 81.02

Pop.
Lin. -20.33 -21.98 -21.61 -18.59 -24.54 -25.19 -23.46 -24.48 -25.89 -21.60 -25.47 -25.09 -23.24 -24.73 -26.09 -25.28
Ang. -23.77 -52.59 -42.51 13.48 -49.96 -42.79 -28.25 1.73 -21.35 -15.98 2.27 -25.78 -10.36 -8.53 -14.27 -2.93

Average
Lin. -18.39 -18.55 -5.65 -9.58 -49.46 -50.46 -43.97 -38.07 -50.91 -50.44 -49.06 -45.88 -40.03 -47.67 -44.08 -43.17
Ang. 101.27 76.47 89.85 88.71 72.85 70.84 74.69 88.43 107.04 117.97 116.26 91.08 -10.36 112.75 116.90 169.59
Total 41.44 28.96 42.10 39.57 11.69 10.19 15.36 25.18 28.06 33.77 33.60 22.60 67.29 32.54 36.41 63.21

Table 20: Percentage of the energy (equation 88) of the planned control commands references with respect to the

initial trajectories of the first evaluation path.

Velocity S M-S M-F F
Distance Acc Ina Acc Ina Acc Ina Acc Ina
Rot. error δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ

ux 175.62 174.73 165.22 179.56 166.21 164.01 162.92 164.52 249.86 255.51 230.76 231.95 275.94 260.18 252.08 268.09
uy 107.11 111.35 116.73 132.96 109.18 108.19 157.03 163.87 180.56 178.77 243.17 230.55 229.41 276.93 277.13 241.83
uz 98.08 101.83 73.18 135.52 99.85 99.90 84.83 87.50 136.25 134.46 134.00 132.46 147.92 151.39 146.34 149.35
uψ 85.39 78.66 80.08 86.99 60.94 64.19 69.06 70.53 94.82 98.87 96.30 96.45 107.85 112.89 106.78 110.49

Average 116.55 116.64 108.80 133.76 109.05 109.07 118.46 121.60 165.37 166.90 176.06 172.85 190.28 200.35 195.58 192.44

Table 21: Percentage of the energy (equation 88) of the planned control commands references with respect to the

initial trajectories of the second evaluation path.

Velocity S M-S M-F F
Distance Acc Ina Acc Ina Acc Ina Acc Ina
Rot. error δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ δψ δθ

ux 147.79 148.37 152.67 158.62 156.47 153.91 162.88 153.47 199.24 200.04 199.60 200.57 203.14 213.85 228.97 217.44
uy 153.62 151.01 176.79 178.36 154.70 162.46 184.98 154.70 191.07 156.12 241.57 228.88 202.21 216.13 192.50 205.35
uz 154.18 151.52 248.43 225.39 146.94 150.90 200.95 281.30 161.77 159.86 155.77 291.54 161.48 153.24 241.26 339.86
uψ 118.62 114.68 120.21 120.15 110.28 110.84 114.57 113.30 136.80 131.99 136.82 128.96 159.08 139.20 138.35 153.77

Average 143.55 141.39 174.53 170.63 142.10 144.53 165.84 175.69 172.22 162.00 183.44 212.49 181.48 180.61 200.27 229.11

	Introduction
	Related Work
	Representation of rotations in SO(3)
	Representation of rotations in SO(2)
	Aerial Robot Model
	Trajectory Definition
	Trajectory Planner
	Trajectory Tracking Controller
	Evaluation and Results
	Conclusions and Future Work
	Appendix to Trajectory Definition
	Appendix to Evaluation and Results

