Skip to main content
Log in

Mechanism and Position Tracking Control of a Robotic Manipulator Actuated by the Tendon-Sheath

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

To achieve a manipulator that is lighter and more anthropomorphic, a 7-DOF robotic manipulator driven by the tendon-sheath is designed. Its mechanical system and control system are both introduced in this paper. An encoder is installed on both the driver side and the joint side to realize double closed-loop control. Considering the transmission characteristics of the reducer and the tendon-sheath, a position transmission model of a single joint is constructed. Furthermore, the correctness of the transmission model is verified based on the prototype joint four. A proportional-integral-differential (PID) controller and fuzzy PID controller with time-delay estimation (TDE) are designed based on double encoders, and some experiments on the position tracking control are carried out for the robotic joints. The experimental results show that each joint can rotate normally and there is no interference between the different tendon-sheaths. When the drive motor moves to follow the position command of the sinusoidal signal, the TDE-based fuzzy PID controller can reduce the maximum tracking error compared with the traditional PID controller. According to the experimental results, it is feasible to apply the tendon-sheath transmission to the manipulator, which provides a reference for the development of other equipment based on the tendon-sheath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Palli, G., Melchiorri, C.: Friction compensation techniques for tendon-driven robotic hands. Mechatronics. 24(2), 108–117 (2014)

    Article  Google Scholar 

  2. Palli, G., Borghesan, G., Melchiorri, C.: Modeling, identification, and control of tendon-based actuation systems. IEEE Trans. Robot. 28(2), 277–289 (2012)

    Article  Google Scholar 

  3. Phee, S.J., Low, S.C., Sun, Z.L., Ho, K.Y., Huang, W.M., Thant, Z.M.: Robotic system for no-scar gastrointestinal surgery. Int. J. Med. Robot. Comput. Assist. Surg. 4(1), 15–22 (2008)

    Article  Google Scholar 

  4. Phee, S.J., Low, S.C., Dario, P., Menciassi, A.: Tendon sheath analysis for estimation of distal end force and elongation for sensorless distal end. Robotica. 28(7), 1073–1082 (2010)

    Article  Google Scholar 

  5. Li, X.G., Cao, L., Tiong, A., et al.: Distal-end force prediction of tendon-sheath mechanisms for flexible endoscopic surgical robots using deep learning. Mechanism Mach. Theory. 134, 323–337 (2019)

    Article  Google Scholar 

  6. Kong, K., Jeon, D.: Design and control of an exoskeleton for the elderly and patients. IEEE/ASME Trans. Mechatronics. 11(4), 428–432 (2006)

    Article  Google Scholar 

  7. Kong, K., Bae, J., Tomizuka, M.: Torque mode control of a cable driven actuating system by sensor fusion. J. Dyn. Syst. Meas. Control. 135(3), 031003–1–031003–7 (2013)

    Article  Google Scholar 

  8. Aquino, G., Rubio, J.D., Pacheco, J., et al.: Novel nonlinear hypothesis for the delta parallel robot modeling. IEEE Access. 8, 46324–46334 (2020)

    Article  Google Scholar 

  9. Rubio, J.D.: SOFMLS: Online self-organizing fuzzy modified least-squares network. IEEE Trans Fuzzy Syst. 17(6), 1296–1309 (2009)

    Article  Google Scholar 

  10. Meda-Campana, J.A.: On the estimation and control of nonlinear systems with parametric uncertainties and noisy outputs. IEEE Access. 6, 31968–31973 (2018)

    Article  Google Scholar 

  11. Rubio, J.D., Garcia, E., Ochoa, G., et al.: Unscented Kalman filter for earning of a solar dryer and a greenhouse. J Intell Fuzzy Syst. 37(5), 6731–6741 (2019)

    Article  Google Scholar 

  12. Agarwal, P., Deshpande, A.D.: Series Elastic Actuators for Small-Scale Robotic Applications. J Mech Robot. 9(3), 031016–1–031016–03101612 (2017)

  13. Agarwal, P., Fox, J., O’Malley, M.K., et al.: An index finger exoskeleton with series elastic actuation for rehabilitation: design, control and performance characterization. Int. J. Robot. Res. 34(14), 1747–1772 (2015)

    Article  Google Scholar 

  14. Wu, Q.C., Wang, X.S., Du, F.P.: Development and analysis of a gravity-balanced exoskeleton for active rehabilitation training of upper limb. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 230(20), 3777–3790 (2016)

    Article  Google Scholar 

  15. Lu, L.H., Wu, Q.C., Chen, X., et al.: Development of a sEMG-based torque estimation control strategy for a soft elbow exoskeleton. Robot. Auton. Syst. 111, 88–98 (2019)

    Article  Google Scholar 

  16. Vallery, H., Veneman, J., Asseldonk, E.V., et al.: Compliant actuation of rehabilitation robots. IEEE Robot. Autom. Mag. 15(3), 60–69 (Sep. 2008)

    Article  Google Scholar 

  17. Veneman, J.F., Ekkelenkamp, R., Kruidhof, R.: A series elasticand bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. Int. J. Robot. Res. 25(3), 261–281 (Mar. 2006)

    Article  Google Scholar 

  18. Sakagami, Y., et al.: The intelligent ASIMO: System overview and integration[C]. Int. Conf. Intell. Robots Syst., Switzerland: Lausanne. 2478–2483 (2002)

  19. Park S, Lee H, Hanson D, et al. Sophia-Hubo’s arm motion generation for a handshake and gestures. 15th International conference on ubiquitous robots, USA: Honolulu, 2018: 511–515

  20. Anonymous: ABB introduces YuMi a dual-arm co-robot. Manuf. Eng. 154(6), 22–22 (2015)

    Google Scholar 

  21. Albu-Schaffer, A., Haddadin, S., Ott, C., et al.: The DLR lightweight robot: design and control concepts for robots in human environments. Ind Robot Int J Robot Res Appl. 34(5), 376–385 (2007)

    Article  Google Scholar 

  22. Guizzo E, Ackerman E. How rethink robotics built its new baxter robot worker[EB/OL]. (2012-07-18) [2015-01-02]. http://spectrum.ieee.org/robotics/industrial-robots/rethink-roboticsbaxter-robot-factory-worker

  23. Maheu, V., Frappier, J., Archambault, P.S., et al.: Evaluation of the JACO robotic arm: Clinico-economic study for powered wheelchair users with upper-extremity disabilities//IEEE international conference on rehabilitation robotics. USA: Piscataway. 1–5 (2011)

  24. Phan S, Lioulemes A, Lutterodt C, et al. Guided physical therapy through the use of the barrett WAM robotic arm. IEEE Int Symp Haptic, Audio Visual Environ Games(HAVE). (2014)

  25. Kim, Y.-J.: Anthropomorphic low-inertia high-stiffness manipulator for high-speed safe interaction. IEEE Trans. Robot. 33(6), 1358–1374 (2017)

    Article  Google Scholar 

  26. Zhang J, Zhang H, Xiao XX: New identification method for backlash of gear transmission systems. IEEE Advanc Inform Manag, Comm, Electronic Automation Control Conference. 378–382 (2018)

  27. Yi, Y., Huang, K., Xiong, Y.S., et al.: Nonlinear dynamic modeling and analysis for a spur gear system with time-varying pressure angle and gear backlash. Mech. Syst. Signal Process. 132, 18–34 (2019)

    Article  Google Scholar 

  28. Margielewicz, J., Gaska, D., Litak, G.: Modelling of the gear backlash. Nonlinear Dynamics. 97(1), 355–368 (2019)

    Article  Google Scholar 

  29. Chen, L., Wang, X.S., Lu, J., et al.: Inverse transmission model and compensation control of a single-tendon-sheath actuator. IEEE Trans. Ind. Electron. 61(3), 1424–1433 (2014)

    Article  Google Scholar 

  30. Wu, Q.C., Wang, X.S., Chen, L., et al.: Transmission model and compensation control of double-tendon-sheath actuation system. IEEE Trans. Ind. Electron. 62(3), 1599–1609 (2015)

    Article  Google Scholar 

  31. Youcef-Toumi, K., Ito, O.: A time delay controller for systems with unknown dynamics. Am Control Conference. 904–911 (2009)

  32. Wang, Y.Y., Yan, F., Zhu, K.W., Chen, B., Wu, H.: A new practical robust control of cable-driven manipulators using time-delay estimation. Int J Robust Nonlinear Control. 29(11), 3405–3425 (2019)

    Article  MathSciNet  Google Scholar 

  33. Dong, K.H., Chang, P.H.: Robust tracking of robot manipulator with nonlinear friction using time delay control with gradient estimator. J. Mech. Sci. Technol. 24(8), 1743–1752 (2010)

    Article  Google Scholar 

  34. Khoury, G.M., Saad, M., Kanaan, H.Y., Asmar, C.: Fuzzy PID control of a five DOF robot arm. J Intell Robotic Syst. 40(3), 299–320 (2004)

    Article  Google Scholar 

  35. Noshadi, A., Shi, J., Lee, W.S., et al.: Optimal PID-type fuzzy logic controller for a multi-input multi-output active magnetic bearing system. Neural Computing Appl. 27(7), 2031–2046 (2016)

    Article  Google Scholar 

  36. Imanberdiyev, N., Kayacan, E.: A fast learning control strategy for unmanned aerial manipulators. J Intell Robotic Syst. 94(3–4), 805–824 (2019)

    Article  Google Scholar 

  37. Zhou, HB, Chen, R, Zhou, S, and Liu, ZZ. Design and analysis of a drive system for a series manipulator based on orthogonal-fuzzy PID control. Electronics. 8(9), (2019)

  38. Arun, N.K., Mohan, B.M.: Modeling, stability analysis and computational aspects of nonlinear fuzzy PID controllers. J Intell Fuzzy Syst. 31(3), 1807–1818 (2016)

    Article  Google Scholar 

  39. Adel T and Abdelkader C. Optimal design and stability analysis of a fuzzy PID controller. 15th Int Multi-Conference Syst, Signal Devices(SSD), 971–975 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Yin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(MP4 22,556 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, M., Xu, Z., Zhao, Z. et al. Mechanism and Position Tracking Control of a Robotic Manipulator Actuated by the Tendon-Sheath. J Intell Robot Syst 100, 849–862 (2020). https://doi.org/10.1007/s10846-020-01245-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-020-01245-6

Keywords

Navigation