
https://doi.org/10.1007/s10846-020-01248-3

A Novel Strategy for Automatic Error Classification and Error
Recovery for Robotic Assembly in Flexible Production

Ewa Kristiansen1 · Emil Krabbe Nielsen2 · Lasse Hansen3 ·David Bourne4

Received: 12 December 2019 / Accepted: 13 August 2020
© The Author(s) 2020

Abstract
In this article, we develop a novel strategy for automatic error classification and recovery in robotic assembly tasks. The
strategy does not require error diagnosis. It allows for effective reduction of an undetermined number of error states to 4,
without the need for further operator updates of error space. The strategy integrates existing methods for computer vision,
active vision and active manipulation. Our solution is implemented in a generic software framework, which is independent
from software and hardware for implementing error detection and allows for application in other assembly types and
components. The value of our strategy was experimentally validated on a simple case, where we inserted a battery into a cell
phone. The experiment was performed on 1500 assembly attempts and included 500 detected errors. The whole experiment
ran for 42 hours, with no need for operator assistance or supervision. The resulting classification rate is 99.6% and the
resulting recovery rate is 98.8%. The 6 unrecovered errors were successfully resolved in a successive assembly attempt.

Keywords Automatic error classification · Automatic error recovery · Robotic assembly · Flexible production ·
Semi-structured environment · Active vision

1 Introduction

Recently, companies must cope with short product life-
cycles, which are caused by rapidly changing technologies
and intense competition. When automating manufacturing
processes companies can invest in dedicated, hard automa-
tion. Unfortunately, these production lines must be reconfig-
ured for a new product variant, which is both time consum-
ing and expensive. Alternatively, companies can use robots
and programmable equipment to eliminate drastic changes

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s10846-020-01248-3) contains
supplementary material, which is available to authorized users.

� Ewa Kristiansen
ewa@m-tech.aau.dk

1 Department of Materials and Production, Aalborg University,
Fibigerstræde 16, 9220, Aalborg Ø, Denmark

2 Department of Electrical Engineering, Technical University
of Denmark, Elektrovej 326, 2800, Kgs. Lyngby, Denmark

3 Nel Hydrogen, Fueling and Solutions, Vejlevej 5,
7400 Herning, Denmark

4 Robotics Institute, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

to an existing manufacturing facility, with the changes being
addressed by software adjustments. Increasing the flexibil-
ity of industrial robotic setups is an important goal for future
production systems [1, 2] to make low volume production
cost effective.

Flexible robotic assembly is difficult to automate
because the variations between different batches and
the uncertainties and compliance introduced by flexible
fixtures and tools, make the conventional position-based
motion planning unreliable. The existing force/torque based
strategies offer the potential solution. A number of scientific
articles addresses this issue in the context of flexible
assembly. In [3–5], the authors develop the real-time force
controller to guide the robotic assembly. In [6] contact
forces are used for minimizing assembly time by empirical
self-tuning of parameters by the robot and using a learning
algorithm. In [7] the parameters are tuned with machine
learning using success/failure matrices as an objective
function. However, automated flexible assembly based on
force based strategies requires complex models for part
interactions and/or they need to be refined over many
runs with machine learning before they are applied for
controlling the assembly process.

In highly flexible assemblies, the uncertainties in the
process decrease the success rate of the assembly. The

/ Published online: 18 September 2020

Journal of Intelligent & Robotic Systems (2020) 100:863–877

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-020-01248-3&domain=pdf
http://orcid.org/0000-0002-1955-6805
https://doi.org/10.1007/s10846-020-01248-3
mailto: ewa@m-tech.aau.dk


implementation of error prevention can be expensive
and complex. This makes error detection and correction
a central feature for increasing the reliability of the
manufacturing process [8]. In [9] and [10] the authors
present a general framework for an error handling process,
which is consisting of; assembly monitoring, error diagnosis
and error recovery. The flow chart in Fig. 1 is adapted from
the framework. It consists of: error detection (returning a
boolean value), error classification (returning an error type),
error diagnosis (returning the cause of the specific error
type) and error recovery (executing the recovery strategy,
which is matching the specific error cause). This flow chart
can be used for both discrete and continuous error handling
and can be applied to any of the final stages of assembly:
approach, contact, force imposition and completion.

Multiple research projects have documented subprob-
lems found in error handling systems shown in Fig. 1.
Continuous monitoring of an assembly process with force-
torque sensors is studied in [11]. The measurements and
piecewise affine model of a mating process are used for
detecting early errors and applying different searching
strategies to guide the robot motions and eventually recover
from errors. In [12] the values of signals from force and
visual servoing are related to soft and hard constraints.
Soft constraints are favourable conditions for assembly:
the data from the monitoring sensors are fed to the reac-
tive controller, which is implemented to minimize deviation
from the constraint boundary and recover from some early
errors. Hard constraints are necessary conditions for suc-
cessful assembly and refer to the completion phase: if the
data from monitoring sensors violates hard constraints, the
assembly terminates as unsuccessful. Hard constraints are
not included in research [11] and [12].

Research presented in [8] and [7] is dealing with error
detection after the completion phase by using learning
algorithms and principal component analysis for force
signatures to distinguish between failed and successful
assemblies. Both methods are model free, but error
classification, diagnosis and recovery are not handled. Other

research [13] extends these methods with the classification
of error states and [14] further contributes to the state of the
art by relating the classified error states to different stages
of assembly. However, both papers leave the error recovery
to future research.

The most popular approaches for error diagnosis of a
discrete event system are finite state automaton and petri
nets, relating every fault to a unique data feature from the
sensor signals. As the transitions between the states can
be unobservable, the data features need to be classified
through some classification algorithms. In [15] a Mamdani
model is used as a rule implication in the fuzzy Petri
nets and the authors report 93% accuracy in diagnosing
five hardware induced failure root causes in a dual robot
assembly process. In [16] the authors use a probability
implication in the Bayesian Network where the diagnosis of
various fixture failures is based on sensor measurement data
during an assembly process. The work evaluates the optimal
sensor placement in the fixture and the node probabilities
of the Bayesian Network are obtained using Finite Element
Analysis to perform faulty assembly scenarios. The work
is evaluated on an automotive part showing it is efficient
and feasible. An alternative method for representing system
states is presented in [17]. The proposed framework is
based on an interval analysis approach and in particular it is
implementing max-plus algebra. The considered faults are
associated with the discrepancy between the expected and
monitored time used for transportation and for processing
steps in assembly. The essence of this approach is also its
disadvantage; namely depending on the type of error the
unsuccessful assemblies can take exactly the same time to
perform as the successful assemblies.

The complete solution for error handling in flexible
assembly, as shown in Fig. 1 is presented in [9]. However,
it requires an interaction with a human operator in initial
training phase to create an extensive knowledge database
of error types and associated recovery strategies. It is also
a problem that the new error types in the execution of
assembly need to be recovered manually and the knowledge

Fig. 1 Flow chart of an error
handling process

864 J Intell Robot Syst (2020) 100:863–877



database needs to be updated by a trained operator. In
this way, the system history and the model of errors is
continuously expanded, though contributing to a complex
robot control program. According to [18], 90% of the
system coding is devoted in automatic error recovery.

An interesting attempt to ease programming robots is
proposed in [19]. The presented error recovery approach
does not require error classification, error diagnosis or
even explicitly written error handlers. Instead, it is using
a reverse execution approach after an error is detected.
A number of steps in the robot program are backtracked
and then the assembly operation is repeated, allowing the
probabilistic uncertainties to fix themselves. Backtracking
is feasible only for some robot instructions and therefore
this approach is also relying on the operator, here classifying
the instructions as directly reversible, reversible with
minor/major modifications or not reversible. Moreover, all
the instructions need to be paired (for example ‘open
gripper’ with ‘close gripper’) and for some operations
the instructions cannot be reversed and their sequence
needs to be overridden by the user. The reverse execution
approach does not consider error propagation, giving tight
requirements that the occurrence and detection of error
happen during the execution of the same robot instruction.
It was not quantified whether this approach is easier to
program and integrate with error detection system compared
to approach with error associated recovery strategy.

The literature review does not reveal a solution for
error recovery in flexible assembly (especially for errors
in the completion phase) that does not require complex
process modelling and/or fault tolerant control and/or
knowledge repository and/or human supervision for updates
and handling new errors. The research presented in
this paper is solving this research gap. Inspired by the
definition of error recovery from [19] as bringing the
assembly part to the known initial location, we are allowing
the probabilistic uncertainties to fix themselves in the
successive assembly trials. Our novel strategy for error
classification and recovery is intended for the completion
phase of flexible assembly and solves the problems
introduced by an undetermined number of error states; it
allows for effective reduction of number of error states to 4
with the corresponding 3 recovery strategies. With the fully
defined model of errors, the robot control program is kept
simple and without a need for further operator updates.

There are two main contributions of this paper. The
first one is the development of a novel strategy for error
recovery from unsuccessful assemblies (also referred to as
errors in completion phase), which are imposed by semi-
structured environment of flexible assembly. The second
contribution is an implementation of this strategy in a
generalized software framework for broad applicability to
different assembly tasks in flexible production.

The errors handled in this paper originate from two
sources: flexible design of fixtures with preloaded springs
and compliance introduced to the robot tool when choosing
a suction based gripper. The first error source causes
position uncertainties of components prior and during the
assembly process and results in an undesired pick-up
location. Whereas the use of suction cups can result in no
grasp, as well as object slips because of inertia, varying
weight of objects or collision of parts. The higher the level
of flexibility, the more unstructured environment and the
bigger number of unsuccessful assemblies. We limit our
work to handling errors that are due to hardware and system
faults and execution failures, such as collisions and missing
assembly components.

The value of our strategy was demonstrated by experi-
mental validation of a robotic insertion of a battery into a
Nextel Blackberry 7520 cell phone and without any human
supervision. The conclusions are based on an extensive
experimentation with 1500 assembly attempts and including
500 detected errors. The results show a high rate of classi-
fied errors and recovered errors. The developed framework
also demonstrate an ability to self-recover from misclassi-
fied errors and unrecovered errors, which are due to the
errors occurring during recovery activities themselves, such
as battery slips and no grasp.

The rest of this paper is organised in the following
way. Section 2 presents the developed software framework.
Section 3 describes the strategy for error classification.
Section 4 presents a method for image processing.
Section 5 discusses error recovery. Section 6 describes
the experimental setup and Section 7 presents the error
detection system used for generating an input to the
developed software framework. The experimental results
and their analysis are presented in Section 8 and the key
points are summarised in Section 9.

2 Software Framework for Error
Classification and Recovery

The developed software framework relies on the redefined
flow chart for automatic error handling, as shown in Fig. 2,
which consists of only 3 subproblems, as opposed to 4
subproblems in the general framework shown in Fig. 1.
The excluded subproblem is error diagnosis, as our system
does not require any information about the cause of errors.
The developed framework includes only: error detection,
classifier of error states and error recovery.

The role of an error detection system is to distinguish
between a successful and failed assembly. In case of a
failure the error classification and error recovery systems
are executed in the loop two times and the recovery
is completed. The error classification system is applying

865J Intell Robot Syst (2020) 100:863–877



Fig. 2 Flow chart of a modified
error handling process

active vision and manipulation to identify 1 out of 4 error
states. The error state is then mapped to 1 out of 3 predefined
recovery strategies.

The details of the developed software framework for
error classification and error recovery, together with the
interfaces between these two subsystems are shown in
Fig. 3.

The two subsystems are tightly integrated with each
other, in a way that error classification and error recovery
are called two times. This software framework is the key
for a very efficient reduction of number of possible error
states and therefore also the number of recovery strategies.
Detailed explanation can be found in the following three
sections.

A coordination of hardware and software operation
is provided by a high level controller implemented in
the Robot Operating System (ROS). ROS is used as an
operating system, and ROS packages are written to collect
and process data from all sensors, communicate with
the robot controller and to handle robot commands and
interaction with a human operator.

3 Strategy for Error Classification

The system for classifying error states is activated by an
error detection system, whenever the unsuccessful assembly
is detected. The error detection system is described in
Section 7.

The developed classification system determines the error
state of an unsuccessful assembly. In this work we consider
three sources of errors: position uncertainties, compliance
of the tool and compliance of the fixture. Additionally the
compliance of the tool can cause no grasp, misgrasp or
undesired drop of the assembly object. These can bring the
object to undetermined number of error states, which are

representing here the object’s undesired locations outside
the ground body. In this work we suggest an approach how
to convert this undetermined number of error states into only
4 error states and this way limit the search space of the
classifier. The approach is generic and can be used for other
assembly components and assembly types.

After an unsuccessful assembly is detected the object
is relocated from the predefined pick up point to the
predefined position in the pick up bin and also reoriented
so that the reference frame of the assembly object, {B},
is aligned to the reference frame of the robot, {R}, as
exemplified in Fig. 4. Such manipulation of the object
makes the robot move out of the frame for the range camera
and it makes error states not to be related to any primary
position and orientation of the object when the unsuccessful
assembly is detected, but instead it is linked only with a new
orientation of the object in a known position.

The robot tool can unintentionally drop the assembly
object on its way to the pick up bin. The assembly object
can also fall down on the assembly platform or outside
the assembly platform during the assembly process and
therefore the assembly object can not be picked up from the
pre-defined position, located in the center of the intended
mating. Regardless of the result of ‘Relocate and reorient
object’ the succeeding function ‘Localize approx. center
of object’ from Fig. 3, can progress because the assembly
object is either laying in the pick up bin or outside the
ground body, which gives the proper background for image
processing, described in Section 4.

Alignment of the frames brings the assembly object
to one of four possible orientations, referred to as error
states and explained on an example in Fig. 5; Not flipped
- Not turned, NF-NT, Not flipped-turned, NF-T, Flipped-
Not turned, F-NT and Flipped-Turned, F-T. The error states
can relatively easily be distinguished by the presence of at
least two unique features on the assembly object, facing in

866 J Intell Robot Syst (2020) 100:863–877



Fig. 3 The generalised software
framework for automatic error
classification and error recovery.
RS1, RS2 and RS3 denote
different recovery strategies

two predefined directions. System in state NF-NT has one
feature, which is a sticker shown in Fig. 5, pointing upwards
and the other feature, which is a connector in Fig. 5, on the
left hand side.

These 4 error states define the whole search space for the
classification system and represent any undesired location
of the assembly object outside a ground body and within
the work range of the range camera. Such a big reduction in
number of error states is though at the expense of diagnosing
the cause of the failure in the assembly. It is therefore
not possible to conclude and learn from the unsuccessful

assemblies, whether they are due to compliance of the tool,
compliance of the fixture or positional accuracy of the
assembly object in the bin.

Error states are implemented using the error state tree
model, presented in Fig. 6. Error state tree model consists of
two levels. On the first level it is distinguished whether the
assembly object is flipped or not flipped and on the second
level the additional information is added to the error state
description, about the assembly object being turned or not
turned. The two levels in the error state tree represent two
steps in the classification procedure, as shown in Fig. 3.

867J Intell Robot Syst (2020) 100:863–877



Fig. 4 Coordinate frames: robot {R}, range camera {C}, image {I},
platform {A} and assembly object {B}

Every step is proceeded with error recovery strategy for
robotic manipulation of the assembly object, which includes
relocation and reorientation.

Error classification uses processed image data, which
is provided by two vision sensors; range camera and HD
camera. Range camera is in charge of detecting the pick-up
location of the assembly object. Data from the HD camera
has a higher pixel resolution and is used for classification of
error states, finding the center and geometry of the assembly
object. Additionally in connection to the HD camera we
use active vision, which is a robotic manipulation of the
assembly object to the predefined vicinity of the camera, in
order to avoid any issues related to the limited range of the
camera as well as disruption of frames by other objects in
the robotic cell. Active vision is represented in Fig. 3 by the
function ‘Move object in front of HD camera’. In the first
classification step the assembly object is moved in front of
the HD camera such that a surfaces with a unique feature
points towards the camera. In the second classification step
another surface with a unique feature points towards the
camera. Both orientations are exemplified in Fig. 7.

Since the outcome of the first classification step is not
influenced by the specific location of the suction cup on

Fig. 5 The 4 error states exemplified on the orientation of the battery’s
coordinate frame {B}; NT-NT, F-NT, F-T, F-T

Fig. 6 State tree with 4 error states

the assembly object, the low pixel resolution data from the
range camera is sufficient for localization of approximate
center of the assembly object.

4 Image Processing

The image processing method presented in this section
should be considered as a secondary contribution of the
paper, which is though a necessary mean for implementation
and testing of the developed system for error classification
and error recovery.

The function ‘Process image data’ from Fig. 3 imple-
ments a computer vision (CV) routine, which is inspired
by [20] and [21]. The CV routine consists of the follow-
ing steps; subtract the background image, add an adaptive
threshold to the image, erode and dilate image, and perform
blob analysis. Figure 8 shows images of CV routine, which
are created from case data provided by the Kinect camera.

On the final image from this example it can be seen
that when using the Kinect data it is difficult to specify the
geometry of the assembly object, and in the case example
from Fig. 8 to distinguish between the long and short side
of the battery. This information is necessary for making
reorientation in error recovery. For this purpose we process
data from the HD camera, by fitting a rectangle to the
battery’s blob with the least square optimisation method.
For the sake of simplicity of solution an Aritificial Neural
Network (ANN) is used as a diagnostic tool, instead of Deep
Neutral Network.

As shown on the right hand side of Fig. 7, the close-
up image of the long side of the battery is taken by the
HD camera. The raw image is prepocessed. First a region
of interest containing connectors of the battery is chosen to
achieve a higher classification accuracy, as only few training
examples are used, considering that ANNs are commonly
trained on thousands of samples. Next, a threshold is applied
to convert the color image to a binary image in black and
white.

An input layer to ANN is a vector with 2.760 binary
nodes, corresponding to pixels of the binary image. The
ANN is a multilayer perceptron (MLP) and has one hidden

868 J Intell Robot Syst (2020) 100:863–877



Fig. 7 Orientation of battery in
front of HD camera in Step 1
and Step 2 of error classification

layer containing eight nodes and an output layer containing
three nodes.

The three nodes in the output layer represent either of the
following groups of error states:

– NF-NT - the unique feature is located at the top,
– NF-T - the unique feature is located at the bottom,
– F-T and F-NT - the unique feature is not detected.

The ANN is trained on 60 samples and then tested on
100 samples that are not part of the training data. Both the
training set and the test set contain close to equal amount of
error state groups. Thus for the training set, each error state
group is represented by 20 images.

The ANN applied achieves an accuracy of 100% on the
100 test samples. The ANN is tested with a step size of
0.01, a stopping criteria of 10.000 steps or a maximum
error of 0.0001. The prediction accuracy of the ANN
saturates between 50 and 60 samples and training with more
than 60 samples does not increase prediction accuracy of
the ANN.

5 Strategy for Error Recovery

The goal of recovery system is to bring the assembly
object back to the pick up bin, where both its position
and orientation are fully defined. The assembly object
is then ready for a new assembly attempt and the
error is considered recovered. As shown in Fig. 3, the

recovery system is executed two times and each call
corresponds to 1 out of 3 predefined recovery strategies,
RS1, RS2 and RS3, associated with a specific error
state. The recovery strategies along with the software
implementation of the error recovery system are generic
and can be used for other assembly products and assembly
types.

The recovery strategy, RS1, is executed when the error
state is classified as Flipped, F. The recovery strategy
rotates the battery 180◦ around YB by robotic manipulation
and using a purposely designed flipping fixture to accom-
modate for the geometry of the battery. The flipping fixture
is the only component dependent part of our solution. An
example showing the flipping fixture and flipping proce-
dure is shown in Fig. 9. The flipping procedure consists
of the following steps; position the battery along one inner
wall of the fixture, push it over to the other wall of the fix-
ture and re-grasp the battery from the opposite side. After
flipping the assembly object the recovery strategy, RS2, is
executed.

The recovery strategy, RS2, is associated with the error
states NF and NT . It relocates and reorients the assembly
object, as described in Section 3.

The recovery strategy, RS3, is executed when the error
state is classified as Turned, T. This recovery strategy rotates
the assembly object 180◦ around ZB . It is done by 180◦
rotation of the robot wrist joint and re-grasping. Lastly, the
recovery strategy, RS2, is executed again and the error is
considered fully recovered.

Fig. 8 CV routine: Input image, background image, adaptive threshold image, eroded and dilated image, and final image after blob analysis

869J Intell Robot Syst (2020) 100:863–877



Fig. 9 An example of the fixture and flipping procedure for a battery

6 Experimental Setup

The added value of the developed strategy for automatic
error classification and recovery is demonstrated by
experimental validation, on the case example of insertion
of a battery into a Nextel Blackberry 7520 cell phone. We
chose assembly of these two components mainly because
of two challenges this assembly implies; one related to the
press fit and the other one related to the need of grasping
from one side only.

6.1 Hardware Setup

The main hardware setup for physical experiments is shown
in Figs. 10 and 11 and consists of:

1. ABB IRB-140 6DOF robot arm
2. Assembly platform with:

(a) 4 one axis force sensors with a load capacity of 22.7
kg from Loadstar

(b) 4 preloaded springs
(c) fixture for a cell phone
(d) cell phone
(e) flexible fixture for a battery
(f) battery

3. Suction cup
4. Point Grey HD camera
5. Microsoft Kinect camera

The assembly platform is constructed to provide mount-
ing of; four force sensors, a fixture holding the cell phone
and a flexible fixture for the battery, also referred to as the
pick up bin.

The four springs are installed between the fixture for a
cell phone and the assembly platform, in order to prevent
harmful collisions and to allow for producing different
values of force signals by varying the value of preloading.

The cell phone with its fixture and the pick up bin are
fixed to the platform, but the battery is not fixed to the
pick up bin. In order to anticipate process uncertainties and
increase robustness to uncertainties the size of the pick up

bin is relatively big to allow for adding a pseudo random
noise to the initial, known location of the battery in the
pick up bin. Detailed description of the noise used can be
found in [7]. Introduction of a pseudo random noise makes it
possible to control the nature of the errors, it also makes the
experiments repeatable and comparable while emulating the
flexible production environment, where the assembly object
is delivered to the assembly area with random position
and orientation and where the change to another type of
assembly object does not necessarily require the change of
fixture.

The Kinect camera is placed on top of the robot cell,
facing downward. The low pixel resolution of the camera
makes it difficult to accurately determine the orientation
of the battery. The Kinect camera is thus used in this
work for providing the location of the assembly platform,
the location of the cell phone and the position of the

Fig. 10 Hardware setup

870 J Intell Robot Syst (2020) 100:863–877



Fig. 11 Top view of the assembly platform

battery. The position of the battery is defined in 3D space,
in Kinect’s coordinate system {C}, shown in Fig. 4. The
possible CxB , CyB coordinates are constrained by the
position and the range of the Kinect camera, defining the
boundary of the work area for our developed system. In
our particular case studies the CzB coordinates are limited
to only three possible battery’s positions: on the top of the
mobile, on the assembly platform or outside the assembly
platform. Therefore in this study the CzB coordinates for the
battery’s position are precoded, depending on its CxB , CyB

coordinates relative to the assembly platform. If the robot
cell or the assembly components should have more complex
geometry and should encounter for any CzB coordinates
for the battery’s position, it might be necessary to upgrade
hardware with stereo vision.

The HD camera is attached to the side of the robot cell. Its
position is predefined and therefore giving the possibility to
implement active vision. The HD camera is used whenever
the higher resolution images are required.

The source of error in the presented hardware setup is
introduced by:

– low position and orientation tolerances of battery in the
pick up bin,

– compliance introduced to the robot tool, by choosing a
suction cup gripper,

– compliance due to integration of the four preloaded
springs to the design of assembly platform.

The assembly robot is programmed online for a specific
pick-up location of the battery and the operator does not
take into account the implications from semi-structured
environment. The robot program has an influence on the
number of successful assemblies. The authors acknowledge
the importance of the motion plan for the total performance
of the whole assembly operation. Though the success rate
of the assembly is not the topic of this article, instead the
focus is on the success rate of error classification and error
recovery.

6.2 Software Setup

The developed software framework for automatic error
classification and error recovery is a stand alone system.
Though in order to conduct the validation experiments
we implement it in the software framework for the entire
flexible robotic assembly process, including autonomous
parameter optimisation of fine motions and production,
explained in Fig. 12.

First in function ‘Calibrate frames’, the reference frames
are calibrated in order to avoid systematic errors. Calibra-
tion routine is described in details in the Supplementary
Material. After calibration a classifier is trained in function
‘Train classifier’ to distinguish between a successful and a
failed assembly, based on data from the force signals. Then
in function ‘Optimize parameters’ the fine motion assem-
bly parameters, such as angle of insertion, are optimised
in order to achieve the highest probability for successful
assembly with a pseudo random noise and compliance intro-
duced to the fixture and the tool. The assembly is performed
in function ‘Assemble with pseudo random noise’ and the
completed assembly is examined for success in function
‘Detect unsuccessful assemblies’. Detected failures activate
the system ‘Classify error and recover’. With the optimised
parameters the ‘Parameter Optimisation’ can terminate and
the assembly can be executed in ‘Production’. Due to exist-
ing chance for a failed assembly in ‘Production’ this process
is also monitored by the system ‘Detect unsuccessful assem-
blies’ and the system ‘Classify error and recover’. For
further explanation of the method for classifier training,
parameter optimisation and the noise refer to [7].

7 Error Detection

The proposed novel strategy for error classification and
error recovery is initialized when the error detection system
notifies about an unsuccessful assembly, Fig. 2. The only
requirement for the interface is the boolean value. Therefore
the strategy gives the flexibility to choose between different
methods implementing the error detection. For testing
the strategy we chose to use the error detection method
presented in details in [7] and summerized in the following
two sub-sections.

7.1 Preprocessing

The error detection method is utilizing a classifier. When
training a classifier, it is possible to increase its accuracy by
preprocessing the training data [22] and hence increasing
distinction between the two classes; failed assembly and
successful assembly. The raw signal is preprocessed in the
following way:

871J Intell Robot Syst (2020) 100:863–877



Fig. 12 Software framework for
flexible robotic assembly. The
function in a red box is a focus
of this paper, the function in a
blue box is described in the
Supplementary Material and the
functions in black boxes are
presented in [7]

– Resampling: Linear Interpolation
– Feature combination: Root Mean Square
– Feature extraction: Principal Component Analysis
– Feature scaling: Range scaling

The classifier giving inputs to the optimization is a
trained Support Vector Machine (SVM) [23]; this type of
classifier performs well with little training data compared to
many other classifiers [24]. A Radial Basis Function kernel
with two parameters is used for the SVM. Grid search is
used to find the optimal kernel parameters by using two-fold
cross validation to evaluate them [25].

The force signal is resampled by linear interpolation
because the sampling frequency of the force sensors is
uneven. For each training example we are taking a number
of observations, also referred to as features and indexed
by j ∈ [1; 81]. For each feature we are measuring the
force magnitude in millipounds, denoted as xi,j , where i

corresponds to the id of a force sensor. A requirement
for the input signal to an SVM is that the features must
be comparable with regard to occurrence in time across
training examples [26].

For each feature, j ∈ [1; 81], the force magnitudes from
four force sensors, [x1,j , x2,j , x3,j , x4,j ] are combined into
one signal, xj . The results are shown in Fig. 13 for all
100 training examples and have been calculated using the
following equation:

∀j ∈ [1; 81] : xj =
√

x2
1,j + x2

2,j + x2
3,j + x2

4,j (1)

Principal Component Analysis (PCA) [27] can be
used for transforming signals linearly to decrease a
high correlation between features and decrease a large
feature space dimensionality [8]. This is advantageous
since some features can be regarded as noise if there
is little or no difference between these features for both
classes. The principal component represents the maximum
variance in descending order of the transformed dataset.
When calculating the principal components of xj , the
first principal component accounts for the maximum
variance in all the training examples. All subsequent
principal components will account for decreasing variance
in decreasing order. The last principal component herby
accounts for the feature with the least variance for all
training examples.

Fig. 13 Plot of 100 signals corresponding to 100 training examples
classified by the operator from failed (red) and successful (blue) when
tapping [7]

872 J Intell Robot Syst (2020) 100:863–877



In order to improve the classification accuracy the last
and final preprocessing step is to scale the value of the force
magnitude, xj , so that xj ∈ [0, 1] [26, 28]. One minimum
and one maximum value of magnitude, denoted by minj

and maxj , is found for each j . The minimum and maximum
value is found by searching through all training examples
for each j , and is used for scaling by the following formula:

∀j ∈ [1; 81] : X(i,j) = x′
(i,j) − minj

maxj − minj

(2)

7.2 SVM Training

Data collection from four force sensors and involving
tapping, as shown in Fig. 14, resulted in two distinct bands
describing the successful or failed assemblies. The two
bands are marked by different colors in Fig. 13. They are
only distinct at three peaks corresponding to tree taps by the
robot.

The classifier used for experimentation was trained on
100 training examples and 8 principal components, in order
to represent all three taps on each corner of the battery slot,
because the battery can be in a configuration where there
will be no force exertion on one or two of the battery corners
during tapping. This could result in misclassification when
using only 1 principal component representing only the tap
with force exertion.

8 Experimental Results

In order to validate the performance of developed strategy
for error classification and error recovery, an external
camera system is installed. The system makes a video of
each assembly attempt and also captures two images; one
prior and one after error classification and recovery, as
shown in Fig. 3. The examples of images taken with the
external camera system are shown in Fig. 15.

A total of 1500 assemblies are performed, including 500
assemblies with manually tuned parameters, 500 assemblies
made during ‘Parameter Optimization’ and 500 assemblies

Fig. 14 Data collection strategy using three taps [7]

Fig. 15 Examples of unsuccessful assemblies, before execution of
error classification and recovery

made during ’Production, both procedures explained in
Fig. 12. The performance of the whole experiment with
1500 assemblies took 42 hours. During this time the system
was running automatically, without any need for operator
assistance and supervision.

As the focus is not solely on optimisation of the
motion plan, but primarily to test the performance of error
classification and recovery, a high number of errors are
required. For this reason a large amount of positional noise
is added to the battery. As a result, out of 1500 assemblies,
500 assemblies were detected unsuccessful and used to test
the performance of error classification and recovery system.

For each of 500 unsuccessful assemblies, two images
are manually compared with the classified error states and
recovered errors. The results of experiments are summarised
in Tables 1 and 2. An example experiment is shown in the
video (Online Resource 1).

8.1 Analysis Of Results From Error Classification

It is observed that 498 out of 500 unsuccessful assemblies
are classified correctly and only 2 unsuccessful assemblies
are misclassified. The total classification rate is therefore
99.6%.

All 496 correctly classified error states are NF-NT. The
remaining 2 correctly classified error states are NF-T and
F-T.

The 2 unsuccessful assemblies in ‘Production’ are
misclassified as NF-NT. They are shown in Fig. 16 and the
images are taken prior to classification. In the case shown
on the right hand side of Fig. 16, the battery rests on the wall
of the battery slot. In the case shown on the left hand side of
Fig. 16, the battery is missing.

The incorrect classification as NF-NT happens when
there is no battery attached to the suction cup while taking

873J Intell Robot Syst (2020) 100:863–877



Table 1 Experimental data from all assemblies

Manually tuned Parameter In Production

parameters optimization

Assemblies 500 500 500

Detected errors 192 189 119

Undetected errors 0 0 3

Detection rate [%] 100 100 99.4

Classified errors 192 189 117

Misclassified errors 0 0 2

Classification rate [%] 100 100 98.3

Recovered errors 190 187 117

Unrecovered errors 2 2 2

Recovery rate [%] 98.96 98.94 98.32

images with HD camera and it is due to the fact that ANN is
not trained on the images with no battery present. The lack
of battery on the HD image indicates that either the battery
is dropped while being moved by the robot or the suction
cup fails to pick up the battery.

The reason for misclassification is therefore the effect
of introducing the compliance to the robot tool and the
fixture, together with the lack of training samples for ANN
representing the case with no battery. This type of misclassi-
fication can possibly be avoided by extending the error
state tree model, presented in Fig. 6, with additional error
state, Not available, NA. The new error state, NA should
be implemented on both levels of error state tree model, in
order to cover the whole time period when the battery is
manipulated by the robot during error classification.

8.2 Analysis Of Results From Error Recovery

It is observed on the images that 494 out of 500 unsuccessful
assemblies are recovered, giving the total recovery rate of
98.8%.

The assembly from the correctly classified error state
NF-T is not recovered, due to unsuccessful pick up of the
battery after execution of recovery strategy. There are also 5
unrecovered assemblies from the error state NF-NT. The 3

of those unrecovered assemblies are classified correctly, but
were not placed back in the pick up bin because the suction
cup dropped the battery during the robotic manipulation.
The remaining 2 unrecovered assemblies are the ones being
misclassified.

Therefore rather than measuring the quality of the
developed system for error recovery, the results are proned
by the misperformance of error classification system and
disadvantage of introducing the compliance to the robotic
tool and fixture. The recovery rate could possibly be
improved by hardware implementation of sensors, which
are giving feedback signal related to the presence of the
battery on the suction cup.

Despite the unrecovered assemblies, the system is
capable of running without an operator assistance. In the
successive assembly attempt the function Localize approx.
center of object, shown in Fig. 3, can find the battery
unintentionally dropped by the suction sup in the previous
assembly attempt, as long as it is within the work range of
Kinect camera and outside the mobile’s slot.

The achieved recovery rate of 98.8%, which is using
discrete error detection and error recovery post assembly,
exceeds the results in [19], reporting the recovery rate of
82% from 22 errors when using continuous detection and
continuous recovery with reverse execution. Similar to the

Table 2 Detailed data from unsuccessful assembly experiments

NF-NT NF-T F-T Total Rate [%]

Unsuccessful assemblies 498 1 1 500

Classified errors 496 1 1 498 99.6

Misclassified errors 2 0 0 2

Recovered errors 493 0 1 494 98.8

Unrecovered errors 5 1 0 6

874 J Intell Robot Syst (2020) 100:863–877



Fig. 16 Unsuccessful
assemblies misclassified as
NF-NT

study proposed in this paper, [11] introduces positional
uncertainty to the assembly process. Recovery from the
assembly errors is determined from the estimated contact
forces and related to the pre-defined motion patterns. Four
different strategies are evaluated, and a recovery rate of
94–98% is achieved.

A direct comparison of the results is, however, not
possible as the shared database of errors does not exist,
the types of errors differ and they occur under different
conditions. All three recovery approaches are, however,
flexible and require minor efforts in comparison to [9] and
the methods reviewed in [10].

9 Conclusions

The novel strategy for automatic error classification and
error recovery was developed and implemented to suit the
challenges of robotic operation in the flexible assembly
cell and arising due to low positional tolerances of parts
and compliance in fixtures and robot tools. The designed
software framework gave the possibility to reduce the
number of error states to only 4, without the need for
operator updates. It was only possible by introducing the
unique relation of errors to the orientation of the assembly
object after it has been manipulated by the robot when using
active vision.

The proposed solution for error handling was tested on
1500 assembly attempts, whereas 500 were detected as
unsuccessful and used as an input to error classification
and error recovery system. The whole experiment was
running for 42 hours, with no need for operator assistance
or supervision. The resulting diagnosis rate is 99.6% and the
resulting recovery rate is 98.8%. The 6 unrecovered errors
were succesfully and automatically recovered from in the
successive assembly attempt.

It is possible to further improve the performance rate
of strategy for automatic error classification and error
recovery, by software and hardware implementation, which
allows for catching the exception when the battery is
dropped by the robot tool and prevents proper functioning
of the proposed error handling system. This can be done
by extending the number of ANN training samples with the
ones showing no battery to the HD camera, by introducing

an extra error state, NA, in the error state tree model and/or
by implementing a sensory feedback for detection of battery
on the tool.

The future work can focus on optimisation of time
for error classification and error recoveries, as current
static image capture is inefficient time and space wise.
The future research can investigate to which degree the
presented strategy for error classification and recovery can
be used for assembling other products and for handling
other error types. It would also be interesting to study a
hybrid system for error classification and recovery, which
is addressing both the probabilistic uncertainties, using the
strategy presented in this paper, and the exogenous errors,
using knowledge database.

Acknowledgements We would like to thank Nishant Kelkar for his
contributions to methodology and software. The authors would also
like to thank Alberto Rodriguez and Robert Paolini for their help.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.

References

1. SPARC, euRobotics AISBL: Multi-annual roadmap - for robotics
in europe (2016)

2. Robotics VO: A roadmap for u.s. robotics from internet to robotics
(2016)

3. Vaaler, E.G., Seering, W.P.: A machine learning algorithm
for automated assembly. In: Robotics and Automation, 1991.
Proceedings., 1991 IEEE International Conference on, pp. 2231–
2237 (1991). https://doi.org/10.1109/ROBOT.1991.131962. IEEE

4. Newman, W.S., Zhao, Y., Pao, Y.-H.: Interpretation of force and
moment signals for compliant peg-in-hole assembly. In: ICRA,
pp. 571–576 (2001). https://doi.org/10.1109/ROBOT.2001.932611

5. Jörg, S., Langwald, J., Stelter, J., Hirzinger, G., Natale, C.: Flex-
ible robot-assembly using a multi sensory approach. In: Robotics
and Automation (ICRA), 2000 IEEE International Conference

875J Intell Robot Syst (2020) 100:863–877

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
https://doi.org/10.1109/ROBOT.1991.131962
https://doi.org/10.1109/ROBOT.2001.932611


on, pp. 3687–3694 (2000). https://doi.org/10.1109/ROBOT.2000.
845306. IEEE

6. Marvel, J.A., Newman, W.S., Gravel, D.P., Zhang, G., Wang, J.,
Fuhlbrigge, T.: Automated learning for parameter optimization of
robotic assembly tasks utilizing genetic algorithms. In: Robotics
and Biomimetics, 2008. ROBIO 2008. IEEE International Con-
ference on, pp. 179–184 (2009). https://doi.org/10.1109/ROBIO.
2009.4913000. IEEE

7. Krabbe, E., Kristiansen, E., Hansen, L., Bourne, D.: Autonomous
optimization of fine motions for robotic assembly. In: Robotics
and Automation (ICRA), 2014 IEEE International Conference
on, pp. 4168–4175 (2014). https://doi.org/10.1109/ICRA.2014.
6907465. IEEE

8. Rodriguez, A., Bourne, D., Mason, M., Rossano, F.G., Wang,
J.: Failure detection in assembly: Force signature analysis. In:
Automation Science and Engineering, 2010 IEEE Conference on,
pp. 210–215 (2010). https://doi.org/10.1109/COASE.2010.5584
452. IEEE

9. Camarinha-Matos, L.M., Lopes, L.S., Barata, J.: Integration and
learning in supervision of flexible assembly systems. IEEE Trans.
Robot. Autom. 12(2), 202–219 (1996). https://doi.org/10.1109/70.
488941

10. Loborg, P.: Error recovery in automation - an overview. In: AAAI
Technical Report SS-94-04, pp. 94–100 (2001)

11. Chen, F., Cannella, F., Huang, J., Sasaki, H., Fukuda, T.: A study
on error recovery search strategies of electronic connector mating
for robotic fault-tolerant assembly. J. Intell. Robot. Syst. pp. 257–
271 (2015). https://doi.org/10.1007/s10846-015-0248-5

12. Hamner, B., Koterba, S., Shi, J., Simmons, R., Singh, S.:
An autonomous mobile manipulator for assembly tasks. Auton.
Robot. 28(1), 131 (2010). https://doi.org/10.1007/s10514-009-
9142-y

13. Hayami, Y., Shi, P., Ramirez-Alpizar, I.G., Harada, K.: Multi-
dimensional error identification during robotic snap assembly. In:
Advances in Mechanism and Machine Science, pp. 2189–2198
(2019). https://doi.org/10.1007/978–3–030–20131–9 217

14. Aronson, R.M., Bhatia, A., Jia, Z., Guillane-Bert, M., Bourne,
D., Dubrawski, A., Mason, M.T.: Data-driven classification of
screwdriving operations. In: Springer Proceedings in Advanced
Robotics, pp. 244–253 (2016). https://doi.org/10.1007/978–3–
319–50115–4 22

15. Wu, Z., Hsieh, S.-J.: A realtime fuzzy petri net diagnoser for
detecting progressive faults in plc based discrete manufacturing
system. Int. J. Adv. Manuf. Technol. 61(1-4), 405–421 (2012).
https://doi.org/10.1007/s00170-011-3689-4

16. Liu, Y., Jin, S., Lin, Z., Zheng, C., Yu, K.: Optimal sensor
placement for fixture fault diagnosis using bayesian network.
Assem. Autom. 31(2), 176–181 (2011). https://doi.org/10.1108/
01445151111117764

17. Majdzik, P., Akielaszek-Witczak, A., Seybold, L., Stetter, R.,
Mrugalska, B.: A fault-tolerant approach to the control of a
battery assembly system. Control. Eng. Pract. 55, 139–148 (2016).
https://doi.org/10.1016/j.conengprac.2016.07.001

18. Hasegawa, M., Takata, M., Temmyo, T., Matsuka, H.: Modelling
of exception handling in manufacturing cell control and its appli-
cation to plc programming. In: Robotics and Automation, 1990.
Proceedings., 1990 IEEE International Conference on, pp. 514–
519 (1990). https://doi.org/10.1109/ROBOT.1990.126031. IEEE

19. Laursen, J.S., Ellekilde, L.-P., Schultz, U.P.: Modelling reversible
execution of robotic assembly. In: Robotica, pp. 625–654 (2018).
https://doi.org/10.1017/S0263574717000613

20. El-Wardany, T.I., Gao, D., Elbestawi, M.A.: Tool condi-
tion monitoring in drilling using vibration signature anal-
ysis. Int. J. Mach. Tools Manuf. 36(6), 687–711 (1996).
https://doi.org/10.1016/0890-6955(95)00058-5

21. Hsueh, Y.-W., Yang, C.-Y.: Prediction of tool breakage in
face milling using support vector machine. Int. J. Adv.
Manuf. Technol. 37(9-10), 872–880 (2008). https://doi.org/10.
1007/s00170-007-1034-8

22. Batal, I., Hauskrecht, M.: A supervised time series feature
extraction technique using dct and dwt, In: Machine Learning
and Appications, Fourth International Conference on, pp. 735–739
(2009). https://doi.org/10.1109/ICMLA.2009.13. IEEE

23. Chang, C.-C., Lin, C.-J.: Libsvm: a library from support vector
machines, software available at http://www.csie.ntu.edu.tw/cjlin/
libsvm (2001)

24. Manning, C.D., Raghavan, P., Schötze, H.: An introduction to
information retrieval. Cambridge University Press, Cambridge
(2008). ISBN: 0521865719

25. Staelin, C.: Parameter selection for support vector machines.
HPL-2002-354 (R.1) (2003)

26. Hsu, C.-W., Chang, C.-C., Lin, C.-J.: A practical guide to support
vector classification (2016). https://www.csie.ntu.edu.tw/∼cjlin/
papers/guide/guide.pdf

27. Shlens, J.: A tutorial on principal component analysis. In:
Systems Neurobiology Laboratory, Salk Institute for Biolog-
ical Studies (2005). https://www.cc.gatech.edu/∼lsong/teaching/
CX4240spring16/pca schlens.pdf

28. Edwards, C., Raskutti, B.: The effects of attribute scaling on the
performance of support vector machines. In: AI 2004: Advances
in Artificial Intelligence, pp. 500–512 (2004). https://doi.org/10.
1007/978–3–540–30549–1 44. Springer

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Ewa Kristiansen received her PhD degree from the Department of
Production at Aalborg University, Denmark, in 2009, and continued
11 years with an academic career in the Department of Materials
and Production at Aalborg University, Denmark. In 2007 she was
a visiting graduate student at The Robotics Institute at Carnegie
Mellon University, USA. Her research interests include automation of
manufacturing processes, scheduling of industrial robots, and design
and control of mechatronic systems. She is currently employed as a
Senior Robot and Controls Engineer in Grundfos.

Emil Krabbe Nielsen received his MSc degree in the Department of
Mechanical and Manufacturing Engineering at Aalborg University,
Denmark, in 2013. In 2012 he was a visiting graduate student at
The Robotics Institute at Carnegie Mellon University, USA. He is
now working towards a PhD degree in the Department of Electrical
Engineering in Technical University of Denmark. His research project
is about functional modelling of water treatment systems and his
research interests are related to fault diagnosis. He is currently
employed as an Onboarding Specialist at Kairos Technology AS.

876 J Intell Robot Syst (2020) 100:863–877

https://doi.org/10.1109/ROBOT.2000.845306
https://doi.org/10.1109/ROBOT.2000.845306
https://doi.org/10.1109/ROBIO.2009.4913000
https://doi.org/10.1109/ROBIO.2009.4913000
https://doi.org/10.1109/ICRA.2014.6907465
https://doi.org/10.1109/ICRA.2014.6907465
https://doi.org/10.1109/COASE.2010.5584452
https://doi.org/10.1109/COASE.2010.5584452
https://doi.org/10.1109/70.488941
https://doi.org/10.1109/70.488941
https://doi.org/10.1007/s10846-015-0248-5
https://doi.org/10.1007/s10514-009-9142-y
https://doi.org/10.1007/s10514-009-9142-y
https://doi.org/10.1007/978--3--030--20131--9{_}217
https://doi.org/10.1007/978--3--319--50115--4_22
https://doi.org/10.1007/978--3-319--50115--4_22
https://doi.org/10.1007/s00170-011-3689-4
https://doi.org/10.1108/01445151111117764
https://doi.org/10.1108/01445151111117764
https://doi.org/10.1016/j.conengprac.2016.07.001
https://doi.org/10.1109/ROBOT.1990.126031
https://doi.org/10.1017/S0263574717000613
https://doi.org/10.1016/0890-6955(95)00058-5
https://doi.org/10.1007/s00170-007-1034-8
https://doi.org/10.1007/s00170-007-1034-8
https://doi.org/10.1109/ICMLA.2009.13
http://www.csie.ntu.edu.tw/cjlin/libsvm
http://www.csie.ntu.edu.tw/cjlin/libsvm
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.cc.gatech.edu/~lsong/teaching/CX4240spring16/pca_schlens.pdf
https://www.cc.gatech.edu/~lsong/teaching/CX4240spring16/pca_schlens.pdf
https://doi.org/10.1007/978--3--540--30549--1_44
https://doi.org/10.1007/978--3-540--30549--1_44


Lasse Hansen received his MSc degree in the Department of
Mechanical and Manufacturing Engineering at Aalborg University,
Denmark, in 2013. In 2012 he was a visiting graduate student at The
Robotics Institute at Carnegie Mellon University, USA. He is currently
employed as a team leader at Nel Hydrogen, Denmark, where he is
leading the development of the next product generation of heavy duty
hydrogen fueling station. He has previously worked as a Production
Engineer in EagleBurgmann.

David Bourne is a Principle System Scientist in the Robotics
Institute at Carnegie Mellon University, where he heads the Rapid
Manufacturing Lab. Dr. Bourne’s research focuses broadly on building
intelligent systems for automated manufacturing. It is including
the following research issues; representing behaviour in the design
process, the semantics of tolerance and design for manufacturing
and manufacturing feedback to design. He has published over 70
manufacturing publications and has had eight patents.

877J Intell Robot Syst (2020) 100:863–877


	A Novel Strategy for Automatic Error Classification and Error Recovery for Robotic Assembly in Flexible Production
	Abstract
	Introduction
	Software Framework for Error Classification and Recovery
	Strategy for Error Classification
	Image Processing
	Strategy for Error Recovery
	Experimental Setup
	Hardware Setup
	Software Setup

	Error Detection
	Preprocessing
	SVM Training

	Experimental Results
	Analysis Of Results From Error Classification
	Analysis Of Results From Error Recovery

	Conclusions
	References


