Skip to main content
Log in

Experimental Study on Motion Control of Rope-Driven Snake Manipulator Using Velocity Mapping Method

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The rope-driven snake manipulator is a bionic mechanism with hyper redundant DOFs and can be applied in narrow and confined environments, such as surgery, spacecraft, nuclear plant, etc. The kinematic mapping expressed by the rope length, joint angle and end pose is highly nonlinear and difficult to be calculated. Moreover, the control methods with rope length as input are prone to redundant driving ropes getting stuck due to differences in model and actual mechanism. Therefore, the perfect kinematic mapping of the rope-driven snake manipulator is necessary for designing high-efficiency motion controllers. In this paper, an analytical mapping about the velocities of ropes, joints and end is established and verified. Firstly, a prototype inspired by the biological snake spine is designed. And then the Jacobian matrix representing the velocity mapping is derived and analyzed in detail. The joint and rope velocities are optimized by configuring the null space vector of the Jacobian matrix. Based on the velocity mapping and optimization, a motion control scheme for the snake manipulator is established to realize servo control of the joints and end. Finally, the trajectory tracking simulation and experiment are executed to verify the velocity mapping theory and control scheme. This research can provide solutions for the complex motion control problems of subsequent snake manipulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tonapi, M.M., Godage, I.S., Vijaykumar, A.M., Walker, I.D.: A novel continuum robotic cable aimed at applications in space. Adv. Robot. 29, 861–875 (2015). https://doi.org/10.1080/01691864.2015.1036772

    Article  Google Scholar 

  2. Rezaei, S.M., Barazandeh, F., Haidarzadeh, M.S., Sadat, S.M.: The effect of snake muscular system on actuators’ torque. J. Intell. Robot. Syst. 59, 299–318 (2010). https://doi.org/10.1007/s10846-010-9404-0

    Article  Google Scholar 

  3. Dutta, P., Gotewal, K.K., Rastogi, N., et al.: A Hyper-Redundant Robot Development for Tokamak Inspection. In: Advances in Robotics. New Delhi, pp. 1–6 (2017)

  4. Murphy, R.J., Kutzer, M.D.M., Segreti, S.M., et al.: Design and kinematic characterization of a surgical manipulator with a focus on treating osteolysis. ROBOTICA 32, 835–850 (2014). https://doi.org/10.1017/S0263574713001082

    Article  Google Scholar 

  5. Xu, D., Li, E., Liang, Z., Gao, Z.: Design and Tension Modeling of a Novel Cable-Driven Rigid Snake-Like Manipulator. J. Intell. Robot. Syst. https://doi.org/10.1007/s10846-019-01115-w (2020)

  6. Amouri, A., Zaatri, A., Mahfoudi, C.: Dynamic modeling of a class of continuum manipulators in fixed orientation. J. Intell. Robot. Syst. 91, 413–424 (2018). https://doi.org/10.1007/s10846-017-0734-z

    Article  Google Scholar 

  7. Vaidyanathan, R., Chiel, H.J., Quinn, R.D.: A hydrostatic robot for marine applications. Robot. Auton. Syst. 30, 103–113 (2000). https://doi.org/10.1016/S0921-8890(99)00067-6

    Article  Google Scholar 

  8. Liljebäck, P., Stavdahl, Ø., Pettersen, K.Y.: Modular Pneumatic Snake Robot: 3D Modelling, Implementation And Control. MIC 29, 21–28 (2008). https://doi.org/10.4173/mic.2008.1.2

    Article  Google Scholar 

  9. Tang, L., Wang, J., Zheng, Y., et al.: Design of a cable-driven hyper-redundant robot with experimental validation. Int. J. Adv. Robot. Syst. 1729881417734458, 14 (2017). https://doi.org/10.1177/1729881417734458

    Google Scholar 

  10. Tian, Y., Luan, M., Gao, X., et al.: Kinematic Analysis of Continuum Robot Consisted of Driven Flexible Rods. Mathematical Problems in Engineering. https://doi.org/10.1155/2016/6984194 (2016)

  11. Bajo, A., Simaan, N.: Hybrid motion/force control of multi-backbone continuum robots. Int. J. Robot. Res. 35, 422–434 (2016). https://doi.org/10.1177/0278364915584806

    Article  Google Scholar 

  12. Cobos-Guzman, S., Palmer, D., Axinte, D.: Kinematic model to control the end-effector of a continuum robot for multi-axis processing. Robotica 35, 224–240 (2017). https://doi.org/10.1017/S0263574715000946

    Article  Google Scholar 

  13. Giorelli, M., Renda, F., Calisti, M., et al.: A two dimensional inverse kinetics model of a cable driven manipulator inspired by the octopus arm. In: 2012 IEEE International Conference on Robotics and Automation. pp. 3819–3824 (2012)

  14. Dong, X., Raffles, M., Guzman, S.C., et al.: Design and analysis of a family of snake arm robots connected by compliant joints. Mech. Mach. Theory 77, 73–91 (2014). https://doi.org/10.1016/j.mechmachtheory.2014.01.017

    Article  Google Scholar 

  15. Tang, J., Zhang, Y., Huang, F., et al.: Design and kinematic control of the Cable-Driven Hyper-Redundant manipulator for potential underwater applications. Appl. Sci. 9, 1142 (2019). https://doi.org/10.3390/app9061142

    Article  Google Scholar 

  16. Tonapi, M.M., Godage, I.S., Walker, I.D.: Design, modeling and performance evaluation of a long and slim continuum robotic cable. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 2852–2859 (2014)

  17. Costa, P., Lima, J., Pereira, A.I., et al.: An Optimization Approach for the Inverse Kinematics of a Highly Redundant Robot. Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015, pp. 433–442. https://doi.org/10.1007/978-3-319-29504-6_41 (2016)

  18. Dong, X., Axinte, D., Palmer, D., et al.: Development of a slender continuum robotic system for on-wing inspection/repair of gas turbine engines. Robot. Comput.-Integr. Manuf. 44, 218–229 (2017). https://doi.org/10.1016/j.rcim.2016.09.004

    Article  Google Scholar 

  19. Hannan, M.W., Walker, I.D.: Novel Kinematics for Continuum Robots. Advances in Robot Kinematics, pp. 227–238. https://doi.org/10.1007/978-94-011-4120-8_24 (2000)

  20. Zhang, Z., Yang, G., Yeo, S.H.: Inverse kinematics of modular Cable-driven Snake-like Robots with flexible backbones. In: 2011 IEEE 5th International Conference on Robotics, Automation and Mechatronics (RAM), pp. 41–46 (2011)

  21. Palmer, D., Cobos-Guzman, S., Axinte, D.: Real-time method for tip following navigation of continuum snake arm robots. Robot. Auton. Syst. 62, 1478–1485 (2014). https://doi.org/10.1016/j.robot.2014.05.013

    Article  Google Scholar 

  22. Wang, H., Chen, W., Yu, X., et al.: Visual servo control of cable-driven soft robotic manipulator. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 57–62 (2013)

  23. Guo, Q., Zhang, Y., Celler, B.G., Su, S.W.: State-Constrained Control of Single-Rod electrohydraulic actuator with parametric uncertainty and load disturbance. IEEE Trans. Contr. Syst. Technol. 26, 2242–2249 (2018). https://doi.org/10.1109/TCST.2017.2753167

    Article  Google Scholar 

  24. Yao, B., Bu, F., Reedy, J., Chiu, G.T.-C.: Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments. IEEE/ASME Trans. Mechatron. 5, 79–91 (2000). https://doi.org/10.1109/3516.828592

    Article  Google Scholar 

  25. Wang, C., Quan, L., Jiao, Z., Zhang, S.: Nonlinear adaptive control of hydraulic system with observing and compensating mismatching uncertainties. IEEE Trans. Contr. Syst. Technol. 26, 927–938 (2018). https://doi.org/10.1109/TCST.2017.2699166

    Article  Google Scholar 

  26. Djennoune, S., Bettayeb, M., Al-Saggaf, U.M.: Modulating function-based fast convergent observer and output feedback control for a class of non-linear systems. IET Control Theory Appl. 13, 2681–2693 (2019). https://doi.org/10.1049/iet-cta.2018.5313

    Article  Google Scholar 

  27. Mohammadi Asl, R., Shabbouei Hagh, Y., Anavatti, S., Handroos, H.: Adaptive finite integral non-singular terminal synergetic control of nth-order nonlinear systems. Mech. Syst. Signal Process. 142, 106789 (2020). https://doi.org/10.1016/j.ymssp.2020.106789

    Article  Google Scholar 

  28. Yang, X., Zheng, X., Chen, Y.: Position tracking control law for an Electro-Hydraulic servo system based on backstepping and extended differentiator. IEEE/ASME Trans. Mechatron. 23, 132–140 (2018). https://doi.org/10.1109/TMECH.2017.2746142

    Article  Google Scholar 

  29. RapiDyn. http://152.136.226.221/index.php/%E9%A6%96%E9%A1%B5. Accessed 27 May 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, H., Wei, C., Zhang, Z. et al. Experimental Study on Motion Control of Rope-Driven Snake Manipulator Using Velocity Mapping Method. J Intell Robot Syst 100, 879–897 (2020). https://doi.org/10.1007/s10846-020-01249-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-020-01249-2

Keywords

Navigation