Skip to main content
Log in

Omnidirectional Platforms for Gait Training: Admittance-Shaping Control for Enhanced Mobility

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

We present a design method for the admittance control of a class of omnidirectional mobile platforms. Holonomic behavior of the platform is accomplished by a steering system that is itself subject to nonholonomic constraints. The proposed application of this type of platform, henceforth the “walker”, is as an assistive device for human gait rehabilitation. Therefore, the control design objectives are to guarantee the stability of the coupled system formed by the robotic platform and the human body, and to maximize mobility for the user by reducing the robot’s apparent inertia. First, we show how feedback linearization of a reduced-order model of the system, combined with a smooth trajectory-tracking control, achieves global asymptotic stability of the tracking error. Then we show how compliance in the robot limits the amount of inertia reduction that can be achieved before instability occurs. We address this problem with a control design method that maximizes the amplitude of the system’s admittance over a useful range of frequencies. Using root locus analysis and sensitivity transfer functions, we find an optimal value for the virtual mass in the admittance model, representing the best tradeoff between two oscillatory modes. The walker’s admittance vs. frequency function is then corrected via a complementary sensor input, namely, the user’s torque on the sagittal plane. A second layer of control provides the walker’s therapeutic action, consisting of a variable horizontal force that aids propulsion of the user’s body. The level of assistive force is modulated with the patient’s gait speed and turning rate to ensure easy adaptation. The control design was validated through an experiment involving human users walking in a prototype of the mobile platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguirre-Ollinger, G., Colgate, J., Peshkin, M., Goswami, A.: Design of an active one-degree-of-freedom lower-limb exoskeleton with inertia compensation. Int. J. Robot. Res. 30(4), 486–499 (2011)

    Article  Google Scholar 

  2. Aguirre-Ollinger, G., Nagarajan, U., Goswami, A.: An admittance shaping controller for exoskeleton assistance of the lower extremities. Auton. Robot. 1–28. https://doi.org/10.1007/s10514-015-9490-8 (2015)

  3. Aguirre-Ollinger, G., Narayan, A., Reyes, F.A., Cheng, H.J., Yu, H.: High mobility control of an omnidirectional platform for gait rehabilitation after stroke. In: 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), IEEE. https://doi.org/10.1109/icorr.2019.8779487 (2019)

  4. Ajoudani, A., Zanchettin, A.M., Ivaldi, S., Albu-Schäffer, A., Kosuge, K., Khatib, O.: Progress and prospects of the human-robot collaboration. Auton. Robot. 42(5), 957–975 (2017). https://doi.org/10.1007/s10514-017-9677-2

    Article  Google Scholar 

  5. Belda-Lois, J.M., Mena-del Horno, S., Bermejo-Bosch, I., Moreno, J.C., Pons, J.L., Farina, D., Iosa, M., Molinari, M., Tamburella, F., Ramos, A., Caria, A., Solis-Escalante, T., Brunner, C., Rea, M.: Rehabilitation of gait after stroke: A review towards a top-down approach. J. NeuroEng. Rehabilitat. 8(1), 66 (2011). https://doi.org/10.1186/1743-0003-8-66

    Article  Google Scholar 

  6. Bouri, M., Stauffer, Y., Schmitt, C., Brodard, R., Allemand, Y., Gnemmi, S., Metrailler, P., Clavel, R.: The WalkTrainer: A robotic system for walking rehabilitation. In: IEEE International Conference on Robotics and Biomimetics - ROBIO2006(ROBIO). https://doi.org/10.1109/ROBIO.2006.340186, vol. 00, pp 1616–1621 (2006)

  7. Brockett, R.W.: Asymptotic stability and feedback stabilization. In: Differential Geometric Control Theory, Birkhauser, pp 181–191 (1983)

  8. Buerger, S., Hogan, N.: Complementary stability and loop shaping for improved human-robot interaction. Robot. IEEE Trans. 23(2), 232–244 (2007)

    Article  Google Scholar 

  9. Campion, G., d’Andrea Novel, B., Bastin, G.: Controllability and state feedback stabilizability of non holonomic mechanical systems. In: Canudas De Wit, C. (ed.) Advanced Robot Control, pp 106–124. Springer, Berlin (1991)

  10. DA, B., TD, L., Reinkensmeyer, D., Duarte, J.: Neurorehabilitation Technology. Springer, Berlin (2016)

    Google Scholar 

  11. Fierro, R., Lewis, F.: Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics. J. Robot. Syst. 14(3), 149–163 (1997)

    Article  Google Scholar 

  12. Guadagnoli, M.A., Lee, T.D.: Challenge point: A framework for conceptualizing the effects of various practice conditions in motor learning. J. Motor Behav. 36(2), 212–224 (2004). https://doi.org/10.3200/JMBR.36.2.212-224, pMID: 15130871

    Article  Google Scholar 

  13. Han, F., Yamada, T., Watanabe, K., Kiguchi, K., Izumi, K.: Construction of an omnidirectional mobile robot platform based on active dual-wheel caster mechanisms and development of a control simulator. J. Intell. Robot. Syst 29(3), 257–275 (2000). https://doi.org/10.1023/A:1008185917537

    Article  Google Scholar 

  14. He, W., Xue, C., Yu, X., Li, Z., Yang, C.: Admittance-based controller design for physical human-robot interaction in the constrained task space. IEEE Trans. Autom. Sci. Eng. 1–13. https://doi.org/10.1109/tase.2020.2983225 (2020)

  15. Hogan, N., Buerger, S: Relaxing passivity for human-robot interaction. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (2006)

  16. Huang, J., Huo, W., Xu, W., Mohammed, S., Amirat, Y.: Control of upper-limb power-assist exoskeleton using a human-robot interface based on motion intention recognition. IEEE Trans. Autom. Sci. Eng. 12(4), 1257–1270 (2015). https://doi.org/10.1109/tase.2015.2466634

    Article  Google Scholar 

  17. Jorgensen, H.S., Nakayama, H., Raaschou, H.O., Olsen, T.S.: Recovery of walking function in stroke patients: The Copenhagen stroke study. Archiv. Phys. Med. Rehab. 76(1), 27–32 (1995). https://doi.org/10.1016/S0003-9993(95)80038-7

    Article  Google Scholar 

  18. Keemink, A.Q., van der Kooij, H., Stienen, A.H.: Admittance control for physical human–robot interaction. Int. J. Robot. Res. 37(11), 1421–1444 (2018). https://doi.org/10.1177/0278364918768950

    Article  Google Scholar 

  19. Khalil, H.: Nonlinear systems, 3rd edn. Prentice Hall, New Jersey (2002)

    MATH  Google Scholar 

  20. Lim, C.D., Wang, C.M., Cheng, C.Y., Chao, Y., Tseng, S.H., Fu, L.C.: Sensory cues guided rehabilitation robotic walker realized by depth image-based gait analysis. IEEE Trans. Autom. Sci. Eng. 13(1), 171–180 (2016). https://doi.org/10.1109/tase.2015.2494067

    Article  Google Scholar 

  21. Liu, L., Leonhardt, S., Ngo, C., Misgeld, B.J.E.: Impedance-controlled variable stiffness actuator for lower limb robot applications. IEEE Trans. Autom. Sci. Eng. 17(2), 991–1004 (2020). https://doi.org/10.1109/tase.2019.2954769

    Article  Google Scholar 

  22. Marchal-Crespo, L., Reinkensmeyer, D.: Review of control strategies for robotic movement training after neurologic injury. J. NeuroEng. Rehabilitat. 6(20) (2009)

  23. Marks, D., Schweinfurther, R., Dewor, A., Huster, T., Paredes, L.P., Zutter, D., Möller, J.C.: The andago for overground gait training in patients with gait disorders after stroke - results from a usability study. Physiother. Res. Rep. 2(2). https://doi.org/10.15761/prr.1000128 (2019)

  24. Martins, M.M., Santos, C.P., Frizera-Neto, A., Ceres, R.: Assistive mobility devices focusing on smart walkers: Classification and review. Robot. Autonom. Syst. 60 (4), 548–562 (2012). https://doi.org/10.1016/j.robot.2011.11.015

    Article  Google Scholar 

  25. Mehrholz, J., Thomas, S., Elsner, B.: Treadmill training and body weight support for walking after stroke. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.cd002840.pub4 (2017)

  26. Mignardot, J.B., Goff, C.G.L., van den Brand, R., Capogrosso, M., Fumeaux, N., Vallery, H., Anil, S., Lanini, J., Fodor, I., Eberle, G., Ijspeert, A., Schurch, B., Curt, A., Carda, S., Bloch, J., von Zitzewitz, J., Courtine, G.: A multidirectional gravity-assist algorithm that enhances locomotor control in patients with stroke or spinal cord injury. Sci. Trans. Med. 9(399), eaah3621 (2017). https://doi.org/10.1126/scitranslmed.aah3621

    Article  Google Scholar 

  27. Minetti, A.E.: Invariant aspects of human locomotion in different gravitational environments. Acta Astronaut. 49(3-10), 191–198 (2001). https://doi.org/10.1016/s0094-5765(01)00098-4

    Article  Google Scholar 

  28. Mun, K., Yu, H., Zhu, C., Cruz, M.S.: Design of a novel robotic over-ground walking device for gait rehabilitation. In: 2014 IEEE 13th International Workshop on Advanced Motion Control (AMC), pp 458–463 (2014). https://doi.org/10.1109/AMC.2014.6823325

  29. Mun, K.R., Guo, Z., Yu, H.: Restriction of pelvic lateral and rotational motions alters lower limb kinematics and muscle activation pattern during over-ground walking. Med. Biologic. Eng. Comput. 54(11), 1621–1629 (2016). https://doi.org/10.1007/s11517-016-1450-8

    Article  Google Scholar 

  30. Oda, M., Zhu, C., Suzuki, M., Luo, X., Watanabe, H., Yan, Y.: Admittance based control of wheelchair typed omnidirectional robot for walking support and power assistance. In: 19th International Symposium in Robot and Human Interactive Communication, pp 159–164 (2010). https://doi.org/10.1109/ROMAN.2010.5598681

  31. Okunev, V., Nierhoff, T., Hirche, S.: Human-preference-based control design: Adaptive robot admittance control for physical human-robot interaction. In: 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, pp 443–448 (2012)

  32. Peshkin, M., Brown, D., Santos-Munne, J., Makhlin, A., Lewis, E., Colgate, J., Patton, J., Schwandt, D.: KineAssist: A robotic overground gait and balance training device. In: Rehabilitation Robotics, 2005 ICORR 2005 9th International Conference on, pp 241–246 (2005)

  33. Roerdink, M., Lamoth, C.J., Kwakkel, G., van Wieringen, P.C., Beek, P.J.: Gait coordination after stroke: Benefits of acoustically paced treadmill walking. Phys. Ther. 87(8), 1009–1022 (2007). https://doi.org/10.2522/ptj.20050394

    Article  Google Scholar 

  34. Seo, K., Lee, J.: The development of two mobile gait rehabilitation systems. IEEE Trans. Neural Syst. Rehabil. Eng. 17(2), 156–166 (2009). https://doi.org/10.1109/TNSRE.2009.2015179

    Article  Google Scholar 

  35. Veg, A., Popovic, D.B.: Walkaround: Mobile balance support for therapy of walking. IEEE Trans. Neural Syst. Rehabil. Eng. 16(3), 264–269 (2008). https://doi.org/10.1109/TNSRE.2008.918424

    Article  Google Scholar 

  36. Wade, D.: Walking after stroke measurement and recovery over the first three months. Scand. J. Rehabil. Med. 19, 25–30 (1987). https://ci.nii.ac.jp/naid/20000909438/en/

    Google Scholar 

  37. Wang, H., Patota, F., Buondonno, G., Haendl, M., De Luca, A., Kosuge, K.: Stability and variable admittance control in the physical interaction with a mobile robot. Int. J. Adv. Robot. Syst. 12(173) (2015)

  38. Yu, H., Spenko, M., Dubowsky, S.: Omni-directional mobility using active split offset castors. J. Mech. Des. 126(5) (2004)

Download references

Funding

This work was supported by National Medical Research Council Grant No. NMRC/BnB/0019b/2015, Ministry of Health, Singapore.

Author information

Authors and Affiliations

Authors

Contributions

Gabriel Aguirre-Ollinger developed and implemented the control algorithms, led the experimental design and conducted the experimental trials. Haoyong Yu developed the robot and actuator design concepts and co-developed the experimental design.

Corresponding author

Correspondence to Haoyong Yu.

Ethics declarations

Ethical Approval

The experimental protocol was approved by the Domain Specific Review Board of the National Healthcare Group, Singapore (DSRB reference 2017/00696).

Consent to Participate

All participants gave their informed consent to take part in the study.

Consent to Publish

All participants gave their informed consent for the experimental results to be published. (No personal or otherwise identifying information is presented in this article.)

Conflict of Interests

The authors declare having no competing interests in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 27.0 MB)

(MP4 15.3 MB)

(MP4 7.35 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguirre-Ollinger, G., Yu, H. Omnidirectional Platforms for Gait Training: Admittance-Shaping Control for Enhanced Mobility. J Intell Robot Syst 101, 52 (2021). https://doi.org/10.1007/s10846-021-01335-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01335-z

Keywords

Navigation