Skip to main content
Log in

Hybrid Dec-POMDP/PID Guidance System for Formation Flight of Multiple UAVs

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper proposes a guidance system with a new hybrid architecture for multiple fixed-wing unmanned aerial vehicles (UAVs) formation flight. The proposed architecture is hybrid in the sense of combining two control policies found in guidance systems: the Decentralized Partially Observable Markov Decision Process (Dec-POMDP) policy and the well-known PID controller. The Dec-POMDP policy part enables every UAV to avoid collision with any other UAV from the formation. The PID part is activated for regions far from the collision risk zone and is implemented in such a way that each UAV is completely controlled by only its own data, independent of its neighbors. The major novelty of the proposed system, compared to other hybrid approaches, is its decentralized nature which favors overcoming the usual problems that come with centralization such as the high dependence on a central decision node, a leader, or a ground station. Inherited from both parts, the overall system performance is robust in noisy and uncertain environments. Simulations were extensively performed to show the effectiveness of the proposed guidance system in distinct scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

Custom data and materials are not available to the general public

References

  1. Albaker, B.M., Rahim, N.A.: Flight path PID controller for propeller-driven fixed-wing unmanned aerial vehicles. Int. J. Phys. Sci. 6(8), 1947–1964 (2011)

    Google Scholar 

  2. Amato, C., Chowdhary, G., Geramifard, A., Ure, N.K., Kochenderfer, M.J.: Decentralized control of partially observable Markov decision processes. In: 52nd IEEE Conference on Decision and Control, pp. 2398–2405. IEEE (2013)

  3. Amato, C., Konidaris, G., Anders, A., Cruz, G., How, J.P., Kaelbling, L.P.: Policy search for multi-robot coordination under uncertainty. Int. J. Robot. Res. 35(14), 1760–1778 (2016)

    Article  Google Scholar 

  4. Arifianto, O., Farhood, M.: Optimal control of a small fixed-wing UAV about concatenated trajectories. Control. Eng. Pract. 40, 113–132 (2015)

    Article  Google Scholar 

  5. Bai, H., Hsu, D., Kochenderfer, M.J., Lee, W.S.: Unmanned aircraft collision avoidance using continuous-state POMDPs. Robot. Sci. Syst. VII 1, 1–8 (2012)

    Google Scholar 

  6. Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of decentralized control of markov decision processes. Math. Oper. Res. 27(4), 819–840 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brunskill, E., Kaelbling, L.P., Lozano-Perez, T., Roy, N.: Continuous-state POMDPs with hybrid dynamics. In: ISAIM (2008)

  8. Cai, Z., Wang, L., Zhao, J., Wu, K., Wang, Y.: Virtual target guidance-based distributed model predictive control for formation control of multiple UAVs. Chin. J. Aeronaut. 33(3), 1037–1056 (2020)

    Article  Google Scholar 

  9. Campa, G., Gu, Y., Seanor, B., Napolitano, M.R., Pollini, L., Fravolini, M.L.: Design and flight-testing of non-linear formation control laws. Control. Eng. Pract. 15(9), 1077–1092 (2007)

    Article  Google Scholar 

  10. Candido, S., Hutchinson, S.: Minimum uncertainty robot navigation using information-guided POMDP planning. In: 2011 IEEE International Conference on Robotics and Automation, pp. 6102–6108. IEEE (2011)

  11. Capitan, J., Merino, L., Ollero, A.: Cooperative decision-making under uncertainties for multi-target surveillance with multiples UAVs. J. Intell. Robot. Syst. 84(1-4), 371–386 (2016)

    Article  Google Scholar 

  12. Capitan, J., Spaan, M.T., Merino, L., Ollero, A.: Decentralized multi-robot cooperation with auctioned POMDPs. Int. J. Robot. Res. 32(6), 650–671 (2013)

    Article  Google Scholar 

  13. Chen, Y.B., Luo, G.C., Mei, Y.S., Yu, J.Q., Su, X.L.: UAV Path planning using artificial potential field method updated by optimal control theory. Int. J. Syst. Sci. 47(6), 1407–1420 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cordeiro, T.F.K., Ferreira, H.C., Ishihara, J.Y.: Non linear controller and path planner algorithm for an autonomous variable shape formation flight. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1493–1502. IEEE (2017)

  15. D’Amato, E., Mattei, M., Notaro, I.: Distributed reactive model predictive control for collision avoidance of unmanned aerial vehicles in civil airspace. J. Intell. Robot. Syst. 97(1), 185–203 (2019)

    Article  Google Scholar 

  16. Dong, X., Zhou, Y., Ren, Z., Zhong, Y.: Time-varying formation control for unmanned aerial vehicles with switching interaction topologies. Control. Eng. Pract. 46, 26–36 (2016)

    Article  Google Scholar 

  17. Floriano, B., Borges, G.A., Ferreira, H.: Planning for decentralized formation flight of UAV fleets in uncertain environments with Dec-POMDP. In: 2019 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE (2019)

  18. Gabel, T., Riedmiller, M.: Joint equilibrium policy search for multi-agent scheduling problems. In: German Conference on Multiagent System Technologies, pp. 61–72. Springer (2008)

  19. He, L., Bai, P., Liang, X., Zhang, J., Wang, W.: Feedback formation control of UAV swarm with multiple implicit leaders. Aerosp. Sci. Technol. 72, 327–334 (2018)

    Article  Google Scholar 

  20. Jin, J., Ramirez, J.P., Wee, S., Lee, D., Kim, Y., Gans, N.: A switched-system approach to formation control and heading consensus for multi-robot systems. Intell. Serv. Robot. 11(2), 207–224 (2018)

    Article  Google Scholar 

  21. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1-2), 99–134 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kahan, W.: Ieee standard 754 for binary floating-point arithmetic. Lect. Notes Stat. IEEE 754 (94720-1776), 11 (1996)

    Google Scholar 

  23. Kartal, Y., Subbarao, K., Gans, N.R., Dogan, A., Lewis, F.: Distributed backstepping based control of multiple uav formation flight subject to time delays. IET Cont. Theor. Appl. 14(12), 1628–1638 (2020)

    Article  Google Scholar 

  24. Kuriki, Y., Namerikawa, T.: Formation control with collision avoidance for a multi-UAV system using decentralized mpc and consensus-based control. SICE J. Cont. Measure. Syst. Integrat. 8(4), 285–294 (2015)

    Article  Google Scholar 

  25. Lao, M., Tang, J.: Cooperative multi-UAV collision avoidance based on distributed dynamic optimization and causal analysis. Appl. Sci. 7(1), 83 (2017)

    Article  Google Scholar 

  26. Lauri, M., Heinänen, E., Frintrop, S.: Multi-robot active information gathering with periodic communication. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 851–856. IEEE (2017)

  27. Li, X., Fang, Y., Fu, W.: Obstacle avoidance algorithm for Multi-UAV flocking based on artificial potential field and Dubins path planning. In: 2019 IEEE International Conference on Unmanned Systems (ICUS), pp. 593–598. IEEE (2019)

  28. Liao, F., Teo, R., Wang, J.L., Dong, X., Lin, F., Peng, K.: Distributed formation and reconfiguration control of vtol UAVs. IEEE Trans. Control Syst. Technol. 25(1), 270–277 (2017)

    Article  Google Scholar 

  29. Lin, Z., Castano, L., Mortimer, E., Xu, H.: Fast 3d collision avoidance algorithm for fixed wing UAS. J. Intell. Robot. Syst. 97(3), 577–604 (2020)

    Article  Google Scholar 

  30. Liu, Y., Montenbruck, J.M., Zelazo, D., Odelga, M., Rajappa, S., Bülthoff, H. H., Allgöwer, F., Zell, A.: A distributed control approach to formation balancing and maneuvering of multiple multirotor uavs. IEEE Trans. Robot. 34(4), 870–882 (2018)

    Article  Google Scholar 

  31. Lwin, N., Tun, H.M.: Implementation of flight control system based on Kalman and PID controller for UAV. Int. J. Scientif. Technol. Res. 3(4), 309–312 (2014)

    Google Scholar 

  32. Marcosig, E.P., Giribet, J.I., Castro, R.: Hybrid adaptive control for UAV data collection: A simulation-based design to trade-off resources between stability and communication. In: 2017 Winter Simulation Conference (WSC), pp. 1704–1715. IEEE (2017)

  33. Meng, W., He, Z., Su, R., Yadav, P.K., Teo, R., Xie, L.: Decentralized multi-UAV flight autonomy for moving convoys search and track. IEEE Trans. Control Syst. Technol. 25(4), 1480–1487 (2017)

    Article  Google Scholar 

  34. Miller, S.A., Harris, Z.A., Chong, E.K.: A POMDP framework for coordinated guidance of autonomous UAVs for multitarget tracking EURASIP. J. Adv. Signal Process. 2009(724597) (2009)

  35. Montufar, D., Munoz, F., Espinoza, E., Garcia, O., Salazar, S.: Multi-Uav testbed for aerial manipulation applications. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 830–835. IEEE (2014)

  36. Mukherjee, S., Namuduri, K.: Formation control of UAVs for connectivity maintenance and collision avoidance. In: 2019 IEEE National Aerospace and Electronics Conference (NAECON), pp. 126–130 (2019)

  37. Nair, R., Tambe, M.: Hybrid BDI-POMDP framework for multiagent teaming. J. Artif. Intell. Res. 23, 367–420 (2005)

    Article  MATH  Google Scholar 

  38. Nair, R., Tambe, M., Yokoo, M., Pynadath, D., Marsella, S.: Taming decentralized POMDPs: Towards efficient policy computation for multiagent settings. In: IJCAI, vol. 3, pp. 705–711 (2003)

  39. Oliehoek, F.A., Amato, C., et al.: A concise introduction to decentralized POMDPs, vol. 1. Springer, New York (2016)

    Book  MATH  Google Scholar 

  40. Oliehoek, F.A., Spaan, M.T., Vlassis, N.: Optimal and approximate q-value functions for decentralized pomdps. J. Artif. Intell. Res. 32, 289–353 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Oliehoek, F.A., Spaan, M.T., Vlassis, N., et al.: Dec-POMDPs with delayed communication. In: The 2nd Workshop on Multi-Agent Sequential Decision-Making in Uncertain Domains (2007)

  42. Oliehoek, F.A., Spaan, M.T.J., Terwijn, B., Robbel, P., ao, V., Messias, J.: The MADP toolbox: An open source library for planning and learning in (multi-)agent systems. J. Mach. Learn. Res. 18 (89), 1–5 (2017)

    Google Scholar 

  43. Omidshafiei, S., Agha-Mohammadi, A.A., Amato, C., Liu, S.Y., How, J.P., Vian, J.: Decentralized control of multi-robot partially observable markov decision processes using belief space macro-actions. Int. J. Robot. Res. 36(2), 231–258 (2017)

    Article  Google Scholar 

  44. Pajarinen, J., Kyrki, V., Koval, M., Srinivasa, S., Peters, J., Neumann, G.: Hybrid control trajectory optimization under uncertainty. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2017)

  45. Paquet, S., Chaib-draa, B., Ross, S.: Hybrid POMDP algorithms. In: Proceedings of The Workshop on Multi-Agent Sequential Decision Making in Uncertain Domains (MSDM-06), pp. 133–147 (2006)

  46. Ragi, S., Chong, E.K.P.: UAV Path planning in a dynamic environment via partially observable markov decision process. IEEE Trans. Aerosp. Electron. Syst. 49(4), 2397–2412 (2013)

    Article  Google Scholar 

  47. Ragi, S., Chong, E.K.P.: Decentralized guidance control of UAVs with explicit optimization of communication. J. Intell. Robot. Syst. 73(1-4), 811–822 (2014)

    Article  Google Scholar 

  48. Rens, G., Moodley, D.: A hybrid POMDP-BDI agent architecture with online stochastic planning and plan caching. Cogn. Syst. Res. 43, 1–20 (2017)

    Article  Google Scholar 

  49. Shames, I., Fidan, B., Anderson, B.D.: Close target reconnaissance with guaranteed collision avoidance. Int. J. Robust Nonlinear Control 21(16), 1823–1840 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Shen, X., Fan, J., Wang, H.: Design and simulation of eight-rotor unmanned aerial vehicle based on hybrid control system. Int. J. Aerospace Eng. 2018 (2018)

  51. Sreenath, K., Hill, C.R., Kumar, V.: A partially observable hybrid system model for bipedal locomotion for adapting to terrain variations. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control - HSCC’13. ACM Press, New York (2013)

  52. Sun, J., Tang, J., Lao, S.: Collision avoidance for cooperative UAVs with optimized artificial potential field algorithm. IEEE Access 5, 18,382–18,390 (2017)

    Article  Google Scholar 

  53. Tang, J., Fan, L., Lao, S.: Collision avoidance for multi-UAV based on geometric optimization model in 3d airspace. Arab. J. Sci. Eng. 39(11), 8409–8416 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  54. Tanner, H.G.: Switched UAV-UGV cooperation scheme for target detection. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 3457–3462. IEEE (2007)

  55. Wang, C., Wang, J., Shen, Y., Zhang, X.: Autonomous navigation of UAVs in large-scale complex environments: A deep reinforcement learning approach. IEEE Trans. Veh. Technol. 68(3), 2124–2136 (2019)

    Article  Google Scholar 

  56. Wang, D., Fan, T., Han, T., Pan, J.: A two-stage reinforcement learning approach for multi-UAV collision avoidance under imperfect sensing. IEEE Robot. Autom. Lett. 5(2), 3098–3105 (2020)

    Article  Google Scholar 

  57. Wu, F., Ramchurn, S.D., Chen, X.: Coordinating human-UAV teams in disaster response. In: Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI), pp. 524–530 (2016)

  58. Zhang, D., Duan, H.: Switching topology approach for UAV formation based on binary-tree network. J. Franklin Inst. 356(2), 835–859 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zhang, J., Yan, J., Zhang, P.: Fixed-wing UAV formation control design with collision avoidance based on an improved artificial potential field. IEEE Access 6, 78,342–78,351 (2018)

    Article  Google Scholar 

  60. Zhang, J., Yan, J., Zhang, P., Kong, X.: Collision avoidance in fixed-wing UAV formation flight based on a consensus control algorithm. IEEE Access 6, 43,672–43,682 (2018)

    Article  Google Scholar 

  61. Zhang, M., Liu, H.H.T.: Cooperative tracking a moving target using multiple fixed-wing UAVs. J. Int. Robot. Syst. 81(3-4), 505–529 (2016)

    Article  Google Scholar 

  62. Zheng, Z., Qian, M., Li, P., Yi, H.: Distributed adaptive control for UAV formation with input saturation and actuator fault. IEEE Access 7, 144,638–144,647 (2019)

    Article  Google Scholar 

  63. Zhu, F., Antsaklis, P.J.: Optimal control of hybrid switched systems: A brief survey. Discrete Event Dynamic Syst. 25(3), 345–364 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian National Council for the Improvement of Higher Education (CAPES) and the Brazilian National Council of Scientific and Technological Development (CNPq) for the support.

Funding

This research was funded to the researchers Bruno R. O. Floriano and João Y. Ishihara, respectively, by the institutions:

– Brazilian National Council for the Improvement of Higher Education (CAPES)

– Brazilian National Council of Scientific and Technological Development (CNPq)

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design and methodology. Bruno R. O. Floriano was also responsible for the investigation, software and writing. Geovany A. Borges, Henrique C. Ferreira and João Y. Ishihara were also responsible for writing and revision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bruno R. O. Floriano.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A

Appendix: A

1.1 A.1 Transition Matrices

The transition probability matrices used in Section 5, \({T^{i}_{v}}\) and \(T^{i}_{\omega }\), are described as follows (the number in parentheses is the index βv and βω that multiplies the base values αvb or αωb respectively, of each matrix):

$$ {T^{1}_{v}}(-1) = \left[\begin{array}{llllllll} 0.2 & 0.7 & 0 & 0.05 & 0 & 0.05 & 0 & 0 \\ 0.1 & 0.2 & 0 & 0.6 & 0 & 0.1 & 0 & 0 \\ 0.6 & 0.1 & 0.2 & 0 & 0 & 0 & 0.1 & 0 \\ 0.2 & 0 & 0 & 0.1 & 0 & 0.6 & 0 & 0.1 \\ 0.1 & 0.05 & 0.6 & 0 & 0.1 & 0 & 0.1 & 0.05 \\ 0.05 & 0 & 0 & 0 & 0 & 0.2 & 0 & 0.75 \\ 0.05 & 0 & 0.05 & 0 & 0.6 & 0.05 & 0.2 & 0.05 \\ 0 & 0 & 0 & 0 & 0 & 0.3 & 0.3 & 0.4 \end{array}\right] $$
$$ {T^{1}_{v}}(0) = 0.8I + \frac{0.2}{7}(1_{8\times8} - I), $$

in which I is the 8-th dimensional identity matrix and 18x8 is the 8-th dimensional square matrix completely filled with 1.

$$ {T^{1}_{v}}(1) = \left[\begin{array}{llllllll} 0.2 & 0 & 0.7 & 0 & 0.05 & 0 & 0.05 & 0 \\ 0.6 & 0.2 & 0.1 & 0 & 0 & 0.1 & 0 & 0 \\ 0.1 & 0 & 0.2 & 0 & 0.6 & 0 & 0.1 & 0 \\ 0.1 & 0.6 & 0.05 & 0.1 & 0 & 0.1 & 0 & 0.05 \\ 0.2 & 0 & 0 & 0 & 0.1 & 0 & 0.6 & 0.1 \\ 0.05 & 0.05 & 0 & 0.6 & 0.05 & 0.2 & 0 & 0.05 \\ 0.05 & 0 & 0 & 0 & 0 & 0 & 0.2 & 0.75 \\ 0 & 0 & 0 & 0 & 0 & 0.3 & 0.3 & 0.4 \end{array}\right] $$

Due to the symmetry of the problem:

$$ {T^{2}_{v}}(-1) = {T^{1}_{v}}(1) $$
$$ {T^{2}_{v}}(0) = {T^{1}_{v}}(0) $$
$$ {T^{2}_{v}}(1) = {T^{1}_{v}}(-1) $$
$$ {T^{3}_{v}} = {T^{1}_{v}} $$
$$T^{1}_{\omega}(-1) = \left[\begin{array}{llllllll} 0.2 & 0.2 & 0.2 & 0.1 & 0.1 & 0.1 & 0.1 & 0 \\ 0 & 0.2 & 0.1 & 0.3 & 0 & 0.4 & 0 & 0 \\ 0 & 0.1 & 0.2 & 0 & 0.3 & 0 & 0.4 & 0 \\ 0 & 0 & 0 & 0.1 & 0 & 0.4 & 0.2 & 0.3 \\ 0 & 0 & 0 & 0 & 0.1 & 0.2 & 0.4 & 0.3 \\ 0 & 0 & 0 & 0 & 0 & 0.2 & 0.1 & 0.7 \\ 0 & 0 & 0 & 0 & 0 & 0.1 & 0.2 & 0.7 \\ 0 & 0 & 0 & 0 & 0 & 0.3 & 0.3 & 0.4 \end{array}\right] $$
$$ T^{1}_{\omega}(0) = {T^{1}_{v}}(0) $$
$$ T^{1}_{\omega}(1) = \left[\begin{array}{llllllll} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.8 & 0.1 & 0 & 0 & 0 & 0.1 & 0 & 0 \\ 0.8 & 0 & 0.1 & 0 & 0 & 0 & 0.1 & 0 \\ 0.5 & 0.3 & 0 & 0 & 0 & 0.2 & 0 & 0 \\ 0.5 & 0 & 0.3 & 0 & 0 & 0 & 0.2 & 0 \\ 0.1 & 0.5 & 0 & 0.1 & 0 & 0.2 & 0 & 0.1 \\ 0.1 & 0 & 0.5 & 0 & 0.1 & 0 & 0.2 & 0.1 \\ 0 & 0 & 0 & 0 & 0 & 0.3 & 0.3 & 0.4 \end{array}\right] $$
$$ T^{2}_{\omega}(-1) = \left[\begin{array}{llllllll} 0.1 & 0.45 & 0.45 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.2 & 0 & 0 & 0 & 0.8 & 0 & 0 \\ 0 & 0 & 0.2 & 0 & 0 & 0 & 0.8 & 0 \\ 0 & 0 & 0 & 0.2 & 0 & 0.8 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.2 & 0 & 0.8 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.3 & 0 & 0.7 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0.3 & 0.7 \\ 0 & 0 & 0 & 0 & 0 & 0.3 & 0.3 & 0.4 \end{array}\right] $$
$$ T^{2}_{\omega}(0) = T^{1}_{\omega}(0) $$
$$ T^{2}_{\omega}(1) = T^{2}_{\omega}(-1) $$
$$ T^{3}_{\omega}(-1) = T^{1}_{\omega}(1) $$
$$ T^{3}_{\omega}(0) = T^{1}_{\omega}(0) $$
$$ T^{3}_{\omega}(1) = T^{1}_{\omega}(-1) $$

1.2 A.2 Proof of Eq. 5

There is a total of N agents that get some observation zi. However, a total of \(N_{\zeta _{i}} = j\) of those agents that perceive \(z_{i} = s^{\prime }\) can be allocated. Since these agents were fixed, there are another Nj agents that might observe any from the \(N_{z_{i}} - 1\) observations in which \(z_{i} \neq s^{\prime }\). In this arrangement, the number of combinations is given by

$$ N_{comb} = (N_{z_{i}} - 1)^{N-j}. $$
(1)

However, there are other arrangements for the j agents that observe \(z_{i} = s^{\prime }\). The number of possible permutations to fix those agents is given by

$$ N_{arr} = \frac{N!}{j!(N-j)!}. $$
(2)

For each arrangement, there are Ncomb combinations so the total number of combinations, Dj, is given by

$$ D_{j} = N_{arr} N_{comb}. $$
(3)

Replacing (1) and (2) in (3) results in Eq. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Floriano, B.R.O., Borges, G.A., Ferreira, H.C. et al. Hybrid Dec-POMDP/PID Guidance System for Formation Flight of Multiple UAVs. J Intell Robot Syst 101, 65 (2021). https://doi.org/10.1007/s10846-021-01342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01342-0

Keywords

Navigation