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Abstract The main goal in task planning is to build a

sequence of actions that takes an agent from an initial

state to a goal state. In robotics, this is particularly dif-

ficult because actions usually have several possible re-

sults, and sensors are prone to produce measurements

with error. Partially observable Markov decision pro-

cesses (POMDPs) are commonly employed, thanks to

their capacity to model the uncertainty of actions that

modify and monitor the state of a system. However,

since solving a POMDP is computationally expensive,

their usage becomes prohibitive for most robotic appli-

cations. In this paper, we propose a task planning ar-

chitecture for service robotics. In the context of service

robot design, we present a scheme to encode knowledge

about the robot and its environment, that promotes the
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2 Instituto Nacional de Enfermedades Respiratorias, Labo-
ratory of Computational Biology, Ciudad de México, México
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modularity and reuse of information. Also, we introduce

a new recursive definition of a POMDP that enables

our architecture to autonomously build a hierarchy of

POMDPs, so that it can be used to generate and ex-

ecute plans that solve the task at hand. Experimental

results show that, in comparison to baseline methods,

by following a recursive hierarchical approach the archi-

tecture is able to significantly reduce the planning time,

while maintaining (or even improving) the robustness

under several scenarios that vary in uncertainty and

size.
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1 Introduction

In recent decades, robots have become less a character

only found in fictional stories, and more a realistic so-

lution to the constantly growing demand of products

and services, that industries today are challenged to

suffice. This can be observed in the progression of their

role in the private sector, going all the way from auto-

mated production lines [2, 4], to warehouse robots [21]

and, more recently, as service robots designed to col-

laborate in duties related to health care, education and

business [16]. A key component in autonomy, which the

latter group of robots requires, lies in the capacity of a

system to solve a diversity of tasks by itself.
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2 Knowledge-Based Hierarchical POMDPs for Task Planning

In order to solve tasks autonomously, robots must be

equipped with the knowledge (or the capacity to acquire

it) about the structure of the class of problems they are

being designed to solve, as well about how their actions

can change the state of world. The degree of faithful-

ness/consistency of the representation, and the actual

problem, has a great impact in the success of the plans a

robot generates to solve the task at hand. For instance,

in the real world, for most of the actions a robot may

perform, there is a chance of obtaining an unexpected

result. Similarly, sensors are always prone to produce

incorrect measurements, in some degree. Thus, in the

context of planning robots, partially observable Markov

decision processes (POMDP) [12, 22] have been widely

used to address task planning problems, since they are

able to model the stochastic dynamics of acting and

measuring processes, such as the actuators and sensors

in a service robot.

However, considering that solving a POMDP is a

PSPACE-hard problem [17], and that it is common for

robotic platforms to have a significant amount of de-

grees of freedom (e.g., the position, speed and torque

of each articulation), solving a POMDP that models

the state variables of a whole robot is very expensive

(in terms of computational time), and becomes unfea-

sible for most applications. In order to mitigate the

computational cost, different strategies have been ex-

plored from which the hierarchical approach, in tan-

dem with Markov decision processes (MDP) [3, 10], is

one the most employed techniques because of its capac-

ity to reduce the overall complexity of a problem, by

decomposing it into a hierarchy of smaller problems.

Hence, in this paper we propose a task planning ar-

chitecture that combines a hierarchical approach and

POMDPs, with a knowledge-based scheme, to solve

decision-making problems. The architecture defines a

knowledge base structure that a designer can use to en-

code descriptions of the skill sets of a robot, as well

of the structure of its environment, in a way that pro-

motes the modularity and reuse of information. Then,

the architecture initializes by building a hierarchy of

POMDPs, based on the descriptions in the knowledge

base and a recursive definition of a POMDP. After-

wards, the architecture is ready to accept task requests

from a user, which it solves by generating (and exe-

cuting) multi-resolution plans that are built upon the

hierarchy of POMDPs (see Fig. 1).

By modeling plans at several levels of granularity, the

architecture facilitates the interpretation of the deci-

sions the agent makes. Moreover, since abstract actions

are modeled as POMDPs defined over a subregion of

the state space, during the execution of plans, the archi-

tecture employs an entropy-based statistic so that the

agent is better informed about its current state. To eval-

uate the proposed architecture, we used a mobile robot

navigation domain. Experimental results show that, by

employing a recursive hierarchical approach, the system

is capable of outperforming the baseline methods, in

terms of computing time and effectiveness to reach goal

locations. After submitting the architecture to several

scenarios (that differ in size and overall uncertainty), it

consistently exhibited a robust behavior.

The rest of the paper is structured as follows, Section

2 summarizes the main advances in planning systems

that combine POMDPs with a hierarchical approach,

Section 3 presents the overall functionality of the pro-

posed architecture and its three main stages. Section

4 describes the components of information that are re-

quired to specify the knowledge base (first stage), then,

in Section 5 is presented the procedure that initializes

the architecture (second stage), followed by Section 6

which describes the operation of the architecture (third

stage), i.e., when the agent is ready to solve tasks. Sec-

tion 7 shows the experiments and results obtained from

the evaluation of the proposed architecture, and finally

in Section 8 the conclusions and ideas for future work

are presented.

2 Related work

To endow a machine with the capacity to make deci-

sions on its own has probably been one of the most ex-

citing problems in artificial intelligence for many years.

Hence, in an effort to overcome this challenge, a variety

of approaches have been proposed. For instance, [5] in-

troduced STRIPS, a problem solving system based on

first-order logic, which was widely employed to solve

theorem-proving and planning problems. Eventually,

systems with a greater expressive power were proposed,

such as PDDL [7,14], which enabled designers to model

planning problems in terms that were more concise and

human-like. However, these approaches lacked the ca-

pacity to model problems in which events have several

possible outcomes, such as robots interacting with peo-

ple and with physical objects. Thus, researchers have

looked for frameworks that are capable of modeling

stochastic events, e.g., PPDDL [27] which is the prob-

abilistic extension to PDDL, and MDP [22] which are

one of the most used models to solve sequential decision

making problems.
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S.A. Serrano et al. 3

Moreover, since sensors are susceptible to produce

wrong measurements (as any measuring system), robots

cannot blindly trust their sensing devices to evaluate

the current state of the environment. Thus, frameworks

that assume to know (without error) the state of the

system, like PPDDL or MDP, fall short to suffice the

requirements of a planning robot. Nonetheless, there is

a generalization of the MDP, known as partially ob-

servable MDP (POMDP) [12, 22], that relaxes this as-

sumption and models the measurement error a robot

might have by means of a set of probability distribu-

tions. However, one of the major drawbacks POMDPs

have is the high computational cost required to com-

pute an optimal policy for them [17].

Despite the significant amount of research that has

been done in the area of approximate solving algo-

rithms [13,18,23], solving POMDPs remains intractable

for most real-world task planning problems. Hence, al-

ternative ways to mitigate the burden of computing

near-optimal policies in less time have been explored,

among which, approaches that decompose the original

problem into a hierarchy of smaller ones have shown to

be a promising solution. For example, [19,20] proposed

a hierarchical POMDP scheme in which the hierarchical

structure is provided by a human designer in the form

of a hierarchy of actions, i.e., a directed acyclic graph in

which a set of children nodes represent all the actions

that might be required to perform the parent action.

By doing so, each POMDP in the hierarchy of actions

had a reduced action space (with respect to the original

one), which reduced in several orders of complexity the

time required to compute a solution, in comparison to

a POMDP with no decomposition.

On the other hand, [25, 26] introduced hierarchies

of POMDPs as an extension of hierarchical hidden

Markov models (HHMM) [6], in which the hierarchical

decomposition of the problem is provided in the form

of a hierarchy of states (state abstraction). In contrast

to [19], it is the state space the one being reduced in

each local POMDP in the hierarchy, and their system

employed sequences of observations to train the overall

model. In this way, after evaluating in a hall navigation

domain, their system planned considerably faster than

a regular POMDP, showing how feasible it can be to ex-

ploit the hierarchical structure of the environment (in

this case in the form of interconnected halls) to learn a

policy from a sequence of observations.

Recently, another form of hierarchical planning involv-

ing POMDPs has been explored [9,24,28–30], in which

a multi-resolution model is constituted by two main lev-

els of representation: a high level at which commonsense

reasoning is usually performed, and a low level at which

portions of the environment are modeled as POMDPs.

In this way, the system generates high-level plans whose

actions are converted and executed as POMDPs. In

these works, similar to [19, 26], the hierarchical struc-

ture of the environment is provided by a designer, which

they use to establish an association between elements

of the two levels of representation. By doing so, the

system exploits high-level knowledge (e.g., books are

usually found in the library, not in the kitchen) to gen-

erate well informed plans and leave the details, that are

relevant for the execution of actions, to the POMDPs

at the low-level representation.

In this paper, we propose a task planning architecture

for service robotics. We use SPARC [1] as a represen-

tation language to define the structure of a knowledge

base that enables a designer to encode the capabilities

of the robot, as well as hierarchical information of the

environment, to build hierarchies of POMDPs. In con-

trast to [19,20], we employ state abstraction as a source

of hierarchical information, which enables our system to

build a hierarchy of abstract actions (as POMDPs) in

an automatic bottom-up manner. In this way, abstract

actions are inferred based on the low level description of

the environment and the state abstraction (both pro-

vided by the designer). Moreover, unlike [25, 26], our

architecture does not depend on a sequence of observa-

tions to train the overall hierarchy of POMDPs. This is

particularly important for service robots, because of the

diversity of tasks they are expected to encounter [11],

it becomes unrealistic to generate enough sequences of

observations, given all the things a robot might be ca-

pable of doing (e.g., navigating, manipulating objects,

speaking, etc.).

On the other hand, we take the idea of task plan-

ning architectures one step further by providing a sepa-

rate description of the robot and the environment, from

which a hierarchy of POMDPs is automatically built. In

this way, if a designer has knowledge of the hierarchical

composition of a problem, our architecture is capable

of exploiting it, contrary to approaches like [24,28] that

are restricted to two levels of resolution. Furthermore,

as experimental results show, there are some tasks (such

as navigation) in which a hierarchy of POMDPs offers

a better solution than a two-level architecture, in terms

of efficiency and effectiveness (see Section 7).
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4 Knowledge-Based Hierarchical POMDPs for Task Planning

3 General overview

In order to solve task planning problems, the proposed

architecture follows three stages: a) knowledge base

construction (KBC), b) architecture initialization (AI),

and c) architecture operation (AO). In the KBC stage,

a human designer is required to encode, into the knowl-

edge base (KB), domain specific information that de-

scribes the skill set of the robot and the particular sce-

nario in which it will operate. Next, in the AI stage, the

architecture builds a POMDP from the information in

the KB, and uses a hierarchical description of the en-

vironment to build a hierarchy of POMDPs. Finally,

in the AO stage, the architecture is ready to receive

task requests, for which it builds and executes multi-

resolution plans (based on the hierarchy of POMDPs).

Both the KBC and AI stages are performed only once,

while the AO stage is executed every time a task request

is issued to the robot (see Fig. 1).

4 Knowledge base construction

The encoding of the KB, which is performed only once,

consists in the designer providing general and spe-

cific knowledge that describes the environment that

the robot will operate in, as well as the skill set it is

equipped with. The general knowledge is specified by

three components: basic modules, domain dynamics,

and a hierarchical function. Whilst the specific knowl-

edge is defined by four lists of elements: concrete val-

ues, abstract values, neighborhood pairs and hierarchi-

cal function pairs. Each of these components is pre-

sented in the following sections.

Furthermore, for illustration purposes, lets consider

an example of a mobile robot that navigates within a

closed discrete environment (see Fig. 2). Despite this

robot has a complete map of its environment, because

it is an old platform and has been operating for many

years, sometimes, its localization sensors fail and its

wheels drift. Therefore, in order for the robot to plan,

a POMDP comes as a suitable solution, as it is capable

of modeling the uncertainty in the outcomes from its

actions (see Figs. 2a and 2b), as well as the error in

its measurements (see Fig. 2c). This example will be

referenced throughout the description of the proposed

architecture.

4.1 General knowledge

In the general knowledge of the KB, for each skill set

the robot has (e.g., navigation, object manipulation,

Fig. 1: Overall workflow of the proposed architecture.

In the KBC stage, a designer encodes a knowledge

about the robot and the environment. Next, in the AI

stage, the basic modules, domain dynamics, concrete

values and neighborhood pairs are employed to build

a POMDP (BP) that models the interactions between

the robot and the environment. Then, this POMDP

is used, along with the hierarchical function, abstract

values and hierarchical pairs to build the hierarchy of

POMDPs (H). Finally, in the AO stage, the system

is ready to receive task requests (in the form of goal
states) from a human user. The task request and the

hierarchy of POMDPs serve as input for the construc-

tion of a hierarchical policy (Π), which is executed to

solve the requested task. Steps 4 and 5 can be executed

as many times the user desires, however, one must wait

for the robot to finish executing a hierarchical policy

before requesting it to solve a new task.

etc.) a basic module must be specified. The domain

dynamics must contain a description of how the actions

the robot is capable of performing can interact with

the environment, while the hierarchical function must

specify with respect to which variable the state space

can be abstracted into a hierarchy. Furthermore, since

the general knowledge describes the skills of a robot, it

can be reused in different environments, as long as the

hardware of the robot remains the same.
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(a) Set of actions (b) Transition distribution (c) Observation distribution

Fig. 2: Example of a mobile robot navigation domain. The robot can move using any of its four actions: up, down,

left and right. The transition distribution of every action consists of two cells: the current one and the target cell,

as shown by the shaded cells in Fig. 2b. Whereas, the observation distribution of every action consists of those

cells covered by a 3 × 3 kernel that is centered in the cell that has been reached by the robot after executing an

action, Fig. 2c shows the cells covered by the kernel in gray.

4.1.1 Basic module

A basic module is defined by a tuple

〈ABM , VBM ,WBM , OBM , TBM , ZBM 〉, where each

element of the tuple is defined as follows.

ABM : Set of actions the basic module is able to per-

form (e.g., a basic module for a mobile navigation skill

could have a setABM = {up, down, left, right} to move

between adjacent locations, see Fig. 2a).

VBM : Set of state variables that actions in ABM are

capable of modifying. Each action in ABM must be ca-

pable of modifying exactly one state variable, and each

state variable must be modifiable by at least one action

(e.g., VBM = {robot loc} in the mobile robot exam-

ple, where the four actions modify the same variable,

since robot loc represents the location of the robot). By

restricting actions to modify a single variable, the ar-

chitecture promotes a modular design and reduces the

amount of experiments required to estimate the tran-

sition distribution of an action, since only one variable

needs to be monitored.

WBM : Set of sets of values for the state variables. For

each vi in VBM , there must be a set wi in WBM that

contains all the values that vi can take. If the values

for vi depend on the particular environment, then wi

should be specified when the specific knowledge is pro-

vided (e.g., w1 = {cell1, cell2, ...} for robot loc, which

depends on how many cells there are in the environ-

ment; in the case of the environment from Fig. 3 w1

would be made of twelve cells).

OBM : Set of sets of observations for the state vari-

ables. For each vi in VBM , there must be a set oi in

OBM that contains all the observations that can be

perceived when the value of vi is modified. If the ob-

servations for vi depend on the particular environment,

then oi should be specified when the specific knowl-

edge is provided (in our navigation example, for the

state variable robot loc, the set of observations would

be o1 = {cell1, cell2, ...}, because the robot measures

its location in terms of cells).

TBM : Set of state transitions. For each action ai and

each value in wj (where vj is the variable that ai
can modify) a probability distribution over wj must

be provided. Each element of a probability distribu-

tion is a state transition, that can be specified ei-

ther as a transition with a list of particular values

as 〈wjk, ai, wjl, p〉 ∈ TBM , or defined by a neighbor-

hood relation as 〈ai, N, q〉 ∈ TBM , where wjk, wjl ∈
wj , p and q are transition probabilities, and N is

a binary relation defined over wj , such that for ev-

ery pair (wjk, wjl) ∈ N , then 〈wjk, ai, wjl, q〉 ∈
TBM (e.g., the tuples 〈right, current cell, 0.2〉 and

〈right, is at right, 0.8〉 could be used to describe the

transition distribution for the action right for a com-

plete environment, see Fig. 2b).

ZBM : Set of observation transitions. For each action

ai and each value in wj (where vj is the variable that

ai can modify and oj is the set of observations for vj) a

probability distribution over oj must be provided. Each

element of a probability distribution is an observation

transition, that can be specified either as a transition

with a list of particular values as 〈wjk, ai, ojl, p〉 ∈ ZBM ,

or defined by a neighborhood relation as 〈ai, N, q〉 ∈
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6 Knowledge-Based Hierarchical POMDPs for Task Planning

ZBM , where wjk ∈ wj , ojl ∈ oj , p and q are transi-

tion probabilities, and N is a binary relation defined

over wj and oj , such that for every pair (wjk, ojl) ∈
N , then 〈wjk, ai, ojl, q〉 ∈ ZBM (e.g., to specify

the observation distribution from Fig. 2c, one could

use nine tuples of the form 〈right, current cell, 0.6〉,
〈right, is at right, 0.05〉, 〈right, is above, 0.05〉, and so

on).

4.1.2 Domain dynamics

The domain dynamics is defined by a collection of

fluents and logical rules that describe a set of neigh-

borhood relations, deterministic and non-deterministic

causal laws, state constraints and executability condi-

tions. The purpose of these fluents and rules is to de-

scribe, in a declarative programming language (in our

case SPARC [1]), the dynamics of the interactions be-

tween the robot and the environment, so that the ar-

chitecture uses this description (along with the specifi-

cation of each basic module) to build a POMDP that

models these interactions (see Section 5.1).

Neighborhood relations: For each action ai, a pair

of set of neighborhood relations defined over wj , and

over wj and oj , must be specified to model which pairs

value-value and value-observation are neighbors with

respect to action ai (i.e., which values and observations

are reachable from certain value if ai is executed); where

wj and oj are the sets of values and observations for

the variable that ai modifies (e.g., recalling the mobile

robot example, the relations is at right(#w0,#w0)

and current cell(#w0,#w0) would describe the neigh-

borhood relations for the action right, as they model

the possibilities of the robot moving and drifting, re-

spectively). In SPARC, binary relations are encoded as

fluents that receive two arguments.

Causal laws: For each action, a collection of de-

terministic and non-deterministic rules must be de-

fined to specify the state and observation tran-

sitions for that action, i.e., the effects actions

provoke. For example, in the navigation scenario,

the rule robot loc(X, I), is at right(Y,X), right →
robot loc(Y, I + 1) would describe the determinis-

tic effect for the action right. On the other hand,

Eq. (1) would specify the non-deterministic causal

law, for the same action, along with the fluent

right possible outcome(·, ·).

robot loc(X, I), right→
{robot loc(Y, I + 1) | right possible outcome(Y, I)}

(1)

The second line in Eq. (1) specifies the set of possible

locations for the robot at the next step of time (i.e., I+

1), considering that the action right was executed and

the definition of the fluent right possible outcome(·, ·).
This fluent must be specified, by the designer, as a col-

lection of deterministic rules. For instance, Eqs. (2) and

(3) would describe the fluent for the non-deterministic

effect of the action right, shown in Fig. 2b.

robot loc(X, I), current cell(X,Y )→
right possible outcome(Y, I)

(2)

robot loc(X, I), is at right(Y,X)→
right possible outcome(X, I)

(3)

Thus, with non-deterministic causal laws a designer

can encode the stochastic effect of any action, by using

as many rules (with the form of Eqs. (2) and (3)) as nec-

essary. Moreover, in order for the system to include a

possible effect (according to a non-deterministic causal

law) in the bottom POMDP (see Section 5.1), the prob-

ability for such transition must be specified in the set

TBM of a basic module.

State constraints: A collection of deterministic rules

that model situations whose occurrence is impossible,

given the nature of the environment (e.g., in the nav-

igation example, the rule robot loc(X, I), X 6= Y →
¬robot loc(Y, I) would model the fact that a robot can-

not be at several locations at the same time).

Executability conditions: For each action, a col-

lection of deterministic rules must be provided to

specify the situations in which an action should

not be performed (e.g., in the navigation example,

robot loc(X, I), blocked above(X)→ ¬up would tell the

system that up should not be executed if the cell from

above it is not free, which would apply for cell 1 in Fig.

3, as there is no cell above it).1

Furthermore, it is worth mentioning that if the de-

signer forgets to add a state constraint, or an exe-

cutability condition, the system can still work. How-

ever, the more constraints and conditions are included

in the dynamics description, the less time it will take

to build the bottom POMDP (see Section 5.1), as the

system will evaluate a smaller number of state transi-

tions.

1 For more detail on how to define causal laws, state con-
straints and executability conditions in SPARC, read [8].
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Fig. 3: Example of an environment for the mobile robot presented in Fig. 2. The environment is composed by 12

cells, which are abstracted into 6 sections, 3 rooms and 2 buildings to define the state space tree of the environment.

Abstract actions (thick arrows) are built to transit between specific pairs of neighbor abstract states, and build

the hierarchy of abstract actions (hierarchy of POMDPs). In this hierarchy, an abstract action can invoke any of

its children actions.

4.1.3 Hierarchical Function

The system requires a function that describes a hierar-

chy, whose leaf nodes are the values for one of the state

variables, while internal nodes are abstract values that

the designer must provide in the specific knowledge.

Such function should map a value to its parent within

the hierarchy (in Fig. 3, a function is in(X) would map

a location to a more abstract location that contains it,

e.g., is in(R2) = B1, etc.).

4.2 Specific knowledge

The specific knowledge describes the particular envi-

ronment in which the robot will operate. This descrip-

tion consists of a list of objects that characterize the

whole scenario (concrete values), the objects in which

the state space can be abstracted (abstract values),

the pairs of objects that are neighbors by some action

(neighborhood pairs) and the pairs of objects that ex-

ist in the hierarchical function (hierarchical function

pairs). Moreover, for a robot to operate in different en-

vironments, the general knowledge can be reused and

only the specific knowledge needs to be encoded for each

environment.

4.2.1 Concrete values

For state variables whose sets of values (or observa-

tions) were not specified in the basic module definition,

the designer must provide the values (or observations)

that represent the particular environment in which the

robot will operate. For instance, for the mobile robot

of our example, the list of cells the robot can perceive

(observations) and be at (state variable values) would

be specified in this part of the KB (e.g., in Fig. 3, this

would mean {C1, C2, ..., C12}).

4.2.2 Abstract values

The set AW must contain the values that are a less

detailed version of the values over which the hierarchical

function is defined (e.g., in the environment from Fig. 3,

this set would be specified by all the sections, rooms and

buildings that constitute the environment, i.e., AW =

{S1, S2, ..., S6, R1, R2, R3, B1, B2}).

4.2.3 Neighborhood pairs

For each neighborhood relation, the designer must pro-

vide the value-value and value-observation pairs that

are true within the particular environment in which the

robot will operate (e.g., in Fig. 3, the pairs for relation

is above would be every pair of cells that are adjacent

and aligned vertically, i.e., {(C1, C3), (C2, C4), ...}).

4.2.4 Hierarchical function pairs

Let wi be the set of values (for state variable vi)

over which the hierarchical function will be defined,

and F : (wi ∪ AW ) → (wi ∪ AW ) be the hierarchi-

cal function. Then, the designer must provide a sub-

set of (wi ∪ AW ) × (wi ∪ AW ) that describes F , i.e.,

a function that maps every element in (wi ∪ AW )

to its parent value in the particular environment in

which the robot will operate (e.g., in Fig. 3, the hi-

erarchical function F = is in would be specified by

{(C3, S2), ..., (R2, B1), ...}).
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5 Architecture initialization

After the general and specific knowledge have been

specified, the architecture uses the domain dynamics,

and the set of concrete values, to build a stochastic

transition diagram. The sets of state and observation

transitions are used to assign probabilities in the tran-

sition diagram, leading to the definition of the bottom

POMDP. Then, a recursive definition of abstract ac-

tions is employed to build a hierarchy of POMDPs with

the bottom POMDP and the hierarchical function, in

a bottom-up approach.

5.1 Construction of the bottom POMDP

Let a POMDP be defined by a tuple M =

〈S,A, Φ,R,O,Ω,B0〉 where S, A, and O are the sets

of states, actions and observations, respectively, Φ, Ω

and R are the transition, observation and reward func-

tion, respectively, and B0 the initial belief distribution.

The purpose of the bottom POMDP is to describe the

dynamics of the environment at the bottom level of the

hierarchy. Thus, the basic modules, domain dynamics

and specific knowledge are employed to define all the

parameters of M , with the exception of R and B0. Each

of the parameters of the bottom POMDP, which we will

refer to as BP = 〈S,A, Φ,O,Ω〉, are defined as follows.

S: The set of states is the cross product of the n sets

of values {w1, ..., wn}, where wi is the set of values for

a state variable vi, defined in a basic module. Each el-

ement in S is an n-tuple, where the i-th element of a

state s, i.e. s[i], is a value that vi can take. For instance,
for the mobile robot and the environment from Fig. 3,

S would be defined by set of all cells, since there is only

one state variable.

A: The set of actions is the union of all the sets of

actions ABM , where ABM is the set of actions of a basic

module. For the mobile robot from Fig. 2a, A would be

defined by {up, down, left, right}.

O: The set of observations is the union of all the sets

of observations oi, where oi is the set of observations

for a state variable vi defined in a basic module. For

the mobile robot from Fig. 2 and the environment from

Fig. 3, O would be defined by set of all twelve cells,

since the robot perceives in terms of cells.

Φ: The transition function is the set of every tu-

ple 〈si, a, sj , p〉 where si, sj ∈ S, a ∈ A, and p is

the transition probability, such that there is a tuple

〈si[k], a, sj [k], p〉 in TBM , for some index k. For the

robot from Fig. 2b, the transition distribution of every

action would be specified by the pair of neighborhood

relations that model the possibility of the robot drifting

or moving towards its target cell.

Ω: The observation function is the set of every tu-

ple 〈s, a, o, p〉 where s ∈ S, a ∈ A, o ∈ O and p is

the observation probability, such that there is a tuple

〈s[k], a, o, p〉 in ZBM for some index k. For the robot

shown in Fig. 2c, the observation distribution of every

action would be specified by the nine neighborhood re-

lations that describe the 3× 3 kernel.

Once the bottom POMDP has been built, it serves as

input parameter for the construction of the hierarchy

of POMDPs (see Algorithm 1).

5.2 Construction of the hierarchy of POMDPs

The hierarchical function, defined in the KB, is used to

build a hierarchical representation of S. This represen-

tation is employed, along with the BP , to build a hier-

archy of POMDPs (each one representing an abstract

action), that the architecture can later use to generate

plans.

5.2.1 State space tree

The State space tree (SST) is a tree structure, where

each node is an n-tuple and the set of leaf nodes is

constituted by S (the set of states of the BP ). In the

SST, the parent node (npar) of a node nchi is defined

by Eq. (4), for i = 1, ..., n.

npar[i] =

{
nchi[i] if i 6= j

F (nchi[i]) if i = j
(4)

where j is the index of the set of values over

which the hierarchical function F is defined and

(nchi[j], F (nchi[j])) ∈ F is a hierarchical function pair

that is specified in the knowledge base, see Fig. 3 for an

example of an SST. Moreover, internal nodes of the SST

will be referred to as abstract states, and the children

nodes of an abstract state as its children states.

5.2.2 Neighbor states

Let si, sj ∈ S be two states from the BP , such that

there is an action a ∈ A, whose (at least) one of its

neighborhood relations has the pair 〈si[k], sj [k]〉 for

some index k, then si and sj are neighbor states. Fur-

thermore, if in the SST a pair of nodes na and nb are

neighbor states and have different parents, then their
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parents are also neighbor states (e.g., in Fig. 3, s1 and

s3 are neighbor states because C2 and C5 are neigh-

bors).

5.2.3 Abstract actions as POMDPs

Let sdi and sdj be two abstract neighbor states located

at height d in the SST and C(s) the set of children

states of s in the SST. An abstract action adij , designed

to transit from state sdi to sdj is modeled as a POMDP

using the following formulation.

Sd
ij : Set of states from the immediate lower level in

the SST that are relevant for abstract action adij .

Sd
ij =C(sdi )⋃

{s | s /∈ C(sdi ),∃sk ∈ C(sdi ), neighbors(s, sk)}⋃
{extra, absb g, absb ng}

(5)

That is, Sd
ij is constituted by the children states of sdi

(blue cells in Fig. 4), any neighbor to its children states

(orange and green cells in Fig. 4) and by the special

states extra, absb g and absb ng. The purpose of the

extra state is to represent the portion of the state space

that is not modeled in Sd
ij (white cells in Fig. 4). On

the other hand, the objective of the absorbent states

absb g and absb ng is to represent the end of the policy

execution, as a consequence of reaching its goal state or

a state that is not in Sd
ij , respectively.

Ad
ij : Set of actions that can be executed at the im-

mediate lower level in the SST and have a probability

greater than 0 of transiting between a pair of states in

Sd
ij , as well as a special action.

Ad
ij ={a | ∃sk, sl ∈ Sd

ij , Φ
d+1(sk, a, sl) > 0}⋃

{terminate}
(6)

With regards to the special action terminate, this ac-

tion is added so that, during the operation stage of

the architecture (AO), the policy (obtained from the

POMDP adij) has a way to indicate that it believes it

has reached its goal state, or the extra state. For in-

stance, in Fig. 3, the abstract actions built to transit

between sections, include terminate and the concrete

actions (i.e., actions from the BP) in their action set

Ad
ij .

Od
ij : Set of observations from the immediate lower

level in the SST that have a probability greater than 0

of being perceived after reaching a state in Sd
ij with an

action in Ad
ij , as well as two special observations.

Od
ij ={o | ∃s ∈ Sd

ij ,∃a ∈ Ad
ij , Ω

d+1(s, a, o) > 0}⋃
{none, extra}

(7)

Also, because the terminate action does not have an

effect in the environment, and does not generate obser-

vations, the purpose of the special observation none is

to represent such lack of information the system can

expect after executing terminate. Whereas the extra

observation, similar to the extra state, will be returned

to the system whenever a non-modeled observation is

perceived. For instance, for the abstract action in Fig.

4, Od
ij would include those observations that can be per-

ceived from cells 1, 2, 3, 4 and 5, according to the kernel

from Fig. 2c that models the observation distribution

of every concrete action.

Φd
ij : For every pair of states in Sd

ij (other than extra,

absb g and absb ng) the transition function simply

takes the probability values defined in Φd+1 (transition

function of the immediate lower level in the SST) for

every non-special action in Ad
ij .

∀sk, sl ∈ Sd
ij \ {extra, absb g, absb ng},

∀a ∈ Ad
ij \ {terminate},

Φd
ij(sk, a, sl) = Φd+1(sk, a, sl)

(8)

However, since there may be some state-action pairs

that have a transition distribution with ending states

that are not in Sd
ij , the ending state for those transitions

is substituted by the extra state, as Eq. (9) specifies.

∀sk ∈ Sd
ij \ {extra, absb g, absb ng},

∀a ∈ Ad
ij \ {terminate},

Se = {s | s /∈ Sd
ij , s ∈ Sd+1},

Φd
ij(sk, a, extra) =

∑
s∈Se

Φd+1(sk, a, s)

(9)

With regards to executing actions from the extra state,

the model is told that they do not have any effect, de-

spite that this may not be true, as specified in Eq. (10).

That is, since the extra state only informs the model

that the agent is out of its local state space, but does

not provide information of its actual state, the best

the agent can do from the extra state (as we will see

in the definition of the reward function) is to execute

terminate, i.e., end the execution of the current ab-

stract action and return the control to the system, so
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that it invokes other abstract action that is more appro-

priate given the current belief state (see Section 6.2.2

for more detail on the execution of abstract actions).

∀a ∈ Ad
ij \ {terminate},

Φd
ij(extra, a, extra) = 1.0

(10)

Also, the distribution for executing any action from any

of two absorbent states has no effect, as Eq. (11) spec-

ifies.

∀a ∈ Ad
ij ,∀s ∈ {absb g, absb ng}

Φd
ij(s, a, s) = 1.0

(11)

Regarding the distributions for the terminate action

and non-absorbent states, these are specified by Eq.

(12) and Eq. (13).

∀s ∈ Sd
ij

⋂
C(sdj ),

Φd
ij(s, terminate, absb g) = 1.0

(12)

∀s ∈ Sd
ij \ ({absb g, absb ng}

⋃
C(sdj )),

Φd
ij(s, terminate, absb ng) = 1.0

(13)

Where C(sdj ) is the set of children states of the tar-

get state for abstract action adij (green cells in Fig. 4).

That is, the model can expect to reach a different ab-

sorbent state by executing terminate from a goal state

(a child of sdj ) than from a non-goal state (any other

non-absorbent state, e.g., the orange, blue and white

cells in Fig. 4).

Ωd
ij : The observation function takes the probability

value, defined in Ωd+1, for every element in Sd
ij , A

d
ij ,

and Od
ij , excluding the special components, as Eq. (14)

illustrates.

∀s ∈ Sd
ij \ {extra, absb g, absb ng},

∀a ∈ Ad
ij \ {terminate},

∀o ∈ Od
ij \ {extra, none},

Ωd
ij(s, a, o) = Ωd+1(s, a, o)

(14)

The distribution for the terminate action is specified

by Eq. (15).

∀s ∈ Sd
ij ,

Ωd
ij(s, terminate, none) = 1.0

(15)

With regards to the distribution of the non-terminal

actions and special states, these are defined by Eq. (16)

and Eq. (17).

∀s ∈ {absb g, absb ng},∀a ∈ Ad
ij \ {terminate},

Ωd
ij(s, a, none) = 1.0

(16)

∀a ∈ Ad
ij \ {terminate},

Ωd
ij(extra, a, extra) = 1.0

(17)

That is, with Eq. (16) the model should not expect

to gather any useful observation once it has reached an

absorbent state, while Eq. (17) indicates that, whenever

the agent perceives the extra observation, it can be

sure to be in the extra state, since such observation is

returned when a non-modeled observation is perceived,

which can only be perceived from states that are not

in Sd
ij , i.e., the those that are represented by the extra

state.

Rd
ij : Since the purpose of the abstract action adij is to

reach sdj from sdi , the reward function is designed based

on two principles: 1) that it should reach sdj as soon as

possible and 2) to stop its execution if it believes to be

outside of its local state space (Sd
ij). These principles

are modeled by the following equations.

∀s ∈ Sd
ij \ {absb g, absb ng},

Rd
ij(s, terminate, ·) =

{
<− if s ∈ C(sdi )

<+ otherwise

(18)

where < is a large scalar value. From Eq. (18) we model

the fact that the agent should only terminate the policy

execution from states outside of C(sdi ) (e.g., in Fig. 4,

cells that are not blue), whether if it is from its goal

states (children states of sdj ), from a children of other

neighbor state of sdi , or any other region of the state

space (the extra state).

∀s ∈ Sd
ij \ (C(sdi )

⋃
C(sdj )), Rd

ij(·, ·, s) = <− (19)

Rd
ij(·, ·, extra) = <− (20)

With Eq. (19) and Eq. (20) the agent is encouraged to

avoid transiting to any other neighbor state of sdi that

is not sdj , or to the extra state (e.g., the orange and

white cells, respectively, in Fig. 4).

∀a ∈ Ad
ij \ {terminate}, Rd

ij(extra, a, ·) = <− (21)

Equation (21) models the fact that if the agent happens

to reach the extra state, even though that is not desir-

able, it should terminate the policy execution so that

the architecture can invoke a more appropriate action

given the current belief state.

Rd
ij(absb g, terminate, ·) = <+ (22)

Because the absorbent state absb g can only be reached

by executing terminate from any child state of sdj (e.g.,
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the green cells in Fig. 4), with Eq. (22) we invite

the agent to end the policy execution as fast as pos-

sible from a goal state, so that it can keep invoking

terminate for the remaining steps of the episode from

absb g, and retrieve a larger accumulated reward than

from any other state.

∀sk, sl ∈ Sd
ij \ {extra},∀a ∈ Ad

ij \ {terminate},
Rd

ij(sk, a, sl) = −1
(23)

For any transition that does not start nor end in the

extra state, by executing a non-terminate action, the

agent will retrieve a uniform negative reward. In this

way, Eq. (23) encourages the agent to not wander

around, given that actions have a cost. Furthermore,

when the actions in Ad
ij are abstract actions, the reward

signal for some transitions (that were already specified

by Eq. (23)) is overwritten by Eq. (24).

∀sk, sl ∈ Sd
ij \ {extra},∀amn ∈ Ad

ij \ {terminate},

Rd
ij(sk, amn, sl) =

{
−1 if sk = sm

<− if sk 6= sm

(24)

where amn is the abstract action designed to transit

from sm to sn. Thus, Eq. (24) expresses the fact that

the agent should not invoke abstract actions from states

that are not the initial state by design (e.g., in Fig. 4,

the initial state by design of the abstract action AA1 is

the abstract state S1).

Once the tuple 〈Sd
ij , A

d
ij , O

d
ij , Φ

d
ij , Ω

d
ij , R

d
ij〉 for the lo-

cal POMDP that models the abstract action adij is fully

defined, a POMDP solving algorithm is employed to

compute its policy. However, in order to use adij as an

action in another POMDP, its transition and observa-

tion distributions must be defined, as well as the state

and observation spaces it is associated with. These dis-

tributions and spaces are specified as follows.

Sd: The state space at height d is constituted by every

node of the SST located at height d.

Od: The set of abstract observations at height d is

made up by one observation od for each abstract state

sd ∈ Sd.

Φd: For an abstract action adij , designed to transition

from state sdi to sdj , the transition probability distribu-

tion defined over abstract states at height d is given by

the following equations.

∀sdk ∈ ({s | neighbors(sdi , s)}
⋃
{sdi }),

Φd(sdi , a
d
ij , s

d
k) = sim prob(sdk)

(25)

∀sdk ∈ (Sd \ ({s | neighbors(sdi , s)}
⋃
{sdi })),

Φd(sdi , a
d
ij , s

d
k) = 0.0

(26)

∀sdk ∈ {s | s 6= sdi },
Φd(sdk, a

d
ij , s

d
k) = 1.0

(27)

where sim prob(s) is a probability that is estimated

by simulating the policy obtained after solving the

POMDP that models adij . That is, let M be the amount

of times the policy for adij is simulated, SimCount(s)

the amount of simulations that end at a child of abstract

state s, and Neig(sdi ) the set of neighbor states of sdi ,

then, the probability of transiting from sdi to one of its

neighbors, or to sdi itself, with action adij is estimated

by Eq. (28).

∀s ∈ {sdi }
⋃
Neig(sdi ),

sim prob(s) =
SimCount(s)

M

(28)

In each simulation of the policy for adij , the ini-

tial state s0 is randomly sampled from Sd
ij \

{extra, absb g, absb ng} (following a uniform distribu-

tion), and in the initial belief distribution, s0 has a

probability of 1.0. Then, actions are sampled from the

policy for adij , while the resulting state and perceived

observation are sampled from the transition and ob-

servation functions located at the immediate level be-

low, i.e., Φd+1 and Ωd+1. Finally, a simulation ends

when the policy invokes the terminate action from the

final state sfinal, then, the count of a state s (i.e.,

SimCount(s)) increases by one if sfinal ∈ C(s).

Regarding the transition distribution, Eq. (25) assigns

the probability for transitions that start in sdi and end

in a reachable state, Eq. (26) for transitions that end in

unreachable states, whereas Eq. (27) expresses the fact

that adij can only change the state of the agent if it is

invoked from sdi .

Ωd: For an abstract action adij , designed to transit

from state sdi to sdj , the probability of perceiving an

abstract observation after executing adij is given by Eq.

(29).

∀sdk ∈ Sd,

Ωd(sdk, a
d
ij , o

d
k) = 1.0

(29)

where odk is the observation associated to the abstract

state sdk.
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Fig. 4: State space for the abstract action AA1, de-

signed to transit from section S1 to S2 (based on the

SST shown in Fig. 3). The blue cells are non-goal states,

the green cells represent the goal states, while the or-

ange cell is a state the agent should avoid transiting to.

Every white cell is not part of the local state space and,

therefore, is represented by the extra state.

The reason the observation distribution is defined

without uncertainty is because the agent will not per-

ceive abstract observations, only concrete ones (i.e., ob-

servations from the BP). During the operation stage,

the agent does not need abstract observations to up-

date the belief state vector at an internal level in the

SST, but it rather synthesizes state probabilities up-

wards from the bottom of the SST (see Section 6.2.1

for more detail on the updates of belief distributions in

the SST). Furthermore, as experimental results suggest,

this simplification does not seem to affect negatively the

capacity of the system to select actions during opera-

tion.

In Algorithm 1 the hierarchy of actions (modeled as

POMDPs) is built. It receives as input parameters the

bottom POMDP (BP ), the hierarchical representation

of the state space (SST ) and the amount of times ab-

stract actions should be simulated to estimate their pa-

rameters (M). For each internal level in the SST, a tuple

〈S,A,O, Φ,Ω〉 is specified, in a bottom-up way. At ev-

ery internal level in the SST, the formulation presented

in section 5.2.3 is employed (lines 12 and 13) to build an

abstract action for every ordered pair of abstract states

that are neighbors, that is, adij 6= adji.

6 Architecture operation

During its operation phase, the agent is ready to receive

task requests, which must be passed as a goal state,

which is an n-tuple that specifies a value for each one

of the n state variables (defined in the KB). Then, a

hierarchical policy is built and executed in a top-down

way to gradually bring the agent to the goal state.

Algorithm 1 Construction of hierarchy of actions

1: procedure BuildHierarchyActions(BP , SST , M)
2: i← depth(SST )− 1
3: H ← [ ]
4: while i > 0 do
5: S ← States(SST [i])
6: O ← GenerateObs(S)
7: A← ∅
8: Φ← ∅
9: Ω ← ∅

10: for all s0 ∈ S do
11: for all s1 ∈ NeighborStates(s0) do
12: a← BuildAA(s0, s1, H[len(H)− 1])
13: t, z ← EstimateTZ(a, S,O,M)
14: A← A

⋃
{a}

15: Φ← Φ
⋃
t

16: Ω ← Ω
⋃
z

17: end for
18: end for
19: Append(H, 〈S,A,O, Φ,Ω〉)
20: i← i− 1
21: end while
22: return H
23: end procedure

6.1 Construction of a hierarchical policy

A hierarchical policy (HP) is a vector of POMDP poli-

cies (one for each level in the SST, except for the level

of the root node) which we will refer to as Local Poli-

cies (LP). To build an HP, it is necessary to represent

the goal state at every level within the SST. Thus, we

define the hierarchical state, which is a path from the

root of the SST to the goal state (e.g., in Fig. 3, the

hierarchical state of cell 12 is [root,B2, R3, S6, C12]).

In Algorithm 2 is shown a summary of the procedure

employed to build an HP.

Algorithm 2 receives as parameters the goal state (G),

the hierarchy of actions (H) and the state space tree

(SST ). For every node in the hierarchical state of G

(except for the root of the SST) an LP is built. In the

POMDP of the LP designed to reach GH [i] at height i

in the SST, S is composed by the absorbent states, the

goal state GH [i], the states that are siblings of GH [i]

in the SST (states that share their parent node with

GH [i]) and any other state that is neighbor to any of

them and does not share parent with them. The sets A

and O are defined following the same criteria used in

the construction of abstract actions (see Eq. (6) and Eq.

(7)), with the difference that, in Algorithm 2, the height

from which actions and observations are being gathered

is expressed by i, instead of d+ 1. Another difference is

that, in Algorithm 2, the extra observation is added in

certain cases, contrary to the construction of abstract

actions.
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Algorithm 2 Construction of hierarchical policy

1: procedure HierarchicalPolicy(G, H, SST )
2: GH ← HierarchicalState(G,SST )
3: ΠH ← [ ]
4: parent node← GH [0]
5: i← 1
6: while i < len(GH) do
7: j ← len(H)− i
8: S ← Children(parent node)
9: S ← S

⋃
{ps | ps /∈ S,∃s ∈ S, neig(ps, s)}

10: S ← S
⋃
{absb g, absb ng}

11: A← RelevantActions(S,H[j][1])
12: A← A

⋃
{terminate}

13: O ← RelevantObservations(S,H[j][2])
14: O ← O

⋃
{none}

15: if i > 1 then
16: S ← S

⋃
{extra}

17: O ← O
⋃
{extra}

18: A← A
⋃
{help}

19: end if
20: Φ← TransitionSpec(S,A,GH [i], H[j][3])
21: Ω ← ObservationSpec(S,A,O,H[j][4])
22: R← GoalBasedReward(S,A,GH [i])
23: π ← SolvePolicy(S,A,O, Φ,Ω,R)
24: Append(ΠH , π)
25: parent node← GH [i]
26: i← i+ 1
27: end while
28: return ΠH

29: end procedure

In Algorithm 2, since at height 1 (immediately below

the root of the SST) the set S of the LP will consist of

every state that is in that height, the extra state and

observation are not needed (see the top LP in the HP

shown in Fig. 5). Also, the special action help is not

required, since its purpose is to return the control to

the LP from the level above it in the SST (see Section

6.2.2), i.e., no LP will be built above level 1. Regarding

the transition and observation distributions, the criteria

used for the specification of Φd
ij and Ωd

ij in the abstract

actions is reused for LPs, however, the following modifi-

cations are made so that an LP incorporates the action

help.

∀s ∈ S \ {absb g},
Φ(s, help, absb ng) = 1.0

(30)

Φ(absb g, help, absb g) = 1.0 (31)

∀s ∈ S,
Ω(s, help, none) = 1.0

(32)

Φ(extra, terminate, extra) = 1.0 (33)

Φ(GH [i], terminate, absb g) = 1.0 (34)

∀s ∈ S \ {absb g, absb ng}, s 6= GH [i]

Φ(s, terminate, absb ng) = 1.0
(35)

Equations (30), (31) and (32) are added to the formu-

lation to specify the distributions for the help action,

whereas, Eqs. (33), (34) and (35) are a modification of

Eqs. (10), (12) and (13), respectively. That is, Eq. (33)

models the fact that, in an LP, it is the help action

that takes the agent out of the extra state, instead of

terminate. On the other hand, Eqs. (34) and (35) mod-

ify the formulation because, in an LP, the goal state is

GH [i], rather than a set of neighbor states.

With regards to the reward function of an LP, Algo-

rithm 2 also reuses the formulation employed to define

the reward function for abstract actions, with the fol-

lowing modifications due to the addition of action help,

and the difference in the definition of what a goal state

is.

∀s ∈ S,

Rd
ij(s, help, ·) =

{
<+ if s = extra

<− if s 6= extra

(36)

∀a ∈ A \ {help}, Rd
ij(extra, a, ·) = <− (37)

∀s ∈ S \ {absb g},

Rd
ij(s, terminate, ·) =

{
<+ if s = GH [i]

<− if s 6= GH [i]

(38)

Equations (36) and (37) motivate the agent to execute

the help action only from the extra state, i.e., when

the agent derails from the local state space of the LP.

Equation (38) is a modification of Eq. (18), since in an

LP the goal state is specified as GH [i].

6.2 Execution of policies

The execution of an HP is performed by two procedures

that interleave the control of the execution process. Al-

gorithm 4 is in charge of executing POMDP policies

(such LPs and abstract actions), while Algorithm 6 de-

termines the order in which LPs should be executed

to take the agent to the goal state. Moreover, in or-

der for these algorithms to keep track of the changes

each action causes (at all levels in the SST), we define

This is a pre-print of an article published in Journal of Intelligent & Robotic Systems. The final authenticated

version is available online at https://doi.org/10.1007/s10846-021-01348-8.

https://doi.org/10.1007/s10846-021-01348-8


14 Knowledge-Based Hierarchical POMDPs for Task Planning

a multi-resolution representation of the belief state of

the agent, which is described in Section 6.2.1, whereas

the algorithms that are responsible for the execution

of POMDP policies, and hierarchical policies, are pre-

sented in Section 6.2.2.

6.2.1 Global belief

The global belief (GB) is a tree, whose structure is iden-

tical to the SST, however, each node in the GB consists

of an ordered pair gb = [s, p], where s is the correspon-

dent node in the SST, and p ∈ R represents the belief

probability of s. The GB represents the belief state dis-

tributions at every level of the SST, and is employed

by Algorithm 4 so that a POMDP policy (whether it is

an abstract action or an LP from a hierarchical policy)

samples actions during its execution. Algorithm 3 illus-

trates the procedure followed to update the GB based

on the last performed action, and the last perceived

observation, at the bottom of the SST.

Algorithm 3 Update of the global belief

1: procedure UpdateGlobalBelief(B, a, z)
2: UpdateBottomLevel(B, a, z)
3: i← getHeight(B)− 1
4: for i > 0 do
5: for all gb at level i in B do
6: gb[1]← 0.0
7: children← C(gb)
8: for all c in children do
9: gb[1]← gb[1] + c[1]

10: end for
11: end for
12: i← i− 1
13: end for
14: return B
15: end procedure

Algorithm 3 takes as parameters the GB to be updated

(B), a concrete action (a) and a concrete observation

(z). First, the belief distribution for the states at the

bottom of the SST is updated with a and z (line 2).

Then, the belief probabilities are synthesized upwards.

That is, the probability of an internal node gb, in B, is

the sum of the probabilities of its children nodes C(gb).

6.2.2 Execution of a hierarchical policy

Given that a hierarchical policy is constituted by a list

of LPs (that are POMDP policies), whose actions may

also be policies (abstract actions), we first introduce the

execution of POMDP policies (upon which the execu-

tion of the HP takes place), followed by the description

of the execution of a HP.

Fig. 5: Hierarchical policy built in the environment from

Fig. 3. At each level in the SST (except level 0), an LP

attempts to take the agent to the goal state in that level.

When policy Π[i] believes that it has reached its goal,

it will invoke the terminate action and pass the control

to Π[i + 1]. However, if Π[i] believes that the agent

has transited to the extra state, it will invoke the help

action to return the control to Π[i− 1]. The local state

space of each LP, similar to the abstract action in Fig.

4, consists of non-goal (blue) and goal (green) states,

as well of states that the agent should avoid transiting

to (orange) and the extra state (white).

Algorithm 4 Execution of a POMDP policy

1: procedure ExecutePolicy(π, B, d)
2: SLoc ← getStateSpace(π)
3: b← mapBeliefToLocal(SLoc, B, d)
4: πE ← entropyWeight(π, SLoc, B, d)
5: a← getAction(πE , b)
6: while a 6= terminate and a 6= help do
7: if a is concrete then
8: z ← executeAction(a)
9: B ← updateGlobalBelief(B, a, z)

10: else
11: [a,B]← ExecutePolicy(a,B, d+ 1)
12: end if
13: b← mapBeliefToLocal(SLoc, B, d)
14: πE ← entropyWeight(π, SLoc, B, d)
15: a← getAction(πE , b)
16: end while
17: return [a,B]
18: end procedure

Algorithm 4 takes as input parameters the policy to

be executed (π), the current GB (B) and the height in

the SST (d) at which the execution of the policy will

take place. First, the state space of π is stored in SLoc,

then a belief state distribution b is built for the local

state space SLoc, based on the current GB (line 3). The
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belief probability for each state in SLoc is given by Eqs.

(39), (40) and (41).

∀gbLoc ∈ {gb | gb ∈ nodesAtHeight(B, d), gb[0] ∈ SLoc}
b(gbLoc[0]) = gbLoc[1]

(39)

GBextra ={gb | gb ∈ nodesAtHeight(B, d),

gb[0] /∈ SLoc}

b(extra) =
∑

gb∈GBextra

gb[1]
(40)

b(absb g) = 0.0

b(absb ng) = 0.0
(41)

where nodesAtHeight(B, d) returns the set of all nodes

located at height d in the global belief B and b(s)

is the belief probability of state s in the local state

space SLoc. Thus, for states that are not in SLoc, the

mapBeliefToLocal procedure sums their probability in

the extra state, whereas for states that are in SLoc,

their probability is simply assigned to them from the

GB. Once the initial belief distribution has been built,

the value function (from which policy π is derived) is

modified (line 4) so that the resulting policy πE consid-

ers the dispersion of the probability of every state that

is represented by the extra state (the inner working of

Algorithm 5, which describes the entropyWeight pro-

cedure, is detailed after the explanation of Algorithm

4).

Afterwards, the procedure enters in a loop in which it

executes the last sampled action (lines 7-12), updates

its local belief distribution (line 13), updates its policy

based on the current entropy of the extra state (line

14) and samples the next action. This loop will end

when the action sampled by the policy is terminate or

help. Furthermore, since actions can either be concrete

(those that take place at the bottom of the SST) or

abstract, depending on which is the case, Algorithm 4

will proceed differently. In the case of concrete actions

(lines 8-9), the action is simply executed, and the per-

ceived concrete observation is employed to update the

GB B, using Algorithm 3. On the other hand, since ab-

stract actions are POMDP policies, they are executed

by recursively invoking Algorithm 4, in which the height

passed as parameter is the current height plus one, i.e.,

d + 1. Finally, the procedure returns an ordered pair

containing the last sampled action and the current ver-

sion of the the GB (line 17).

Algorithm 5 Weighing of a value function

1: procedure entropyWeight(π, SLoc, B, d)
2: extra probs← [ ]
3: i← 0
4: for all gb at level d in B do
5: if gb[0] /∈ SLoc then
6: append(extra probs, gb[1])
7: i← i+ 1
8: end if
9: end for

10: uni probs← uniformDistribution(i)
11: E ← entropy(extra probs)
12: Emax ← entropy(uni probs)
13: V ← getV alueFunction(π)
14: i← getStateIndex(SLoc, extra)
15: for all α in V do
16: α[i]← α[i]

1+|α[i]∗ E

Emax
|

17: end for
18: πE ← getPolicy(V )
19: return πE
20: end procedure

With regards to Algorithm 5, it receives as input pa-

rameters the unmodified policy (π), the state space of

the policy (SLoc), the current global belief (B) and the

height in the SST at which the policy takes place (d).

First, the probability of every state located at height

d that is not in SLoc is gathered to build the probabil-

ity distribution extra probs (lines 2-9), followed by the

construction of a uniform distribution with the same

amount of elements as extra probs (line 10). Then,

the Shannon entropy of both distributions is computed

(lines 11-12) to weight the value of the extra state

in every α-vector of the value function from which π

was computed. Finally, policy πE is computed from the

value function after the entropy-based modification.

The value function is modified because, when policy π

was computed, the POMDP solving algorithm did not

know that the extra state actually represents a set of

states. Thus, without the modification Algorithm 5 per-

forms, policy π would sample actions under the assump-

tion that each probability in the belief distribution is

concentrated in a single state of the environment, which

may not be necessarily true for the extra state. Hence,

in Algorithm 5, we use the entropy of the probability

distribution of the states that extra represents, to mea-

sure the degree in which such assumption is true for the

extra state (line 16). Where, E is the current entropy

value for the extra state and Emax is the maximum

entropy value the extra state can have (a uniform dis-

tribution). Therefore, when the probability of the extra

state is allocated in a single state, E will equal zero and

the value of the extra state in the α-vectors will remain

the same. However, as the dispersion of the probability

of the extra state gets closer to a uniform distribution,
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the larger E will be, and the more diluted the value of

the extra state will be in the α-vectors.

Algorithm 6 Execution of a hierarchical policy

1: procedure ExecuteHiePolicy(ΠH , b0)
2: B ← buildGlobalBelief(b0)
3: i← 0
4: while i < length(ΠH) do
5: [a,B]← ExecutePolicy(ΠH [i], B, i+ 1)
6: if a = terminate then
7: i← i+ 1
8: else
9: if last a = help then

10: i← i− 1
11: end if
12: end if
13: end while
14: end procedure

Regarding the execution of an HP, Algorithm 6 takes

as input parameters the HP to be executed (ΠH) and

the initial belief state distribution (b0) for the states lo-

cated at the bottom of the SST (concrete states). First,

a GB is built from b0 by performing the steps of Algo-

rithm 3, without updating the bottom level of a GB.

In other words, the probability of every concrete state

is pushed upwards to its ancestor nodes. Next, the pro-

cedure enters into a loop in which the first LP (ΠH [0])

takes places at the level below the root of the SST, while

the last LP (ΠH [length(ΠH) − 1]) takes place at the

bottom of the SST. The execution of the LPs is done

by invoking Algorithm 4, and when its execution ends,

the returned action will determine the next LP to be

executed (Fig. 5 shows an example of an HP).

That is, if the last action an LP performed was

terminate, it is likely that the LP believed it had

reached its goal state, therefore, Algorithm 6 would

proceed to execute the LP in the next level below in

the SST. However, if its last action was help it might

be due to the LP believing the agent had reached the

extra state, meaning that the agent left the local state

space of the LP. In this case, the LP from the level

above is executed, since its local state space is broader

and, hence, it is likely that the agent is within it.

7 Experiments

In order to evaluate the proposed architecture, a mobile

robot navigation domain was employed. In this domain,

an environment was modeled as a sequence of inter-

connected buildings, each one discretized as a grid of

square uniform cells (Fig. 6 shows two environments).

The bottom POMDP, obtained from the description of

the domain encoded in the knowledge base, has a state

and an observation for each cell in the environment,

while the set of actions is constituted by: up, down, left,

right. The transition distribution of each action assigns

probabilities of 0.1 and 0.9 to staying in the current cell

and transiting to the target cell, respectively (see Fig.

2b). The observation distribution of each action is mod-

eled as a 3× 3 Gaussian kernel centered in the reached

cell (see Fig. 2b), whose standard deviation is speci-

fied differently for several experimental configurations

(see Fig. 7). For the hierarchical function, four levels

are provided (from bottom to the top of the hierarchy):

cells, sections, rooms and buildings.

For comparison purposes, the proposed architecture

(HP) is compared against a standard POMDP (FP) and

a two level hierarchical approach (TLP), that in an ini-

tialization phase computes POMDP policies designed

to transit between buildings. When a task request is

received, it computes a buildings path, executes a se-

quence of building-to-building policies to traverse the

path and, once it believes it has reached the building

that contains the goal cell, computes a POMDP pol-

icy whose set of states is made of all the cells that are

in the goal building and proceeds to execute it. Thus,

TLP requires to know the building at which the agent

is at the beginning of the task. Also, in order to solve

the POMDP policies for FP, TLP and HP, the point

based value iteration algorithm [18] was used, whereas,

100 simulations were performed by HP to estimate the

transition distribution of each abstract action.

Decomposing a task into a set of smaller ones usually

makes easier to compute a solution for it, however, it

also comes with a cost in terms of the quality of the

solution. When one of the decomposed smaller tasks

is being solved, since it is treated as an isolated prob-

lem, its solution is computed with less information (in

comparison to solving the original problem), which may

affect its performance in the long term. To quantify how

easy it is for a method to compute a solution we use the

time required to plan (seconds). Whereas, to measure

the quality of the solution we employ Eqs. (42), (43)

and (44). Equation (42) quantifies the ratio of runs in

which the goal cell was reached with respect to the to-

tal runs. Equation (43) computes how many concrete

actions the agent took to arrive to the goal cell, and

Eq. (44) measures how far the agent is from the goal

cell at the end of a run. SP (·, ·) computes the length

(in horizontal and vertical steps) of the shortest path
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Fig. 6: Navigation environments generated for the two first experimental configurations evaluated in the set of

experiments 3 (see Fig. 10). Sections, rooms and buildings are framed in green, blue and red, respectively. The

black segments, which overlap with some of the blue and red lines, represent walls that block the way of the robot.

Fig. 7: 3D histograms of the discrete Gaussian 3×3 kernels (with different standard deviations) employed to model

the observation distribution for the concrete actions in our experiments. The greater the probability for the bin

in the center, the less likely it is for the agent to perceive misleading observations. On the other hand, the flatter

the histogram is, the greater the noise is in the observation function.
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Table 1: Summary of the sets of experiments.

Set of
experiments

Description

1

The agent knows with certainty its initial
state, the environment is made of 128
cells and the standard deviation was va-
ried, results are shown in Fig. 8.

2

The agent starts with a uniform distri-
bution as initial belief state, the envi-
ronment is made of 128 cells and the
standard deviation was varied, results
are shown in Fig. 9.

3

The agent knows with certainty its initial
state, the standard deviation is fixed to
0.2 while the dimensions of the sections,
rooms and buildings are were varied, re-
sults are shown in Fig. 10.

between two cells.

success ratio =
# successful runs

total runs
(42)

path relative cost =
# concrete actions

SP (initial cell, goal cell)
(43)

relative error =
SP (final cell, goal cell)

SP (initial cell, goal cell)
(44)

The evaluation process has been structured in three

sets of experiments, which are summarized in Table

1. Each experimental configuration is defined by the

height and width of all sections, rooms and buildings,

the standard deviation used in the Gaussian kernel that

models the observation distributions of each action, the

initial belief distribution the agent has at the begin-

ning of a task and the amount of buildings. All sections,

rooms and building are square, and their dimensions are

expressed in terms of the objects in the level below in

the hierarchy (e.g, sections in terms of cells and rooms

in terms of sections, see Fig. 6 for some environment

examples). A total amount of twenty three experimen-

tal configurations were evaluated (see Table 2), all of

them used an environment made of two buildings.

For every experimental configuration, 233 runs were

performed. In each run, a pair of initial and goal cells

was randomly sampled, each cell from one of the build-

ings that constitute the environment. Figure 6 shows

some examples of the environments generated for the

experiments, whereas, Figs. 8, 9 and 10 show the re-

sults for the sets of experiments 1, 2 and 3, respectively.

Furthermore, it is worth noting that most of the gen-

eral knowledge (except the observation probabilities)

was reused throughout all the experiments, and only

the specific knowledge had to be specified for each en-

vironment (i.e., for each experimental configuration).

The general-specific partition of the knowledge facili-

tated the process of designing the evaluation setting,

as the robot was described independently from the test

environments.

As the plots from Fig. 8 show, both TLP and HP were

able to consistently reach the goal cell in most of the

runs, while FP was not capable of scoring a success ra-

tio greater than 0.8 in any experimental configuration.

Even though an observation function with greater un-

certainty did not seem to affect the robustness of TLP

and HP, it did increase the average path relative cost

in the last four configurations. This may be because

the agent perceived, in a greater rate, observations that

misinformed it about its true location, which led it to

take actions that derailed it from the shortest path to

its goal. Furthermore, despite TLP and HP showed a

similar performance in terms of effectiveness, HP is con-

siderably less time consuming.

Since in the second set of experiments the initial be-

lief was a uniform distribution, TLP was not evaluated,

because it requires to know the initial state to compute

the path of buildings. Thus, for this set of experiments

we observed a very similar behavior in FP and HP (with

respect to the previous set). It is likely that the high

degree of uncertainty, at the beginning of a task, did

not affect the performance of neither methods because

the observation distribution of every concrete action is

defined over a local neighborhood. Hence, the agent re-

quired a short sequence of observations to compute a

good estimate of its location.

For the third set of experiments, we did not evaluate

FP since it had already shown to not perform well in

small environments with low uncertainty. With regards

to TLP and HP, for the first configuration they per-

formed quite similar. However, as the size of the envi-

ronments increased in the last three configurations, the

success ratio of TLP significantly dropped, whereas, HP

maintained its effectiveness. Furthermore, although the

initial planning time required by HP (the time it takes

to build the hierarchy of actions) grows non-linearly,

the time required to build a hierarchical policy shows a

tendency to remain constant. Hence, the larger the pe-

riod of operation is, the more the robot will gain from

the time invested in the initial planning, and from the

hierarchical knowledge available.
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Table 2: Specification of the experimental configurations evaluated in the sets of experiments 1, 2 and 3. Each

row corresponds to a configuration, while columns (from left to right) show: the set of experiments to which the

configuration belongs to, the height and width of every section, room and building, the standard deviation used

to compute the Gaussian kernel that models the observations distributions, and the belief distribution the agents

starts with in every task (where uniform refers to a uniform distribution and b(s0) = 1.0 means that the agent

knows its initial state with certainty). The bold values correspond to the non-fixed parameters in each set of

experiments.

Set of
experiments

Section
dimensions
(cells)

Room
dimensions
(sections)

Building
dimensions
(rooms)

Standard deviation
in Gaussian kernel

Initial
belief
distribution

1 2 2 2 0.2 b(s0) = 1.0
1 2 2 2 0.3 b(s0) = 1.0
1 2 2 2 0.4 b(s0) = 1.0
1 2 2 2 0.5 b(s0) = 1.0
1 2 2 2 0.6 b(s0) = 1.0
1 2 2 2 0.7 b(s0) = 1.0
1 2 2 2 0.8 b(s0) = 1.0
1 2 2 2 0.9 b(s0) = 1.0
1 2 2 2 1.0 b(s0) = 1.0
2 2 2 2 0.2 Uniform
2 2 2 2 0.3 Uniform
2 2 2 2 0.4 Uniform
2 2 2 2 0.5 Uniform
2 2 2 2 0.6 Uniform
2 2 2 2 0.7 Uniform
2 2 2 2 0.8 Uniform
2 2 2 2 0.9 Uniform
2 2 2 2 1.0 Uniform
3 2 2 2 0.2 b(s0) = 1.0
3 3 2 2 0.2 b(s0) = 1.0
3 3 3 2 0.2 b(s0) = 1.0
3 3 3 3 0.2 b(s0) = 1.0

7.1 Discussion

Since the main motivation of our work is to endow a

robot with the capacity to solve tasks, efficiently and

effectively, we selected a single-domain scenario (navi-

gation with a mobile robot), as it enabled us to study

the proposed methodology and the effect certain vari-

ables (like the size of the problem and the dispersion

in the observation distribution) had in the behavior of

the system, without the interference that the interplay

among a set state variables might have inserted. As the

red trace (from the planning-time plots) shows in Figs.

8, 9 and 10, our architecture requires a considerably less

time to generate the plan for a task request than the

baseline methods. As it should, given the advantage it

has by knowing the underlying hierarchical structure of

the environment.

However, we were less certain about the effect the un-

certainty in the observation distributions would have in

the system, as the abstract actions operate over small

portions of the state space. Our initial hypothesis was

that, as the uncertainty increased, the system would

find itself in the extra state more frequently, and that

it would get stuck in its execution, passing the control

from one abstract action to the other, without really

doing anything. Nonetheless, passing the control to the

parent policy (whether it is an LP or an abstract ac-

tion) seems to help the system reevaluate and invoke a

better action, given the current belief state.

On the other hand, none of the environments em-

ployed in the experiments had dead ends within local

state spaces (see Fig. 6), i.e., states that could not be

reached with any sequence of actions from other states

within the same local state space. This sort of scenarios

are still a challenge for hierarchical approaches, as local

POMDPs ignore information from other regions of the

state space, and might lead to sub-optimal behaviors.

Currently, our architecture does not have a strategy

to compensate for the lack of information in the local

POMDPs. However, in a similar way the entropy-based

weight brings information about the outer state space

in a local POMDP, abstract states could share, with

their neighborhood, statistics that summarize relevant

information about them and that improve the decision

making of local POMDPs.
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Fig. 8: Results for the set of experiments 1. The vertical axes show the average and standard deviation (except for

the success ratio) obtained in each evaluation metric (from left to right and top to bottom): success ratio (Eq. (42)),

path relative cost (Eq. (43)), relative error (Eq. (44)) and planning time, whereas the horizontal axes correspond to

the standard deviation employed to compute the Gaussian kernel that models the observation distributions. The

init-TLP and init-HP labels represent the planning time required for the initialization stages of the TLP baseline

method and the proposed architecture (HP), respectively.

Fig. 9: Results for the set of experiments 2. The vertical axes show the average and standard deviation (except for

the success ratio) obtained in each evaluation metric (from left to right and top to bottom): success ratio (Eq. (42)),

path relative cost (Eq. (43)), relative error (Eq. (44)) and planning time, whereas the horizontal axes correspond

to the standard deviation employed to compute the Gaussian kernel that models the observation distributions.

The init-HP label represents the planning time required for the initialization stage of the proposed architecture

(HP).
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Fig. 10: Results for the set of experiments 3. The vertical axes show the average and standard deviation (except for

the success ratio) obtained in each evaluation metric (from left to right and top to bottom): success ratio (Eq. (42)),

path relative cost (Eq. (43)), relative error (Eq. (44)) and planning time, whereas the horizontal axes correspond

to the width and height (in cells) of each one of buildings that constitute the environment. The init-TLP and

init-HP labels represent the planning time required for the initialization stages of the TLP baseline method and

the proposed architecture (HP), respectively.

Moreover, another challenge yet to be overcome is

to design a reward function that represents the actual

costs of actions. In general, designing reward functions

that actually express the behavior we want the agent

to show is a hard problem in reinforcement learning.

Alternatives have been explored, such as inverse rein-

forcement learning [15] that attempts to learn the re-

ward function from a set of demonstrations from an

expert on the task at hand. Although there is still no

clear answer to this problem, there are some things we

can do so that, during the construction of the hierar-

chy of POMDPs, the architecture takes into account

the reward function from lower levels in the SST. For

instance, we could count the amount of actions taken

during the simulation of policies that belong to abstract

actions, as a way to measure the efficiency (in steps) of

an abstract action. Hence, the efficiency value could

be transformed into a reward value that describes how

costly an abstract action is.

Although there are still aspects from our architecture

that can significantly be improved, by building of a hier-

archy of actions (POMDPs) based on an abstraction of

the state space, the architecture has the capacity to ex-

ploit hierarchical information in (virtually) any sort of

task planning scenario. Being task diversity a common

characteristic in service robotics [11], adaptability be-

comes a critical feature in planning systems. Contrary

to works that start from a hierarchy of abstract actions

provided by a designer (e.g., [19] and [20]), our architec-

ture builds abstract actions that fit into the particular-

ities of the environment that the robot will encounter.

Hence, no assumptions are made about which actions

are necessary for certain abstract action, and configura-

tions that one could regard unexpected (or exceptions

to the rule) are considered in the construction of the

hierarchy of actions.

Additionally, as in any decision-making system, it is

important to have a way for us (users) to monitor the

reasoning that is behind the actions we observe. Fur-

thermore, as larger problems with many state variables

are encountered, the behavior of standard frameworks

like MDP and POMDP become almost impossible to

interpret. In contrast, the proposed architecture facili-

tates the readability of why the agent executes certain

action. That is, in the execution of a hierarchical policy,

the control is passed between LPs up and down. The

direction in which the control is passed, can be inter-

preted as follows: i) the control is passed upwards to

gain a broader panorama of the current situation, and

ii) the control is passed downwards when the agent gets
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closer to its goal, and a more focused vision is required

to get the work done. That is, passing the control up

and down can be seen as the way the agent constantly

adjusts the region of the problem it considers it should

focus on.

8 Conclusions and future work

In this paper, we proposed a task planning architecture

that automatically builds a hierarchy of POMDPs. This

was achieved by introducing a new recursive definition

for modeling POMDPs, based on a hierarchical descrip-

tion of the state space. For a given encoding of the robot

and the environment (provided by a designer), our ar-

chitecture builds a hierarchy of POMDPs that is em-

ployed to generate and execute plans for specific task

requests. The execution of such plans is driven by the

entropy of the belief state of the agent, enabling it to

focus in small regions of the state space when it is sure

about its current state, as well to reconsider (at a more

abstract level) what action should be taken if other-

wise. The main advantages of our architecture are: i)

its recursive definition enables the construction of hi-

erarchies of POMDPs of any depth (depends on the

description provided by the designer), ii) once the KB

has been specified, human intervention is not required

to build the hierarchy of POMDPs, but rather to issue

task requests, iii) by describing separately the skills of

a robot, the features all environments have, as well as

the particularities they might not share, the architec-

ture promotes reusing knowledge and designing robots

in a modular-incremental fashion.

In fact, despite that we evaluated the architecture in

a single-domain environment (navigation), it is worth

noting that as the amount of basic modules and en-

vironments increase, the greater the impact the knowl-

edge base will have on the robot design process. That is,

for a robot whose hardware is still under development,

new skills could be encapsulated in basic modules and

seamlessly incorporated in an already functional archi-

tecture. On the other hand, in the case of a float of

robots that is about to be deployed in various house-

holds, the general knowledge could be reused and only

the specific knowledge would require to be encoded in

each unit. Thus, in addition to considering the scale-up

factor with regards to the size of the planning prob-

lems, our architecture provides a scheme that scales up

in terms of human effort.

As for its performance, experimental results show the

robustness of the architecture in solving tasks across

a spectrum of noise levels in the observation distri-

bution, as well in scenarios where the initial state is

not known. Furthermore, the results from the set of ex-

periments 3 (see Fig. 10) exhibit how dramatically the

planning time can be reduced when a system is capa-

ble of exploiting all the hierarchical information avail-

able. On the other hand, there are several directions

in which the proposed architecture could be improved,

for instance, by integrating commonsense reasoning ca-

pabilities, similar to the work presented in [30]. In

this way, the architecture could employ commonsense

knowledge to model information that is hard to encode

in a POMDP (e.g., preferences of the user, places where

objects usually are, etc.), use this information to com-

pute plans as sequences of high-level actions, and per-

form each action as an HP. In addition, we would like

to evaluate our architecture in a more intricate scenario

than the navigation one, and observe how well the sys-

tem performs in an environment described by several

basic modules.
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