Skip to main content

Advertisement

Log in

Autonomous Agricultural Sprayer using Machine Vision and Nozzle Control

  • Regular Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper proposes a modular system of precision agriculture to automate sprayers, optimizing the application of pesticides through a robotic system based on computer vision and individual nozzle on/off control. The system uses low-cost equipment such as Arduino boards, solenoid valves, pressure and flow sensors, smartphone, webcam, and Raspberry Pi. The motivation is to reduce the amount of pesticides applied in crops, not just for potential savings for the farmers, but also for environment protection issues, as well as for food safety. The system can be used in any crop planted in rows such as onion, soybean, corn, beans, and rice. The results show that our system can detect lines in plantations and can be used to retrofit conventional boom sprayers, so it is an important step to develop a kit capable of upgrade a conventional sprayer to a fully autonomous robotic sprayer even at affordable cost in the context of small and medium size farms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evenson, R.E., Gollin, D.: Assessing the impact of the green revolution, 1960 to 2000. Science 300(5620), 758–762 (2003)

    Article  Google Scholar 

  2. Wheeler, W.B.: Role of research and regulation in 50 years of pest management in agriculture. J. Agric. Food Chem. 50(15), 4151–4155 (2002)

    Article  Google Scholar 

  3. EEA: Pesticide sales - european environment agency. https://www.eea.europa.eu/airs/2018/environment-and-health/pesticides-sales (2019)

  4. Ewald, J.A., Wheatley, C.J., Aebischer, N.J., Moreby, S.J., Duffield, S.J., Crick, H.Q.P., Morecroft, M.B.: Influences of extreme weather, climate and pesticide use on invertebrates in cereal fields over 42 years. Glob. Chang. Biol. 21(11), 3931–3950 (2015)

    Article  Google Scholar 

  5. Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A, Sumser, H., Hörren, T, et al.: More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PloS one 12(10), e0185809 (2017)

    Article  Google Scholar 

  6. Bergerman, M., Singh, S., Hamner, B.: Results with autonomous vehicles operating in specialty crops. In: 2012 IEEE International conference on robotics and automation, pp. 1829–1835 (2012)

  7. Freitas, G., Hamner, B., Bergerman, M., Singh, S.: A practical obstacle detection system for autonomous orchard vehicles. In: 2012 IEEE/RSJ International conference on intelligent robots and systems, pp. 3391–3398 (2012)

  8. Moorehead, S.J., Wellington, C.K., Gilmore, B.J., Vallespi, C.: Automating orchards: A system of autonomous tractors for orchard maintenance. In: Proceedings of the IEEE international conference of intelligent robots and systems, workshop on agricultural robotics (2012)

  9. Thanpattranon, P., Ahamed, T., Takigawa, T.: Navigation of autonomous tractor for orchards and plantations using a laser range finder: Automatic control of trailer position with tractor. Biosyst. Eng. 147, 90–103 (2016)

    Article  Google Scholar 

  10. Fu, W., Wu, G., Cong, Y., Li, Y., Meng, Z.: Development of tractor automatic steering system with manual priority function. In: 2015 IEEE International conference on Cyber technology in automation, control, and intelligent systems (CYBER), pp. 555–559 (2015)

  11. Wang, H., Noguchi, N.: Autonomous maneuvers of a robotic tractor for farming. In: 2016 IEEE/SICE International symposium on system integration (SII), pp. 592–597 (2016)

  12. Bautista, A.J., Wane, S.O., Nario, F., Torres, J.L., Danao, T.E.: Development of an autonomous hand tractor platform for philippine agricultural operations. In: 2018 18th International conference on control, automation and systems (ICCAS), pp. 130–134 (2018)

  13. Lee, M.F.R., Nugroho, A, Purbowaskito, W., Bastida, S.N., Bahrudin: Path following for autonomous tractor under various soil conditions and unstable lateral dynamic. In: 2020 International conference on advanced robotics and intelligent systems (ARIS), pp. 1–6 (2020)

  14. Speight, J.G.: Chapter 4—sources and types of organic pollutants. Environmental organic chemistry for engineers; Speight, JG, Ed.; Butterworth-Heinemann: Oxford, UK, pp. 153–201 (2017)

  15. Bjørling-Poulsen, M., Andersen, H.R., Grandjean, P.: Potential developmental neurotoxicity of pesticides used in europe. Environ. Health 7(1), 50 (2008)

    Article  Google Scholar 

  16. US EPA: Pesticides industry sales and usage: 2008–2012 market estimates. https://www.epa.gov/sites/production/files/2017-01/documents/pesticides-industry-sales-usage-2016_0.pdf (2017)

  17. UN FAOSTAT Agricultural: Food and agriculture organization of the united nations. http://www.fao.org/statistics/en/ (2018)

  18. Owen, M.D.K., Zelaya, I.A.: Herbicide-resistant crops and weed resistance to herbicides. Pest Management Science: formerly Pesticide Science 61, 301–311 (2005)

    Article  Google Scholar 

  19. Ribeiro, M.L., Lourencetti, C., Pereira, S.Y., de Marchi, M.R.R.: Contaminação de águas subterrâneas por pesticidas: avaliação preliminar. Química Nova 30(3), 688–694 (2007)

    Article  Google Scholar 

  20. Case: Autonomous vehicle. www.caseih.com/northamerica/en-us/innovations (2020)

  21. Deere, J.: New ‘driverless’ tractor concept. https://www.farm-equipment.com/articles/17489-john-deere-reveals-new-driverless-tractor-concept (2020)

  22. Stombaugh, T.S.: Technology to improve sprayer accuracy. Agriculture and Natural Resources Publications, University of Kentucky (2014)

  23. Raven: Precision ag products and systems. https://ravenprecision.com/products (2019)

  24. Weed-it: Weed-it precision spraying. https://www.weed-it.com/ (2019)

  25. Blue River: See & spray. http://www.bluerivertechnology.com/ (2020)

  26. IBGE: Censo Agropecuário (in portuguese). censos.ibge.gov.br/agro/2017 (2018)

  27. Terra, F., da Rosa, G., Drews, P.: Evaluation of the pressure-flow relationship in a boom of an autonomous robotic agricultural sprayer. In: 2019 Latin American Robotics Symposium (LARS), pp. 228–233. IEEE (2019)

  28. ISPA: Precision ag definition - international society for precision agriculture. https://www.ispag.org/about/definition (2020)

  29. Lind, K.M., Pedersen, S.M.: Perspectives of precision agriculture in a broader policy context. In: Precision agriculture: Technology and economic perspectives, pp. 251–266. Springer, Switzerland (2017)

  30. Bernardi, A.C.C., Naime, J.M., Resende, A.V., Bassoi, L.H., Inamasu, R.Y. (eds.): Agricultura de precisão: resultados de um novo olhar. Embrapa, Brasilia (2014)

    Google Scholar 

  31. Heege, H.J.: Precision in crop farming: site specific concepts and sensing methods: applications and results. Springer Science & Business Media, Dordrecht (2013)

    Book  Google Scholar 

  32. Molin, J.P., do Amaral, L.R., Colaço, A.: Agricultura de precisão (in portuguese). Oficina de Textos, São Paulo (2015)

    Google Scholar 

  33. Felizardo, K.R., Mercaldi, H.V., Cruvinel, P.E., Oliveira, V.A., Steward, B.L.: Modeling and model validation of a chemical injection sprayer system. Appl. Eng. Agric. 32(3), 285 (2016)

    Article  Google Scholar 

  34. Mercaldi, H.V., Peñaloza, E.A.G., Mariano, R.A., Oliveira, V.A., Cruvinel, P.E.: Flow and pressure regulation for agricultural sprayers using solenoid valves. International Federation of Automatic Control (IFAC) 50(1), 6607–6612 (2017)

    Google Scholar 

  35. Escolà, A., Rosell-Polo, J.R., Planas, S., Gil, E., Pomar, J., Camp, F., Llorens, J., Solanelles, F.: Variable rate sprayer. part 1–orchard prototype: Design, implementation and validation. Computers and electronics in agriculture 95, 122–135 (2013)

    Article  Google Scholar 

  36. Gil, E., Llorens, J., Llop, J., Fàbregas, X., Escolà, A., Rosell-Polo, J.R.: Variable rate sprayer. part 2–vineyard prototype: Design, implementation, and validation. Computers and Electronics in Agricul. 95, 136–150 (2013)

    Article  Google Scholar 

  37. Zhang, Z., Wang, X., Lai, Q., Zhang, Z.: Review of variable-rate sprayer applications based on real- time sensor technologies. In: Hussmann, S. (ed.) Automation in agriculture. IntechOpen, Rijeka (2018)

  38. Esau, T., Zaman, Q., Groulx, D., Farooque, A., Schumann, A., Chang, Y.: Machine vision smart sprayer for spot-application of agrochemical in wild blueberry fields. Precision agriculture 19(4), 770–788 (2018)

    Article  Google Scholar 

  39. Basso, M., Pignaton de Freitas, E.: A uav guidance system using crop row detection and line follower algorithms. Journal of Intelligent & Robotic Systems (JINT) 97(3), 605–621 (2020)

    Article  Google Scholar 

  40. Weber, F., Rosa, G., Terra, F., Oldoni, A., Drews, P.: A low cost system to optimize pesticide application based on mobile technologies and computer vision. In: Latin american robotic symposium (LARS). IEEE (2018)

  41. do Nascimento, G.H., Weber, F., Almeida, G., Terra, F., Drews, P.L.J.: A perception system for an autonomous pesticide boom sprayer. In: 2019 Latin american robotics symposium (LARS), pp. 86–91. IEEE (2019)

  42. Garcia, C.: Modelagem e simulação de processos industriais e de sistemas eletromecânicos (in portuguese), 2nd edn. EDUSP, São Paulo (2005)

    Google Scholar 

  43. Hughes, T.A.: Measurement and control basics, 3rd edn. ISA Press, Research Triangle Park (2002)

    Google Scholar 

  44. von Linsingen, I.: Fundamentos de sistemas hidráulicos (in portuguese), 2nd edn. Universidade Federal de Santa Catarina, Florianópolis (2003)

    Google Scholar 

  45. Terra, F.P., da Rosa, G.R.A., Prado, J.J.P., Drews-Jr, P.L.J.: A low-cost prototype to automate agricultural sprayers (in press). International federation of automatic control, 21st IFAC World congress (2020)

  46. Underwood, J.P., Calleija, M., Taylor, Z., Hung, C., Nieto, J., Fitch, R., Sukkarieh, S.: Real-time target detection and steerable spray for vegetable crops. International conference on robotics and automation (ICRA), Workshop on robotics in agriculture (2015)

Download references

Funding

This work is part of a project partly funded by the Research Support Foundation of Rio Grande do Sul State (FAPERGS), Brazil, project 17/2551-0000896-0, and had a scholarship by CNPq Brazil (313521/2019-0).

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to the work.

Corresponding author

Correspondence to Fábio P. Terra.

Ethics declarations

Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is part of a project partly funded by FAPERGS and had a scholarship by CNPq Brazil (313521/2019-0).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terra, F.P., Nascimento, G.H.d., Duarte, G.A. et al. Autonomous Agricultural Sprayer using Machine Vision and Nozzle Control. J Intell Robot Syst 102, 38 (2021). https://doi.org/10.1007/s10846-021-01361-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01361-x

Keywords

Navigation