
https://doi.org/10.1007/s10846-021-01439-6

REGULAR PAPER

Relative Camera Pose Estimation using Synthetic Data with Domain
Adaptation via Cycle-Consistent Adversarial Networks

Chenhao Yang1 · Yuyi Liu2 · Andreas Zell1

Received: 4 October 2020 / Accepted: 14 June 2021
© The Author(s) 2021

Abstract
Learning-based visual localization has become prospective over the past decades. Since ground truth pose labels are difficult
to obtain, recent methods try to learn pose estimation networks using pixel-perfect synthetic data. However, this also
introduces the problem of domain bias. In this paper, we first build a Tuebingen Buildings dataset of RGB images collected
by a drone in urban scenes and create a 3D model for each scene. A large number of synthetic images are generated based
on these 3D models. We take advantage of image style transfer and cycle-consistent adversarial training to predict the
relative camera poses of image pairs based on training over synthetic environment data. We propose a relative camera pose
estimation approach to solve the continuous localization problem for autonomous navigation of unmanned systems. Unlike
those existing learning-based camera pose estimation methods that train and test in a single scene, our approach successfully
estimates the relative camera poses of multiple city locations with a single trained model. We use the Tuebingen Buildings
and the Cambridge Landmarks datasets to evaluate the performance of our approach in a single scene and across-scenes.
For each dataset, we compare the performance between real images and synthetic images trained models. We also test our
model in the indoor dataset 7Scenes to demonstrate its generalization ability.

Keywords Relative camera pose estimation · Domain adaptation · Image style transfer

1 Introduction

Simultaneous localization and mapping (SLAM) has pros-
perously evolved in recent years and is largely used in aug-
mented reality and robot navigation. Visual SLAM infers
camera movement from pixels as in dense SLAM system [1,
2] or by extracting sparse keypoints (e.g., SIFT [3], ORB
[4]). In many cases, 3D geometry has been used to solve the
localization problem.

Visual SLAM has been maturely applied to ground
mobile robots and self-driving vehicles. However, for the
localization of unmanned aerial or ground systems, tradi-
tional visual SLAM meets some challenges. First, the high-
speed movement of Unmanned Aerial Vehicles (UAVs)
causes massive changes in the viewpoints, which leads to a

� Chenhao Yang
chenhao.yang@uni-tuebingen.de

1 Department of Computer Science, Chair of Cognitive
Systems, University of Tübingen, Tübingen, Germany
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large appearance difference among keyframes [5, 6]. Sec-
ond, the keypoints correspondences will decrease with
untextured objects such as ceramic tile. Also, sunlight and
shadows variations and glass / water reflections may also
hamper feature matching. Third, the feature matching with
repeated textures such as similar windows becomes noisy.
Last, some approaches can only estimate the translation
value proportionally, so good initialization is required [7].

Convolutional Neural Network (CNN) is largely applied
in object recognition, image classification [8] and place
recognition [9]. Meanwhile, structure from motion (SfM)
[10] has shown great progress in 3D reconstruction, and
obtained centimeter-level accuracy in localizing cameras
and 3D points. SfM method generates a 3D model by
images around the object, and the 6DoF poses of images can
be used as training labels for camera pose estimation. CNN
combined with SfM reduces the workload of constructing a
database, makes it possible for deep-learning-based camera
relocalization, and proposes new solutions to the problems
faced by traditional visual SLAM.

Absolute camera pose regression based on deep learning
usually trains a model to predict the pose of a input image
to a certain scene. The model network implicitly remembers
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the spatial information of the scene by the weights, so the
system is not very versatile [11–13]. In contrast, estimating
the image pair’s relative pose is a more common problem.
The ideal relative camera pose estimation model can not
only be trained and tested in a fixed scene, but also can be
tested in multiple seen locations or even new places.

Generally, a CNN-based camera relocalization system
can be employed in 3 ways of increasing complexity and
usefulness: the first way is to train and test the model on
a fixed scene. The second way is to use multiple scenes
to train a model and test it on each scene, which is the
work of across-scenes training in this work. The third way
is to train a model on multiple locations and test it in
new environments. The last two ways can be developed
more easily by relative camera pose estimation than by
absolute camera pose regression. Across-scenes absolute
camera pose regression is more difficult since different
locations have skewed camera poses distribution due to the
scale-inconsistency. In the meantime, the relative camera
pose estimation has versatility in many robot applications. It
could be used as a neighbor frame pose estimator in visual
odometry systems. It can also predict robots’ relative pose
in a multi-robot cooperation system. The relative camera
pose estimation could even combine with a global place
recognition method such as NetVLAD [9] to get a more
precise absolute pose prediction in large environments with
a two-step localization pipeline.

Although SfM methods can generate pose labels for co-
visualized images, the collection of images and the SfM
process are extremely time-consuming. Compared to real-
world data, synthetic images and related poses are much
easier to obtain. As a result, synthetic data is used for
many visual tasks [14–16]. However, the domain shift from
synthetic to real has always been the most significant
challenge in this area. The system trained on synthetic data
is often not directly applicable to real data. In order reduce
the discrepancy between domains, style transfer [17, 18] and
domain adaptation methods [19, 20] are utilized.

Motivated by the above analysis, we present an across-
scene relative camera pose estimation network (RCPNet)
for urban outdoor camera relocalization. We collect over
10,000 images with drones in eight city locations to
construct a dataset (hereafter called Tuebingen Buildings
dataset) and obtain each image’s absolute pose by the SfM
method. We generate over 300,000 image pairs for rela-
tive camera pose estimation. The previous work of RCPNet
and original Tuebingen Buildings dataset has been published
in [65]. To further expand the training dataset, twice the
amount of synthetic images are rendered from the 3D mod-
els of Tuebingen Buildings and Cambridge Landmarks [11]
datasets. Inspired by CycleGAN [21], we further employ
translations of real-to-synthetic and synthetic-to-real to

realize cycle consistency. We train RCPNet by three
schemes to demonstrate the effect of the cycle-consistent
adversarial network [21], namely: train on mixed images
and test on real images, train on synthetic-to-real images
and test on real images; train on synthetic images and test
on real-to-synthetic images.

RCPNet is first compared with other learning-based pose
estimation approaches PoseNet [11, 55] and RPNet [7],
using the real images from two datasets, namely, Tuebingen
Buildings and Cambridge Landmarks. We then compare
the accuracy between the real images and synthetic images
trained RCPNet models on the two datasets. We also test our
model in the indoor dataset 7Scenes [22] to demonstrate its
generalization ability.

Our main contributions can be summarized as follows:

– First, we develop RCPNet to estimate relative camera
pose in multiple urban outdoor environments;

– Second, we build the Tuebingen Buildings dataset with
drone collected images. We further expand it by render-
ing synthetic images from 3D models produced by the
SfM method;

– Third, we take advantage of synthetic images to reduce
the human labor in dataset generation and improve the
performance of RCPNet further with domain adaptation
via image-to-image translation.

The rest of the paper is as follows: Section 2 lists the
related work. Section 3 presents the method for relative
camera pose and domain adaptation via cycle-consistent
adversarial networks. Section 4 introduces the data collec-
tion and preparation. Section 5 compares the experimental
results of RCPNet on a two-stage analysis. In the end,
Section 6 concludes the paper.

2 RelatedWork

2.1 Visual Localization

The visual localization usually includes three tasks [12,
23]: i) Relative camera pose estimation between consecutive
keyframes as visual odometry, ii) relative camera pose
estimation between the query and the reference images to
eliminate the drift of localization in back-end optimization,
iii) image matching to recognize viewed places in loop
closure. We classify the first two as metric localization and
the last one as topological localization.

Topological Localization Given a set of images with known
locations and a query image, different feature matching
methods will be used to retrieve the images with the closest
distance or the most similar appearance. These methods
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have successfully relocalized the camera fromGoogle Street
View [24], aerial views [25], or satellite imagery [26] to a
known location roughly.

Suenderhauf et al. [27] use CNN features as robust land-
mark descriptors, which can recognize the camera locations
under severe changes in viewpoints and other conditions.
To achieve cross-view geo-localization, Workman et al. [25]
and Vo et al. [28] collected two aerial-ground image datasets
(called CVUSA, Vo and Hays). CVM-Net [29] uses Siamese
network and NetVLAD [9] to achieve robust cross-view
image matching based on the above two datasets.

Majdik et al. [23] collected a dataset in the center of
Zurich, Switzerland by a drone that flew a trajectory of two
kilometers, to achieve UAVs localization from street view
images in GPS-denied urban environments. The dataset
includes 113 discrete street view locations and 405 match-
ing aerial images. The above topological localization meth-
ods cannot provide continuous and accurate pose estimation
but only limited and discretized position estimation for the
query image.

Metric Localization The ultimate goal of automated robot
applications is to continuously and accurately locate new
images in a known environment or map. Using point-based
features to create sparse or dense environment maps is
known as the classic visual SLAM methods [30, 31]. By
combining data from cameras and LIDAR to construct a
map, Pascoe et al. [32] realized real-time localization of
cameras.

Kendall et al. [11] built the Cambridge Landmarks dataset
and replaced the three softmax classifiers of GoogLeNet
[33] with affine regressors to output poses. They used
the SfM method to obtain the images’ poses and trained
an end-to-end CNN to regress the absolute camera poses,
setting a precedent in 6DoF camera relocalization. Based on
nearest-neighbor matching and consecutive learning feature
descriptors, RelocNet [34] introduced a CNN representation
method for camera pose retrieval. To learn a more
discriminative regression function, Naseer and Burgard [12]
generated synthetic viewpoints and corresponding depth
maps to augment dataset. Walch et al. [13] collected the
TMU-LSI dataset and demonstrated that the classic methods
failed in a textureless environment. They also presented
the CNN + long short term memory (LSTM) architecture,
which performs camera pose regression by modeling the
context of the image.

Melekhov et al. [35] proposed a system to solve the relative
camera pose estimation problem. The system used a hybrid
CNN with fully-connected layers (FCs) as a pose estimator.
However, comparisons are difficult since their predicted
translations are not full but scaled vectors. As far as we
know, all existing camera pose regression methods (absolute
and relative methods) that trained and tested in certain

location need to improve the generalization ability. Sattler
et al. [36] regard absolute camera pose regression as
topology localization rather than metric localization. The
results show that absolute pose regression within a scene
is different from accurate pose estimation based on the
3D structure but more similar to pose approximation with
image retrieval. Combining local SfM reconstruction with
2Dmodel-based methods, [37] solved the problem of metric
localization, because they believed that building broad-
scale 3D models for real-time localization is still a major
challenge. On the contrary, our opinion is that one trained
model can estimate the relative camera poses in multiple
locations, and it is sufficient to perform 3D reconstruction
before the training phase.

In addition to visual SLAM, RCPNet can also estimate
pose changes between consecutive keyframes, which can be
used in some visual odometry systems, such as DeepVO
[38], VINet [39] and VINS [40]. RCPNet can also be
used for a group of aerial or/and ground robots to directly
obtain the relative pose between robots in a centralized or
decentralized manner.

2.2 Domain Adaptation

In this work, the relative camera pose estimation model
is first trained on real images collected by a hand-held
smartphone or a drone. Although the SfM method reduces
the labor of labeling the images and offers accurate 6DoF
pose for each image, the data collection and SfM procedure
are very time-consuming and expensive. Since we can
easily download 3D models for some famous landmarks, or
build one with several images captured towards the target
location, it is a natural idea to consider rendering synthetic
images with related poses from 3D models for camera pose
estimation network training. However, due to domain bias
[41, 42], a system adapted to one dataset usually cannot
be generalized to another. As a result, even if the camera
pose estimation network can predict the relative pose for
synthetic image pairs, it can not directly predict the relative
pose for real image pairs, which will make the model
impractical.

Domain adaptation aims to solve the dataset/domain
bias problem. One strategy is to learn the domain-invariant
features [43, 44], while others learn a feature or pixel level
mapping from source to target domains [45, 46]. Minimiz-
ing the Maximum Mean Discrepancy (MMD) is popular
to align feature distribution across the target and source
domains [18, 47]. The adversarial loss brings representa-
tions that force the generated images (or translated images)
to be indistinguishable from photos in the target domain
[43, 48].

The image-to-image translation is a promising way to
realize domain adaptation. Isola et al. [49] presented the
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pix2pix which uses a generative adversarial network [50]
for a translation from source to target photos. Similarly,
Sangkloy et al. [51] generate photos from sketches while
Karacan et al. [52] from the attribute and semantic layouts.
Paired training examples are necessary for the above prior
works, while CycleGAN [21] realizes unpaired image-
to-image mapping via adversarial networks with cycle-
consistency loss [53]. Our approach builds on CycleGAN
while keeping the training images in a paired way to retain
the geometry alignment between the synthetic and real
images from the same viewpoint.

3Method

3.1 Relative Camera Pose EstimationModel

In this part, we discuss the relative camera pose model and
the architecture of RCPNet. RCPNet will output the relative
pose vector p of the two input images. p is consist of a 3D
relative camera translation t and a quaternion rotation q:

p = [t, q]. (1)

We chose quaternions to represent the rotation because
by normalizing them to unit length, it is easy to map a 4-D
value to a reasonable rotation.

3.1.1 Learning Relative Translation and Rotation
Simultaneously

We generate the two cameras’ relative pose for training
and testing. (R1, t1), (R2, t2) are the rotation matrices
and translation vectors which project a point from world
coordinate to camera 1 and 2’s systems, respectively. From
camera coordinates 1 to 2, we set P12 as the transformation
matrix, R12 as the rotation matrix, and t12 as the translation
vector:

P12 =
[

R12 t12
0 1

]
;

{
R12 = R2R

T
1 ,

t12 = R1(t2 − t1).
(2)

Take (q1, q2, q12) as quaternion representations of (R1,
R2, R12). A quaternion can represent a 3D rotation and
is defined by 4 real numbers. x, y, and z represent a
vector. w is a scalar that stores the rotation around the
vector. Because the unit quaternions q and −q represent the
identical rotation, we perform a numerical inversion of all
q12 with negative w to make the prediction of the network
more consistent.

Training translation and rotation regressor separately will
affect each other’s performance [11]. Therefore, the original
framework uses stochastic gradient descent to optimize the
following loss function, which minimizes the Euclidean

distance between pose predictions (t̂ and q̂) and ground truth
( t and q):

L(I ) = ||t̂ − t ||2 + β||q̂ − q||2. (3)

To learn rotation and translation at the same time, they
used grid search to fine-tune the weighting factor β to
maintain a balance between translation and rotation errors.
The result shows that the change interval of β in the outdoor
scene is between 250 and 2000. Using cross-validation,
RPNet [7] found the most suitable hyperparameter β value
in different locations, and spends lots of time clustering
the original dataset and testing the trained model for
the evaluation. For RCPNet, we use automatic weights
that scale on the loss function based on homoscedastic
uncertainty (as in [55]) across all the locations, which is
numerically more stable than β. In this loss function, the
weighting factor β between the translation and rotation error
is not static but adaptive during the whole training process.
More precisely, if the translation estimation is more accurate
than rotation in training, there will be a larger penalty for
rotation error in the next epoch, and vice versa:

Lσ (I ) = Lt (I )exp(−ŝt ) + ŝt + Lq(I )exp(−ŝq ) + ŝq , (4)

where Lt represents the translation loss and Lq represents
the rotation loss. To maintain the balance between the
penalty values of translation and rotation, factors ŝt and ŝq
are used to force that the error of rotation and translation is
not skewed. Given valid values for variance, the exponential
mapping allows the regression to unconstrained scalar
values since exp(−si) is resolved to the positive domain.
We set ŝt = 0.0, ŝq = −3.5 as initialization (approximately
to β starts from 30, but fine-tuned during training) for
all datasets. The adaptive loss makes the model more
generalized to adapt to different locations.

3.1.2 Architecture of RCPNet

Different from RPNet [7] and PoseNet [11] based on
GoogLeNet, we use two branches of pre-trained ResNet34
networks [57] to construct a weight-sharing Siamese
network [56]. The 6DoF relative camera pose is estimated
end-to-end.

The relative camera pose estimator of RCPNet is based
on FCs and ReLU [58] activations, as shown in Fig. 1. We
empirically use the output of the second to last layer as a
512-dimension (512D) global feature of each input image
for every ResNet34 branch. The last pooling layer, and the
1000 units FC layer from the original ResNet34 are deleted.
A 512D vector represents an image’s geometrical features,
and the distance between two 512D vectors denotes the
spatial relationship between two corresponding images.
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Fig. 1 RCPNet: the Siamese architecture based on ResNet34 branches
with final regressors predicts two input images’ relative translation
and rotation. The blue boxes of pose denote the 3-dimension position
vector and the 4-dimension quaternion rotation vector as the network’s
predictions

Following [56], the compatibility between images I1 and I2
is measured as:

Ew(I2, I1) = ||Gw(I2) − Gw(I1)||, (5)

where Gw(Ii) presents each image’s global feature. In [56],
the compatibility between images I1 and I2 represents the
‘semantic’ distance for image similarity metric learning in
face verification. However, compatibility denotes the spatial
distance between two overlapping outdoor images in this
paper. More precisely, Ew(I2, I1) is small if I1 and I2 are
close in both position and rotation, and large if they are far
away and have a different appearance.

Afterward, we insert two 2048D FCs as regressors to
respectively output relative translation (3D) and rotation
(4D). It is worth noting that they are learned together from
the objective function of (4). We normalize the quaternion
rotation vector to unit length.

3.2 Domain Adaptation via Cycle-Consistent
Adversarial Networks

3.2.1 Bidirectional Adversarial Loss

In this paper, the real image denotes the RGB image
captured from real environments by hand-held cameras or
camera-mounted drones, which is limited and difficult to
collect and label. The synthetic image represents the image
rendered from 3D models with specific viewpoints, with
less time and human labor consumption. Since the synthetic
images are easier to obtain for training and real images are

the target objects for relocalization testing, we also refer
to the synthetic image as the source domain and the real
image as the target domain. We aim to learn bidirectional
mapping functions Gs2t and Gt2s to bridge the gap between
the synthetic (source) domain Xs to the real (target) domain
Xt . Ds and Dt are two adversarial discriminators following
[50], where Ds is used to discriminate photos {Gt2s(xt )}
from photos Xs , Dt aims to distinguish {Gs2t (xs)} from Xt .
The adversarial losses are expressed as:

LGAN(Gs2t ,Dt ,Xt ,Xs) = Ext∼Xt

[
logDt(xt )

]
+Exs∼Xs

[
log(1−Dt (Gs2t (xs))

]
,

LGAN(Gt2s ,Ds ,Xt ,Xs) = Exs∼Xs

[
logDs(xs)

]
(6)

+Ext∼Xt

[
log(1−Ds(Gt2s(xt ))

]
.

3.2.2 Cycle Consistency Loss

To constrain two adversarial producers Gs2t and Gt2s to
generate required geometrical consistent images rather than
random photos with the target domain style, we use a cycle-
consistent loss. As illustrated in Fig. 2(a), for each photo
xs from domain Xs , the transfer cycle is able to bring xs

back to be indistinguishable from the original photo, i.e.,
Gt2s(Gs2t (xs)) ≈ xs and Gs2t (Gt2s(xt )) ≈ xt . Therefore,
the cycle-consistent loss is as follows:

Lcyc(Gs2t , Gt2s) = Exs∼Xs [||Gt2s(Gs2t (xs))−xs ||1]
+Ext∼Xt [||Gs2t (Gt2s(xt ))−xt ||1] . (7)

We utilize the open-source software Blender [62] to
render synthetic images from different poses on each 3d
model. For cycle-consistent adversarial network training,
we render images at the exact pose of each real image to
generate real-synthetic image pairs.

3.2.3 Full Objective

The joint loss function is as follows:

L(Gt2s , Gs2t , Ds, Dt ) = LGAN(Gs2t , Dt , Xt , Xs)

+LGAN(Gt2s , Ds, Xt , Xs) (8)

+λLcyc(Gs2t , Gt2s),

with λ selected empirically as λ=10, which is the balancing
factor between the two objectives. We need to solve:

G∗
t2s , G

∗
s2t = arg min

Gt2s ,Gs2t
max
Ds,Dt

L(Gt2s , Gs2t , Ds, Dt , ) (9)

3.2.4 Architecture of Adversarial Network

Based on the work in [54], the adversarial generator net-
work is consist of two convolutional layers followed by
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Fig. 2 (a) Our adversarial network architecture contains two image
style translators: Gs2t : Xs− > Xt and Gt2s : Xt− > Xs , and two
discriminators Ds and Dt . Dt forces Gs2t to translate Xs into outputs
indistinct from Xt , and vice versa for Gt2s and Xt . Two LGAN are
the objective bidirectional losses for adversarial training. Two Lcyc

are the cycle consistent losses to further regularize the translators
that encourage: Gt2s (Gs2t (xs)) ≈ xs and Gs2t (Gt2s (xt )) ≈ xt .
When utilizing the translated result of the cycle-consistent adversarial
networks, we have adopted three implementation options: (b) real-
synthetic mixed image pairs as input to train the RCPNet, implicitly
learn the mapping between the two domains; (c) synthetic (domain
Xs ) images are firstly translate into synthetic-to-real images before the
pairwise training of RCPNet. The query images from the real domain
can be directly fed in the trained model; (d) synthetic image pairs are
directly fed into RCPNet for training. The real query images need to
be translated into real-to-synthetic images before testing

nine residual-blocks [57]. Two up-convolutional layers are
inserted afterward to up-sample the image to the input
size. The discriminator networks are adopted from Patch-
GANs [49].

4 Data Collection and Preparation

In this chapter, we introduce how to build a dataset for
camera relocalization in urban outdoor environments. Using
drones to capture images, we further extend the database
to a 3D space with vertical viewpoint changes. We use
SfM to generate ground truth poses for more than 10,000
real-world photos. By providing more image matches and

a wider range of rotation and translation, the dataset makes
the training of the pose estimator more efficient.

4.1 Data Collection

We build the Tuebingen Buildings dataset from eight out-
door urban places. The dataset offers data to train and test
the absolute and relative pose estimator in different urban
environments. We use a DJI Mavic Pro drone to collect the
dataset in multiple locations near Tubingen, Germany.

The drone was manually piloted at each location. By
keeping the camera always facing the building, we collect
images of the entire environment at variant flying heights
ranging from 2 to 35m. In each location, we carried out at
least four flights to capture images under varying weather
and lighting conditions. Although there are some clutters
like vehicles and pedestrians, they have little effect on most
images captured from the height above 5m.

We use Pix4D Mapper [59] to generate image poses
as ground truth measurement and training labels. The
Table 1 shows the output uncertainty of the absolute
camera position and orientation. The vertical variance of the
viewpoints brings new 3D constraints, which leads to better
localization: the position error is about 10 to 40 cm, and the
orientation error is below 1◦. Rather than recording videos
and sub-sampling to frames, we programmed the drone to
capture photos every two meters of movement (measured by
GPS) in any direction. To obtain a better 3D reconstruction,
images are captured with high resolution (4000×3000) from
variant distances (see Fig. 3).

The eight scenes in the dataset (see the examples in
Fig. 4) are diverse: i) different styles of modern and tradi-
tional; ii) some buildings have repeated concrete structures,
and others are surrounded by vegetation; iii) the trajecto-
ries have diverse shapes. For example, convex trajectories
around central buildings and concave trajectories in a court-
yard surrounded by multiple structures.

We use four scenes (King’s College, Old Hospital, Shop
Facade, St Mary’s Church) from the Cambridge Landmarks
dataset. The images are collected from the ground views
by a handheld Google LG Nexus 5 smartphone. The
difference is that the Tuebingen Buildings dataset contains
large changes in viewpoint, which is quite general in UAV
applications, especially the vertical direction variance.

We use the 7Scenes indoor dataset [22] to demonstrate
the generalization ability of RCPNet. This dataset was
built with a Kinect RGBD camera in 7 separate scenes,
and each scene consists of a single room. Using Kinect
Fusion [22], ground truth poses were generated. The dataset
contains many repetitive or texture-less features, which is
exceptionally challenging for visual relocalization using
traditional features.
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Table 1 Mean uncertainties of absolute camera position and orientation

X Y Z Yaw Pitch Roll Images

AI Building 0.136m 0.142m 0.223m 0.549◦ 0.089◦ 0.444◦ 1438

Biology B. 0.248m 0.246m 0.402m 0.377◦ 0.160◦ 0.266◦ 1209

Mol. Bio. B. 0.120m 0.125m 0.201m 0.236◦ 0.070◦ 0.146◦ 1112

Sand North 0.147m 0.140m 0.227m 0.381◦ 0.163◦ 0.326◦ 1504

Sand South 0.152m 0.138m 0.228m 0.073◦ 0.084◦ 0.026◦ 1035

Shopping M. 0.124m 0.126m 0.205m 0.256◦ 0.183◦ 0.191◦ 1537

Industrial B. 0.403m 0.356m 0.603m 0.302◦ 0.236◦ 0.157◦ 1302

Tue. Castle 0.088m 0.088m 0.152m 0.172◦ 0.092◦ 0.083◦ 1216

4.2 Real Image Pairs Preparation

An effective method is needed to produce image pairs to
achieve relative camera pose estimation. For the Cambridge
Landmarks dataset, En et al. [7] randomly paired every
image with eight images in the same sequence. The training
sequences and testing sequences are separated beforehand.
When using this dataset for relative camera pose estimation,
we followed their settings.

In contrast, for the Tuebingen Buildings dataset, we first
separate images into training and testing subsets in each
scene. Then we use SIFT feature matching to generate real
image pairs for the subset, traversing each subset for every
image in the subset. To further reject the outliers, some
SIFT feature matched image pairs are filtered: if they have
significant differences in translation (> 30m) or rotation
(> 75◦), we check their co-visibility manually and delete
the wrong matches. The thresholds are measured from the
ground truth. The “co-visibility” information means what
landmark objects are visible together to two cameras. At
last, we obtained around 300,000 valid pairs in all eight
scenes, an average of 30 pairs per image. The augmentation
is as expected because our dataset covers a wider 3D space,
and each images have many co-visible neighbors from

many directions. Figure 5 demonstrates that the relative
camera pose samples (translation and rotation ranges) in the
Tuebingen Buildings dataset are more widely distributed.

The images are rescaled to 256 × n or n × 256 pixels,
n ≥ 256, and then are cropped into 224 × 224 patches
as the input of CNN in the previous work [7, 11]. The
model is trained by random cropping and then tested by
central cropping as data augmentation. However, cropping
operation (as shifting, flipping, rotating, and zooming) may
affect the spatial information implicit in the image. For the
relative camera pose estimation, we keep the random crop
coherent in the two input photos, and then test multiple
scenes with scale size from 256 to 236. The results indicate
that for scenes with shorter object distances such as Shop
Facade, a smaller rescale ratio will enable a wider field
of view and a larger overlap, thus will slightly improve
localization. For most of the scenes that are far away from
the objects, the data augmentation effect using a bigger
rescale ratio is dominant. This indicates that other data
augmentation methods need be considered to keep the
spatial information as much as possible. Following PoseNet
[11], the tuning of brightness, contrast, saturation, and hue,
combined with the crop operation, are also adopted in our
framework. Same data augmentations have been applied to

Fig. 3 The cameras can cover
the 3D model uniformly from
variant angles and depths. The
trajectories have distinct shapes.
The raw camera poses provided
by UAV are blue, and the
camera poses generated by SfM
are green
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Fig. 4 The Tuebingen buildings
dataset contains eight scenes,
including modern and classical,
repeated concrete structures, and
natural urban environment
appearance. Captured by a
manually-flying drone, flying at
a height from 2 to 35 m

both real and synthetic images before fed into the network
for training.

Our method is first evaluated separately on four scenes
of Cambridge Landmarks. Meanwhile, we selected three
scenes (King’s College, Old Hospital, St Mary’s Church)
for across-scenes training while maintaining Shop Facade
invisible. We use the same split of training and test as RPNet
[7]. Similarly, for Tuebingen Buildings, a RCPNet model
is firstly trained and tested in each scene, as individual
training. Afterward, we train a model with six scenes
together (AI Building, Biology Building, Mol. Bio Building,
Sand North, Shopping Mall, and Tuebingen Castle) and test
RCPNet in each scene, as across-scenes training.

For individual training, we separate the data in each scene
randomly into training and test sets at a ratio of 4:1. For
across-scenes training, we maintain the test sets unchanged,
and extract 20,000 image pairs from the training set of each
scene to obtain a 120k pairs training set. Some spatially
close photos may be separated into the test and training sets,
but these images are completely different, and the similarity
among image pairs is very low because they are matched
from multiple directions.

For the 7Scenes dataset, we randomly choose two paired
images for the target one from the near frame in the same

sequence. We cut off the nearest frames (e.g., in +/ − 10
frames) to ensure enough pose shift and cap on the threshold
of the 25th frame to ensure co-visibility. We select 5 of the
scenes for across-scene training, and 2 of the scenes for
individual training, obtaining very close performance.

4.3 Synthetic Images Generation

We use ContextCapture [60] to build 3D models with poses
from two different datasets. For four scenes in the Cam-
bridge Landmarks dataset, e.g., Shop Facade, St Mary’s
Church, Old Hospital, and King’s College, we build 3D
models with poses (obtained by VisualSfM [61]) from the
original dataset. For the Tuebingen Buildings dataset, we
choose six scenes, e.g., Tuebingen Castle, Shopping Mall,
Sand North, Mol. Bio Building, Biology Building, and AI
Building, to build fine 3D models while keeping the original
poses we obtained with Pix4D in Section 4.2. We randomly
select 300 images (Shop Facade with 200) for each scene
to build the model, which is around 25% images of each
training scene.

As mentioned in Section 3.2.2, we utilize the open-source
software Blender [62] to render synthetic images. First, we
render images at the exact pose of each real image. This step

Fig. 5 The relative camera pose distributions of the eight scenes in the Tuebingen Buildings dataset are compared with the four scenes together in
the Cambridge Landmarks dataset on translation and rotation. The Tuebingen Buildings dataset has advantages in data diversity and density
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is to generate real-synthetic image pairs for cycle-consistent
adversarial network training. It is also an excellent proof
for the fine quality 3D models generating and accurate pose
labeling. Some examples are shown in the first and third
column of Figs. 6 and 7.

Second, we randomly generate twice the amount of initial
training poses within the spatial area of each scene (see
the fourth column in Table 2). The camera intrinsics are
calibrated during the 3D model building. For the Cambridge
Landmarks dataset, the height of poses is set as z < 2m
to simulate the human’s viewpoint, while for Tuebingen
Buildings, we set the threshold of the highest viewpoint in
the training set. To ensure the generated poses are facing
toward the 3D model, we set a threshold for Euler angle
difference between a generated pose and its nearest real
pose at 10◦. Each rendered image in a new pose is then
paired with around 30 images via a co-visibility check.

As a result, we use an average of 300 images to build a 3D
model for an urban scene and generate an average of 3000
synthetic images for training. The later result proves that
this scenario promises to generate training labels for visual
localization and other visual tasks while requiring minimal
human labor consumption.

4.4 Training of Cycle-Consistent Adversarial
Networks for Domain Adaptation

We train two cycle-consistent adversarial networks sep-
arately on the Tuebingen Buildings and the Cambridge
Landmarks datasets. To maintain the geometry-alignment
between images from two domains, each real-synthetic
image pair is extracted from the same pose. For each dataset,
we randomly select 500 real-synthetic image pairs as a new
train set and 150 real-synthetic pairs as a validation set from
the initial train set, and 150 real-synthetic pairs are extracted
from the initial test set as a new test set. Every sub-scene
has an equal proportion in each set.

Figures 6 and 7 demonstrate the qualitative results of the
cycle-consistent adversarial networks trained on Tuebingen
Buildings and Cambridge Landmarks, respectively. In each
figure, T (target), S2T , S (source), and T 2S represent the
real image, synthetic-to-real image, synthetic image, and
real-to-synthetic image. The last row is a typical challenging
failure example. We focus on the comparisons of T − S2T
and S − T 2S.

First of all, due to the fine 3D models and accurate pose
labels, the cycle-consistent adversarial network preserves
the geometric details of the generated and translated images
to the greatest extent, e.g., the second and fifth rows in
Fig. 6, and the second and the third row (pay attention to the
dog at the bottom!) in Fig. 7. The buildings’ skyline is well
preserved by the synthetic-to-real mapping in many cases
except for the most complex buildings. Some small moving

objects, like pedestrians, can be eliminated by both direction
translation, see the right bottom corner of the images in the
first row of Fig. 7. This is an excellent feature for visual
localization tasks. However, if the occluded objects are too
large or too close to the camera, like the tree in the last row
of Fig. 6 or the bus in the last row of Fig. 7, eliminating them
is beyond of the capability of our image style translation
method.

The illumination in the real domain is always varying.
If the distribution of the query image is identical with
the training set, the result is consistent, e.g., the fifth and
sixth rows in Fig. 7, if not, then the brightness of the real
image and related synthetic-to-real image is inconsistent,
e.g., the fourth row in Fig. 7. Naturally, we can imagine
that seasonal changes will bring similar results. However,
synthetic images and real-to-synthetic images do not have
such trouble. We can observe it from the last two columns
in Figs. 6 and 7. This difference gives us an interesting hint.
In Fig. 2, three options for utilizing the translated images
have been discussed. The S2T Training scenario could
directly use real query images, thus saving time during the
inference stage. However, the T 2S Test scenario is promising
in generalization ability due to the consistent feature dis-
tribution between synthetic and real-to-synthetic images.
Further details will be discussed in the next section.

5 Experiments

5.1 Experimental Setup

We obtain a large number of synthetic images in Section 4.3.
We utilize these synthetic images in three scenarios, as
shown in Fig. 2(b) to (d): (1) mixed real-synthetic pair
consisting of a synthetic image and a real image is fed
into RCPNet for training, forcing it to implicitly learn the
mapping between the two domains; (2) synthetic (domain
Xs) images are first translated into synthetic-to-real images
before the pairwise training of RCPNet. In the inference
stage, the real query image pairs can be directly fed in the
trained model; (3) in the training stage, synthetic image
pairs are directly fed into RCPNet. The query images
from the real domain need to be translated into real-to-
synthetic images before testing. The number of training
samples is doubled with the three scenarios mentioned
above, compared with the initial real image dataset.

Now we present the quantitative evaluation of different
methods on multiple datasets. As benchmarks, we also
test PoseNet [11] with absolute camera pose regression
and RPNet [7] with relative camera pose estimation on
eight scenes in the Tuebingen Buildings dataset. For the
Cambridge Landmarks dataset, we quote the results from
their papers. We also cite the results of PoseNet [11,
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Fig. 6 Examples of image style
transfer result compared with
original synthetic and real
images in Tuebingen Buildings
dataset. From left to right, T ,
S2T , S, and T 2S represent the
real image, synthetic-to-real
image, synthetic image, and
real-to-synthetic image. The last
row is a typical challenging
failure example

55] and RelocNet [34] on the indoor dataset 7Scenes as
baselines. The translation errors are measured in meters
and rotation errors are in degrees, as the cited works did.
Since the Tuebingen Buildings and Cambridge Landmarks

datasets only provide discrete images with ground truth
poses for testing, we evaluate RCPNet with discrete image
relocalization in this paper instead of path tracking of robot-
captured motion videos. However, relative camera pose
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Fig. 7 Examples of image style
transfer result compared with
original synthetic and real
images in Cambridge
Landmarks dataset. From left to
right, T , S2T , S, and T 2S
represent the real image,
synthetic-to-real image,
synthetic image, and
real-to-synthetic image. The last
row is a typical challenging
failure example

estimation, combined with the global matching method, has
a great potential to realize long-term camera relocalization
in large environments.

We normalize pixel intensities of the input images from
range −1 to 1. We use an implementation in PyTorch [63] to
train RCPNet and the adversarial networks. We use ADAM

[64] for optimization with a learning rate of 1 × 10−4. For
individual trained RCPNet, we use a batch size of 32 on an
NVIDIA 1080Ti GPU; training takes 20k - 100k iterations,
i.e. 10 hours - 2 days. We use a batch size of 128 for across-
scenes trained RCPNet on two NVIDIA 1080Ti GPUs, and
training takes 2 days. The learning rate of the adversarial
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networks is constant for 100 epochs and linearly decreases
to zero over the last 100 epochs. 500 real-synthetic image
pairs with 200 epochs training takes 6 hours on an NVIDIA
1080Ti GPU.

5.2 Experimental Results

5.2.1 Results of Real Images Training

In Table 2, we compare different approaches on each scene,
individually or across-scenes, seen or unseen. The baselines
are PoseNet trained by images and RPNet trained by real
image pairs, both within each scene. Generally, the accuracy
of absolute pose regression cannot be directly compared
with relative pose estimation. However, since PoseNet [11]
is the basis of RPNet [7] and RCPNet, we think it is a
valid reference. When one implements relative camera pose
estimation in a real environment, it is common to estimate
the relative pose between an unknown query image and a
known reference image with a ground truth pose. Under
this circumstance, the relative pose estimation accuracy
is equal to the absolute pose regression accuracy for the
query image. When we compare the right four columns in
Table 2, the result shows the individually trained RCPNet
outperformed the other two baselines in most scenes. The
results of across scenes trained RCPNet in the last column of
Table 2 has an average 5% decline compared with the results
of individual trained RCPNet in both datasets, but it is still
comparable to PoseNet and RPNet in most scenes. In King’s
college and Shopping Mall, the across-scenes trained model

has even better performance than the individual trained
model. The comparison between individual training and
across-scenes training shows that different scenes may have
general features, and a fine-tuned model can adapt to them
simultaneously.

For invisible scenes (Industrial building, Sand South and
Shop Facade), the across-scenes model failed, which indi-
cates the limitation of PoseNet-based architecture. Some
recent findings [36, 37] on image-based localization show
that PoseNet design can degrade the generalization ability
in challenging scene variation due to scale-inconsistency.
Although the PoseNet-based methods have limited general-
ization ability, it is still meaningful to expand from individ-
ual scene training to across-scenes training. For example,
when a vehicle works in a factory that consists of several
workshops, or a drone delivers products between multiple
GPS-denied places in a city, the robot with a single model
can be competent if it was across-scenes trained.

The cumulative distribution functions (CDF) of Fig. 8
show the absolute/relative camera localization errors by
PoseNet, RPNet, and RCPNet with individual or across-
scenes training in different scenes of Tuebingen Buildings
and Cambridge Landmarks. Individual trained RCPNet per-
forms better in rotation with an average 31.4% increase to
PoseNet and 24.2% to RPNet, while on AI Building, St
Mary’s Church, and Mol. Bio building, PoseNet or RPNet
performs better in translation. Comparing with the individual-
trained models’ performance within each scene, an across-
scenes-trained model’s performance has an average 5%
decline in both translation and rotation.

Table 2 Results with real images training and dataset details: median absolute/relative camera localization errors for the Cambridge Landmarks
and Tuebingen Buildings datasets

Frames Pairs Spatial (Absolute) (Relative) (Individual) (Across)

Scene Test Train Test Train Extent(m) PoseNet [11] RPNet [7] RCPNet RCPNet

King’s C. 343 1220 2424 9227 140×40 1.92m, 5.40◦ 1.93m, 3.12◦ 1.85m, 1.72◦ 1.80m, 1.72◦

Old Hospital 182 895 1228 6417 50×40 2.31m, 5.38◦ 2.41m, 4.81◦ 2.87m, 2.41◦ 3.15m, 3.09◦

St Mary’s C. 530 1487 3944 10736 80×60 2.65m, 8.48◦ 2.29m, 5.90◦ 3.43m, 6.14◦ 3.84m, 6.93◦

Shop Facade∗ 103 231 607 1643 35×25 1.46m, 8.08◦ 1.68m, 7.07◦ 1.63m, 7.36◦ 13.8m, 28.6◦

AI Building 288 1150 9326 38549 145×90×28 1.87m, 3.84◦ 3.01m, 3.47◦ 2.94m, 3.10◦ 3.22m, 3.21◦

Biology B. 242 967 8589 34421 120×95×26 1.58m, 2.12◦ 1.73m, 2.02◦ 1.53m, 1.24◦ 1.58m, 1.32◦

Mol. Bio B. 223 889 10492 41528 190×95×25 2.03m, 3.15◦ 3.36m, 2.59◦ 3.02m, 1.95◦ 3.09m, 1.95◦

Sand North 301 1203 6680 27315 100×45×23 1.57m, 2.65◦ 1.67m, 2.15◦ 1.45m, 1.52◦ 1.50m, 1.66◦

Shopping M. 308 1229 4991 20412 50×55×13 1.66m, 2.75◦ 2.05m, 2.77◦ 1.58m, 2.66◦ 1.63m, 2.64◦

Tue. Castle 244 975 5787 23182 40×35×21 1.64m, 2.80◦ 1.47m, 2.69◦ 1.16m, 1.92◦ 1.19m, 2.01◦

Sand South∗ 207 828 6276 25729 190×50×37 2.06m, 2.27◦ 1.52m, 6.64◦ 1.17m, 2.64◦ 17.6m, 21.3◦

Industrial B.∗ 261 1041 9910 40329 170×60×33 1.75m, 2.69◦ 1.34m, 1.68◦ 1.12m, 1.37◦ 16.7m, 18.4◦

*Invisible scenes in across-scenes training

The results with the best performance of each scene have been marked as bold
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Fig. 8 These cumulative
distribution functions (CDF) of
errors for scenes in Cambridge
Landmarks (a-d) and Tuebingen
Buildings (e-l) show localization
accuracy of four approaches: the
individual trained RCPNet (a, b,
e, f), the across-scenes trained
RCPNet (c, d, g, h), PoseNet (i,
j), and RPNet (k, l). PoseNet
performs better in AI Building
and Mol. Bio building scenes,
while the individual trained
RCPNet leads in other scenes.
The across-scenes training keeps
up with the individual training in
most scenes

In Table 3, we compare our results with PoseNet and
RelocNet on indoor dataset 7Scenes. RelocNet uses multiple
candidates for the relative pose regressor in four scenes.
We train an across-scenes model across five scenes (Chess,
Fire, Heads, Pumpkin, and Stairs), while individually train
two models for Office and Red Kitchen. The performance
of RCPNet is comparable to the three baselines: an average
53.5% and 35.7% increase in translation and rotation
accuracy to PoseNet (β weight) [11]; an average 9.3%
and 21.3% increase in translation and rotation accuracy
to PoseNet (Geometric) [55]; an average -0.7% decrease
and 3.6% increase in translation and rotation accuracy,
respectively, compared with RelocNet (7Scenes) [34]. In
the small indoor dataset, the translation accuracy may have

reached the upper limit for PoseNet-like methods, but there
is room for improvement in rotation accuracy.

5.2.2 Results of Synthetic Images Training

Table 4 demonstrates the quantitative results of RCPNet with
across training using synthetic images in the three scenarios,
as we discussed in Section 5.1 and shown in Fig. 2. Mixed
Input denotes that in the training stage, real-synthetic image
pairs are fed into the RCPNet. S2T Training represents that
in the training stage, synthetic-to-real image pairs are fed
into the RCPNet, then the real query image can be tested
directly. T 2S Test means that real-to-synthetic images are
tested with a model trained by synthetic image pairs.

Table 3 Median localization
errors for the 7Scenes [22]
dataset, with real images
training

Scene PoseNet
(β weight)
[11]

PoseNet
Geometric [55]

RelocNet
7Scenes [34]

RCPNet

Chess1,2 0.32m, 6.60◦ 0.13m, 4.48◦ 0.12m, 3.95◦ 0.13m, 3.46◦

Fire1,2 0.47m, 14.0◦ 0.27m, 11.3◦ 0.25m, 10.1◦ 0.31m, 9.45◦

Heads1,2 0.30m, 12.2◦ 0.17m, 13.0◦ 0.13m, 10.5◦ 0.15m, 9.87◦

Office 0.48m, 7.24◦ 0.19m, 5.55◦ 0.18m, 5.32◦ 0.17m, 4.81◦

Pumpkin1 0.49m, 8.12◦ 0.26m, 4.75◦ 0.26m, 4.17◦ 0.22m, 4.39◦

Red K. 0.58m, 8.34◦ 0.23m, 5.35◦ 0.23m, 5.08◦ 0.21m, 5.53◦

Stairs1,2 0.48m, 13.1◦ 0.35m, 12.4◦ 0.27m, 7.31◦ 0.26m, 7.24◦

1These scenes are trained together in an across-scenes model in RCPNet
2These scenes fuse multiple nearest neighbors before the relative pose regression in RelocNet
The results with the best performance of each scene have been marked as bold
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Table 4 Results of RCPNet with across training: median relative
localization errors for the Cambridge Landmarks and Tuebingen
Buildings datasets, with 3 schemes using synthetic images

Scene Mixed
input

S2T
training

T2S test

King’s C. 1.64m, 1.49◦ 1.76m, 1.53◦ 0.88m, 1.05◦

Old Hospital 2.56m, 2.37◦ 2.61m, 2.46◦ 1.92m, 2.19◦

St Mary’s C. 2.87m, 4.94◦ 3.22m, 5.82◦ 2.14m, 2.93◦

Shop Facade 1.48m, 5.35◦ 1.55m, 6.41◦ 1.43m, 4.11◦

AI Building 2.63m, 2.90◦ 2.94m, 3.10◦ 1.99m, 2.71◦

Biology B. 1.41m, 1.18◦ 1.53m, 1.24◦ 1.24m, 1.09◦

Mol. Bio B. 2.84m, 1.73◦ 3.02m, 1.95◦ 2.57m, 1.35◦

Sand North 1.39m, 1.53◦ 1.45m, 1.52◦ 1.16m, 1.27◦

Shopping M. 1.46m, 2.52◦ 1.58m, 2.67◦ 1.23m, 2.16◦

Tue. Castle 1.16m, 1.90◦ 1.15m, 1.92◦ 1.02m, 1.85◦

The results with the best performance of each scene have been marked
as bold

Compared with the results of across-scenes real image
trained RCPNet in the last column of Table 2, the perfor-
mance of the three scenarios mentioned above has been
improved due to the expansion of training data. The mixed
input scenario has an average 14.5% and 16.2% improve-
ment translation and rotation accuracy, respectively. It
shows the network implicitly learns the bidirectional map-
ping between two domains from mixed real-synthetic image
pairs. The S2T training scenario has a slightly inferior per-
formance to Mixed Input, which shows that the feature
distribution in real-world images is always varying due to
the illumination shifts and seasonal changes. Therefore, it’s
challenging to find an average mapping representation from
the consistent synthetic distribution to the inconsistent real
distribution. However, the S2T training still has an average
8.3% and 9.5% increase in translation and rotation accuracy,
compared with the real image trained model.

The T 2S test scenario has an average 32.6% and 32.3%
increase in translation and rotation accuracy to the real
image trained RCPNet. It also outperforms the other two
synthetic image trained competitors with a large margin,
proving the robustness of the translation from the real
distribution to the synthetic distribution. We need real-to-
synthetic translation for every input query image in the
T 2S test scenario during the test stage. The predicted
poses are still compared to the real query images’ poses.
It caused an extra time-consuming but is still a meaningful
example for synthetic images application. Besides, synthetic
image training via domain adaptation in the other two
scenarios also improves the original RCPNet. For visual
localization tasks, a promising bridge has been built
between the real data and the synthetic data. As portable
camera equipment becomes more and more popular, and

3D modeling becomes more convenient, this method will be
more widely used in the future and reduce the heavy data
labeling work of humans.

6 Conclusion

We present RCPNet, a learning-based method for relative
camera pose estimation across multiple scenes. RCPNet
can be used in continuous localization for autonomous
navigation of unmanned systems, multi-robot cooperation
systems, visual odometry applications, or combined with
global image retrieval methods like NetVLAD to obtain
more accurate absolute pose estimation. A camera relo-
calization dataset for both absolute and relative camera
pose estimation is built with a drone and the SfM method.
We demonstrate that our method outperforms two base-
line approaches in two outdoor datasets. The result that
across-scenes training has comparable performance to indi-
vidual training shows that general features of image pairs
in different locations exist. For unseen scenes, the results of
the across-scenes model are not satisfactory, the PoseNet-
based architecture needs to be further modified. We also
test our model in an indoor dataset to demonstrate its
generalization ability.

Besides, we further expand our dataset with 3D modeling
and synthetic image rendering. We utilize cycle-consistent
image style transfer and adversarial training to estimate
real-image pairs’ relative camera pose based on training
over synthetic environment data in different schemes. The
result demonstrates the effectiveness of the cycle-consistent
adversarial networks in domain adaptation between real and
synthetic images.

In future work, we aim to improve our network archi-
tecture to implement the image style transfer and pose
estimation in an across-scenes model with fewer hyper-
parameters. To improve the practical ability in long-term
camera relocalization, we will further test our method in
larger and connected 3D datasets.
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