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Implementation of a neural network for
non-linearities estimation in a tail-sitter aircraft
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Abstract The control of a tail-sitter aircraft is a challenging task, especially
during transition maneuver where the lift and drag forces are highly nonlinear.
In this work, we implement a Neural Network (NN) capable of estimate such
nonlinearities. Once they are estimated, one can propose a control scheme
where these forces can correctly feed-forwarded. Our implementation of the NN
has been programmed in C++ on the PX4 Autopilot an open-source autopilot
for drones. To ensure that this implementation does not considerably affect the
autopilot’s performance, the coded NN must be of a light computational load.
With the aim to test our approach, we have carried out a series of realistic
simulations in the Software in The Loop (SITL) using the PX4 Autopilot.
These experiments demonstrate that the implemented NN can be used to
estimate the tail-sitter aerodynamic forces, and can be used to improve the
control algorithms during all the flight phases of the tail-sitter aircraft: hover,
cruise flight, and transition.
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1 Introduction

Nowadays there exist different types of hybrid UAV’s classified according to
the flight mode transition principle; one of them is the tail-sitter. This type
of UAV basically consists of a fixed-wing structure where the different flight
modes determine the orientation of the aircraft. The transition between flight
modes relies on the total rotation of the aircraft, which completely changes
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Fig. 1 Tail-sitter model in which the neural network will be implemented.

the dynamics of the aircraft. In general, one can say that convertible UAV’s
control is a current area of research since current and further applications
this, relatively new, aircraft can perform like inspection of static objects in a
big area. Tough the investigation of controls for convertible UAVs has been
some success during the last years, it remains to tackle this problem from
a practical point of view since the vast majority of the works are focused
only on the theoretical part [1][12][5][4][13]. However, such investigation has
demonstrated that one of the key points for controlling convertible aircraft is
the lack of knowledge of the aerodynamic forces, especially during transition
phases.

Several research documents take this subject of tail-sitter control from
different perspectives, which includes defining a special control algorithm for
each flight mode, to develop a unified controller that works in all the flight
phases (level, hover, and transition). Also, different control approaches are
implemented like the common PID controller, model-free controllers [2]; adap-
tive control methods also have been applied [7] where input saturation and
external disturbances are taken into consideration to develop a robust control
algorithm. In [11] [10] a dynamic inversion control approach is presented where
the authors consider the presence of the aerodynamics of the wing and the ro-
tor blades to improve the performance of their control. On the other hand, the
use of neural networks in the area of UAVs has its own research works. The
most relevant are: [8] and [14] in which uses different types of NN to perform a
dynamic inversion in a multi-rotor UAV. In [3] a neural-networks-based control
scheme is proposed to perform a flight mode transition of a ducted fan VTOL;
in such a case the NN is used to compensate disturbances and uncertainties
in the system.

The objective of this work is to implement and test the performance of a
simple perceptron multi-layer neural network running on the up-to-date PX4
firmware. This NN is trained to estimate the aerodynamic forces generated
by the tail-sitter aircraft depicted in Fig. 1 according to the body velocities
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Fig. 2 Free-body diagram of the longitudinal model of the tail-sitter aircraft, where the
forces, moments, states and inputs are depicted.

during the flight tests. The final purpose of this estimation is the feedback
linearization to enhance the effectiveness and simplicity of the flight control
algorithm. Our approach is tested in a software-in-the-loop realistic simulation,
where an optimized NN is programmed into the PX4 autopilot without the
need for a companion computer.

The remainder of this short paper is as follows: in sec. 2 is described the
problem this work focuses and how it is planned to be solved, next in sec. 3
is detailed the system model and the parameter wwe want to estimate with
the neural network, also it is presented the construction and training of this
network. Then, the results obtained by the SITL simulations applying the NN
are presented in sec. 3, finally the conclusions are described in the sec. 5.

2 Problem setting

In our previous work [6], we investigate the development of a recurrent neural
network (RNN) to obtain the required state function for a feedback lineariza-
tion of the dynamics of the system. In that work, we take into consideration
the fact that an RNN has the capability to predict future system’s behavior.
Now in this paper, we take a different approach, in particular, we construct
and implement a multi-layer perceptron NN in which, according to the body
velocities u,w (please see Fig 2) it is possible to estimate the aerodynamic
forces generated by the tail-sitter.



4 Alejandro Flores, Gerardo Flores

2.1 System model

Nowadays the study of tail-sitter UAVs has several points of view: model-
ing, state estimation, control, and aerodynamic characteristics, but in most
cases there is a common factor on them: the aerodynamic influence on the
tail-sitter dynamics. Regarding the mathematical representation of tail-sitters,
some works put attention in the model using airspeed and the path angle as
states, as it is common in fixed-wing aircraft modeling. Since our case of study
is a tail-sitter aircraft, we claim that a better-appropriated model is using
as states the body velocities. To start with, we propose a longitudinal model
representing the tail-sitter’s dynamics focused on the dynamic behavior in the
x−z plane, that is, the model system will be resented with the horizontal and
vertical velocities as described next

Σ :

{
u̇ = 1

m (T −D cosα+ L sinα) − g sin θ − qw

ẇ = 1
m (−D sinα− L cosα) + g cos θ + qu

(1)

Ω :

{
θ̇ = q

q̇ = 1
J τ

(2)

where u and w are respectively the vertical and horizontal aircraft velocities
expressed in the body frame; D and L are the drag and lift aerodynamic forces,
respectively; θ is the pitch angle, and q is the rate; α represents the UAV’s
angle of attack (AoA); m and J represent the UAV mass and its inertia in
the y-axis, respectively; and τ , T are the pitching moment and thrust, both
considered as control inputs. In our work, we are mainly interested in the
translational dynamics of the tail-sitter (system Σ). For that, we assume that
the attitude system Ω is stable by the application of an appropriated control
τ ; such a controller can be found in our previous work [6].

2.2 Problem statement

The estimation and knowledge of the forces generated by the aerodynamics
of a wing in an tail-sitter UAV have an important role in the control of the
aircraft during all their flight phases. This way we propose to use a neural
network capable of estimate this forces to possible be used for the control
algorithm.

3 Main result

Notice that in system Σ the aerodynamic forces L (lift) and D (drag) are
given by

L =
1

2
CLV

2ρS, and D =
1

2
CDV

2ρS (3)
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Fig. 3 Lift and Drag coefficients of the airfoil NACA-0012 in the 360 degrees range of angle
of attack. Due to that this airfoil has a symmetric shape, its coefficients also show symmetric
patterns.

take a fundamental role in the tail-sitter’s accelerations. In (3) V is the air-
speed, ρ is the air density and S is the wing surface area; the lift and drag
coefficients CL and CD are related to the airfoil, in our case we use a NACA-
0012 with coefficients depicted in Fig 3. Then, rewriting system Σ into the
form

u̇ = f1 + g cos θ + T (4)

ẇ = f2 + g sin θ, (5)

where f1 and f2 contain all the forces acting in their respective body axis,
i.e. f1 = −D cosα+ L sinα− qw and f2 = −D sinα− L cosα+ qu. Since the
function f1 and f2 mostly depends on u and w, there is a possibility to use a
NN that can estimate this functions by only using the u and w velocities has
the neural network inputs.

3.1 Neural network configuration

We aim to estimate the nonlinearities f1(u,w) and f2(u,w) in (4) using a
proposed NN configuration presented next. The structure of the implemented
neural network in the PX4 firmware consists of 4 hidden layers with 10, 20, 50,
and 10 neurons on each layer, respectively. The output layer consists of one
layer; in Fig. 4 it is depicted the proposed structure for the NN. To choose the
best activation functions it is important to have in mind that the estimation
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Fig. 4 Neural network structure used to estimate the functions f1 and f2 in system Σ
represneting the body velocities of the tail-sitter aircraft. This NN consist in 5 layers with
(10,20,50,10,1) neurons each one respectively. The output layer is of just one sole layer.

we want to obtain is in R. We highlight that this problem is not of the kind
of classification; to achieve an estimate of f1 and f2 we configure two different
activation functions: the first one is a bounded function f(x) = tanh(x) where
the output values are within (−1, 1). Such an activation function is applied
in the second and third layer, and in the rest layers it is applied a linear
activation function f(x) = x. Tab. 1 shows the principal characteristics of the
neural network.

Table 1 Neural Network Structure.

Layer Neurons N Weights Activation func-
tion

1 10 2 f(x) = x
2 20 200 f(x) = tanh(x)
3 50 1000 f(x) = tanh(x)
4 10 500 f(x) = x
5 1 10 f(x) = x

3.2 Neural network training

As it is well known, to train any neural network it is required a dataset of
input values and its corresponding output results. To obtain our dataset we
perform flight simulations of a modeled tail-sitter, where random inputs (u, v)
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Fig. 5 Block diagram that represents the training dataset for the implemented neural
network. Since¿ we use a supervised neural network training, the dataset should include a
collection of all the possible kinds of inputs (u,w) and their respective outputs (f1, f2) that
will help to the neural network to achieve the weight’s optimal value.

were applied to simulate and get the outputs (f1, f2), doing this, we obtained
10,000 data samples to train the NN.

The used training method was the back-propagation algorithm, in which
the weights update take an action from the last neural network layer to the
first one, according to the learning rate and error obtained in the output.
The training process consisted of 10 epochs until the weight does not show
any change. The total number of weights that were calculated for this neural
network is 1,712 float values, which means that all these values must be stored
in the PX4 Autopilot to be used during the control execution.

4 Results

To verify the real performance of our approach, we conduct several simulations
in the Gazebo software [9] taking the available tail-sitter UAV model and
run a software-in-the-loop (SITL) simulation. This simulation consists in to
emulate the physics and aerodynamics in a realistic CAD model. In addition,
the computer emulates the micro-controller running the PX4 firmware with
the Autopilot to finally make a virtual representation of the real system. It is
important to mention that, this type of simulation executes the real controller
that will be run in real experiments, the functionality and results are very
close to real behavior.

The simulation consists of a flight test running the neural network during
all the flight time. We perform a flight experiment consisting of autonomous
take-off, followed by hovering, then transition, followed by cruise flight, and
finally returning to hover flight for achieving a landing; all these are conducted
autonomously. During all the flight envelope the proposed neural network es-
timate the functions f1 and f2 in the system Σ.

The results of the simulation are shown in Fig. 8 where the upper graph
depicts the actual tail-sitter velocities (u,w). The middle and the lower graph
show the neural network estimated aerodynamic forces (f1, f2), respectively.
The beginning of the test consists of the vertical take-off and a short hover
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Fig. 6 Input and output data-set generated by simulation, as we can see, we generate a
random bounded data input (u,w) according to the nominal velocities that a tail-sitter UAV
performs, ı́n this case the velocities goes, in u from 0 m/s to 18 m/s where arte the hover
ans level flight modes respectively. In teh case of the velocity w, this values are from -1 m/s
to 4 m/s which corresponds to slow displacements during hover flight mode.

Fig. 7 Software in the loop (SITL) simulation in the Gazebo environment using the tail-
sitter UAV model for the implementation of the neural network. The experiment board all
the flight modes performed autonomously in this order: take-off, hover, transition, cruise,
transition, hover, and landing.
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Fig. 8 Forces f1 and f2 estimated during a tail-sitter flight. In this simulation, the two
flight modes were performed to see the behavior of the forces generated during both flight
modes.

flight mode period (from 0s to 60s), then the velocities u and w corresponds
to small values as depicted in the upper graph. By consequence, the aerody-
namic forces generated by such velocities must correspond to small values as
described in the two last graphs of Fig. 8. The second part of the flight test
consists in the level flight mode, this part takes place from 60s to 100s. During
the cruise flight mode, the velocity u must be higher than in hover; this is
due to the UAV’s attitude and the high-speed requirements in cruise flight.
Conversely, w must keep small values compared to u. In the first graph of Fig.
8, when t = 60s, u significantly increases while w does slightly. Because of this,
it is logical to expect that the aerodynamic forces f1 and f2 increases. This
can be seen in the next two graphs in the same figure, where f1 that interacts
in the direction of u depicts an increased value; in the case of f2 this value is
higher since it compensates the gravity force and keeps the UAV in the air.
Finally, the last flight stage consists of a return to hover flight performing some
small displacements as it is shown in Fig. 8. The small horizontal movements
during hovering cause forces in f2 due to the friction of the wing with the air
when it is perpendicular to the displacement. The modified code for the NN
implementation can be accessed here.

https://github.com/LAPyR/NN_aerodynamic_estimation
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5 Conclusion

In this work, a neural network was implemented in the actual PX4 firmware
developed by PX4 autopilot. This NN is responsible to estimate non-linear
terms due to aerodynamics variation in the tail-sitter aircraft. Once the esti-
mation of these elements it was possible to compensate them to finally simplify
the flight control algorithm. The obtained results show that the proposed NN
estimates the non-linearities of the system. The restriction of using a micro-
controller difficult a possible implementation of a complex NN to improve the
estimation of non-linear dynamics due to the low memory capacity of such
devices and also because of the processing velocity required to execute the
whole flight code.

From the given experiments, we claim that using artificial intelligence
methods together with simple control algorithms composed of feed-forward
terms can control systems with high variability in its dynamics, as is the case
of a tail-sitter UAV. —
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