Skip to main content
Log in

Hybrid Trajectory Replanning-Based Dynamic Obstacle Avoidance for Physical Human-Robot Interaction

  • Short paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a hierarchical replanning framework that rapidly modulates the ongoing trajectory to help 7-DoF redundant manipulators avoid dynamic obstacles in physical human-robot interaction. In this method, the safety requirements of the end-effector and links are met without adding additional control burden. Firstly, an improved rapidly-exploring random trees planner is utilized to initialize the path in the joint space. To prevent excessive trimming, a heuristic method based on geometric path descriptors is proposed for finding and removing redundant nodes. Secondly, a hybrid scheme combining local path rewiring and redundancy-based node self-motion is used to identify and replan the part of the pre-planned path affected by dynamic obstacles. Lastly, an adaptive online trajectory generator is designed to adjust the trajectory in real time and generate smooth motion primitives for actuators. Simulations and real-world experiments validate the effectiveness and robustness of the proposed framework for whole-arm obstacle avoidance in dynamic scenarios. Compared to other methods, our approach has a 35% higher success rate and a 47.2% reduction in replanning time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

Data and materials used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ajoudani, A., Zanchettin, A. M., Ivaldi, S., Albu-Schäffer, A., Kosuge, K., Khatib, O.: Progress and prospects of the human–robot collaboration. Auton. Robot. 42(5), 957–975 (2018). https://doi.org/10.1007/s10514-017-9677-2

    Article  Google Scholar 

  2. Albu-Schäffer, A., Ott, C., Hirzinger, G.: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int. J. Robot. Res. 26(1), 23–39 (2007). https://doi.org/10.1177/0278364907073776

    Article  Google Scholar 

  3. Bency, M. J., Qureshi, A. H., Yip, M. C.: Neural Path Planning: Fixed Time, Near-Optimal Path Generation via Oracle Imitation. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3965–3972. IEEE (2019)

  4. Brock, O., Khatib, O.: Elastic strips: a framework for motion generation in human environments. Int. J. Robot. Res. 21(12), 1031–1052 (2002). https://doi.org/10.1177/0278364902021012002

    Article  Google Scholar 

  5. Cao, Z., Hidalgo, G., Simon, T., Wei, S. E., Sheikh, Y.: OpenPose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 172–186 (2021). https://doi.org/10.1109/TPAMI.2019.2929257

    Article  Google Scholar 

  6. Cefalo, M., Oriolo, G.: A general framework for task-constrained motion planning with moving obstacles. Robotica 37(3), 575–598 (2019). https://doi.org/10.1017/S0263574718001182

    Article  Google Scholar 

  7. Chandler, B., Goodrich, M. A.: Online RRT* and Online FMT*: Rapid Replanning with Dynamic Cost. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6313–6318. https://doi.org/10.1109/IROS.2017.8206535 (2017)

  8. Dietrich, A., Ott, C., Albu-Schäffer, A.: An overview of null space projections for redundant, torque-controlled robots. Int. J. Robot. Res. 34(11), 1385–1400 (2015). https://doi.org/10.1177/0278364914566516

    Article  Google Scholar 

  9. Ferguson, D., Kalra, N., Stentz, A.: Replanning with RRTs. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, pp. 1243–1248. https://doi.org/10.1109/ROBOT.2006.1641879 (2006)

  10. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998). https://doi.org/10.1177/027836499801700706

    Article  Google Scholar 

  11. Flacco, F., Kröger, T., De Luca, A., Khatib, O.: A Depth Space Approach to Human-Robot Collision Avoidance. In: 2012 IEEE International Conference on Robotics and Automation, pp. 338–345. https://doi.org/10.1109/ICRA.2012.6225245 (2012)

  12. Gammell, J.D., Srinivasa, S.S., Barfoot, T.D.: Informed RRT*: Optimal Sampling-Based Path Planning Focused via Direct Sampling of an Admissible Ellipsoidal Heuristic. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2997–3004. https://doi.org/10.1109/IROS.2014.6942976 (2014)

  13. Gammell, J. D., Srinivasa, S. S., Barfoot, T. D.: Batch Informed Trees (BIT*): Sampling-Based Optimal Planning via the Heuristically Guided Search of Implicit Random Geometric Graphs. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 3067–3074. https://doi.org/10.1109/ICRA.2015.7139620 (2015)

  14. Haddadin, S., De Luca, A., Albu-Schäffer, A.: Robot collisions: a survey on detection, isolation, and identification. IEEE Trans. Robot. 33(6), 1292–1312 (2017). https://doi.org/10.1109/TRO.2017.2723903

    Article  Google Scholar 

  15. Han, D., Nie, H., Chen, J., Chen, M.: Optimal randomized path planning for redundant manipulators based on memory-goal-biasing. Int. J. Adv. Robot. Syst. 15(4), 1729881418787049. https://doi.org/10.1177/1729881418787049(2018)

  16. Jeong, I. B., Lee, S. J., Kim, J. H.: Quick-RRT*: Triangular inequality-based implementation of RRT* with improved initial solution and convergence rate. Expert Syst. Appl. 123, 82–90 (2019). https://doi.org/10.1016/j.eswa.2019.01.032

    Article  Google Scholar 

  17. Jiang, Y., Yang, C., Wang, Y., Ju, Z., Li, Y., Su, C.Y.: Multi-hierarchy interaction control of a redundant robot using impedance learning. Mechatronics 67, 102348. https://doi.org/10.1016/j.mechatronics.2020.102348 (2020)

  18. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011). https://doi.org/10.1177/0278364911406761

    Article  Google Scholar 

  19. Kavraki, L.E., Svestka, P., Latombe, J., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996). https://doi.org/10.1109/70.508439

    Article  Google Scholar 

  20. Khatib, O.: Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 500–505. https://doi.org/10.1109/ROBOT.1985.1087247 (1985)

  21. Kröger, T., Wahl, F.M.: Online trajectory generation: Basic concepts for instantaneous reactions to unforeseen events. IEEE Trans. Robot. 26(1), 94–111 (2010). https://doi.org/10.1109/TRO.2009.2035744

    Article  Google Scholar 

  22. Kuffner, J.J., LaValle, S.M.: RRT-Connect: An Efficient Approach to Single-Query Path Planning. In: 2000 IEEE International Conference on Robotics and Automation, vol. 2, pp. 995–1001. https://doi.org/10.1109/ROBOT.2000.844730 (2000)

  23. Losey, D. P., O’Malley, M. K.: Learning the correct robot trajectory in real-time from physical human interactions. J. Human-Robot Int. 9(1). https://doi.org/10.1145/3354139 (2019)

  24. Luo, R.C., Ko, M., Chung, Y., Chatila, R.: Repulsive Reaction Vector Generator for Whole-Arm Collision Avoidance of 7-DoF Redundant Robot Manipulator. In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1036–1041. https://doi.org/10.1109/AIM.2014.6878217 (2014)

  25. Macfarlane, S., Croft, E.A.: Jerk-bounded manipulator trajectory planning: design for real-time applications. IEEE Trans. Robot. Autom. 19(1), 42–52 (2003). https://doi.org/10.1109/TRA.2002.807548

    Article  Google Scholar 

  26. Minghua, O., Wei, S., Shengnan, L., Pengfei, Y.: On joint obstacle avoidance based on artificial potential field for duct cleaning robot. In: Proceedings of the 2012 Second International Conference on Electric Information and Control Engineering - Volume 02, ICEICE ’12, pp. 1045–1049. IEEE Computer Society, USA. https://doi.org/10.5555/2452568.2452972 (2012)

  27. Naderi, K., Rajamäki, J., Hämäläinen, P.: RT-RRT*: a real-time path planning algorithm based on RRT*. In: Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games, MIG ’15, pp. 113–118. Association for Computing Machinery, New York. https://doi.org/10.1145/2822013.2822036 (2015)

  28. Nascimento, H., Mujica, M., Benoussaad, M.: Collision avoidance interaction between human and a hidden robot based on kinect and robot data fusion. IEEE Robot. Autom. Lett. 6(1), 88–94 (2021). https://doi.org/10.1109/LRA.2020.3032104

    Article  Google Scholar 

  29. Oh, Y., Chung, W., Youm, Y.: Extended impedance control of redundant manipulators based on weighted decomposition of joint space. J. Robot. Syst. 15(5), 231–258. https://doi.org/10.1002/(SICI)1097-4563(199805)15:5<231::AID-ROB1>3.0.CO;2-P. Cited By 20 (1998)

  30. Ott, C.: Cartesian Impedance Control: The Rigid Body Case, pp. 29–44. Springer, Berlin. https://doi.org/10.1007/978-3-540-69255-3_3 (2008)

  31. Pairet, Ė., Ardón, P., Mistry, M., Petillot, Y.: Learning generalizable coupling terms for obstacle avoidance via low-dimensional geometric descriptors. IEEE Robot. Autom. Lett. 4(4), 3979–3986 (2019). https://doi.org/10.1109/LRA.2019.2930431

    Article  Google Scholar 

  32. Pan, J., Chitta, S., Manocha, D.: FCL: a General Purpose Library for Collision and Proximity Queries. In: 2012 IEEE International Conference on Robotics and Automation, pp. 3859–3866. https://doi.org/10.1109/ICRA.2012.6225337 (2012)

  33. Pan, Y., Sun, T., Liu, Y., Yu, H.: Composite learning from adaptive backstepping neural network control. Neural Netw. 95, 134–142 (2017)

    Article  Google Scholar 

  34. Park, C., Pan, J., Manocha, D.: ITOMP: Incremental trajectory optimization for real-time replanning in dynamic environments. In: Proceedings of the Twenty-Second International Conference on International Conference on Automated Planning and Scheduling, ICAPS’12, pp. 207–215. AAAI Press (2012)

  35. Quinlan, S., Khatib, O.: Elastic bands: connecting path planning and control. In: Proceedings IEEE International Conference on Robotics and Automation, Vol. 2, pp. 802–807. https://doi.org/10.1109/ROBOT.1993.291936 (1993)

  36. Qureshi, A. H., Ayaz, Y.: Potential functions based sampling heuristic for optimal path planning. Auton. Robot. 40(6), 1079–1093 (2016). https://doi.org/10.1007/s10514-015-9518-0

    Article  Google Scholar 

  37. Qureshi, A. H., Simeonov, A., Bency, M. J., Yip, M. C.: Motion Planning Networks. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 2118–2124. IEEE (2019)

  38. Roesmann, C., Feiten, W., Woesch, T., Hoffmann, F., Bertram, T.: Trajectory Modification considering Dynamic Constraints of Autonomous Robots. In: ROBOTIK 2012; 7Th German Conference on Robotics, pp. 1–6 (2012)

  39. Shimizu, M., Kakuya, H., Yoon, W., Kitagaki, K., Kosuge, K.: Analytical inverse kinematic computation for 7-DOF redundant manipulators with joint limits and its application to redundancy resolution. IEEE Trans. Robot. 24(5), 1131–1142 (2008). https://doi.org/10.1109/TRO.2008.2003266

    Article  Google Scholar 

  40. Srinivas, A., Jabri, A., Abbeel, P., Levine, S., Finn, C.: Universal Planning Networks: Learning Generalizable Representations for Visuomotor Control. In: International Conference on Machine Learning, pp. 4732–4741. PMLR (2018)

  41. Suh, J., Gong, J., Oh, S.: Fast sampling-based cost-aware path planning with nonmyopic extensions using cross entropy. IEEE Trans. Robot. 33(6), 1313–1326 (2017). https://doi.org/10.1109/TRO.2017.2738664

    Article  Google Scholar 

  42. Tamar, A., Wu, Y., Thomas, G., Levine, S., Abbeel, P.: Value iteration networks. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 2154–2162 (2016)

  43. Vannoy, J., Xiao, J.: Real-time adaptive motion planning (RAMP) of mobile manipulators in dynamic environments with unforeseen changes. IEEE Trans. Robot. 24(5), 1199–1212 (2008). https://doi.org/10.1109/TRO.2008.2003277

    Article  Google Scholar 

  44. Villani, V., Pini, F., Leali, F., Secchi, C.: Survey on human–robot collaboration in industrial settings: safety, intuitive interfaces and applications. Mechatronics 55, 248–266 (2018). https://doi.org/10.1016/j.mechatronics.2018.02.009

    Article  Google Scholar 

  45. Xu, J., Song, K., Zhang, D., Dong, H., Yan, Y., Meng, Q.: Informed anytime fast marching tree for asymptotically optimal motion planning. IEEE Trans. Ind. Electron. 68(6), 5068–5077 (2021). https://doi.org/10.1109/TIE.2020.2992978

    Article  Google Scholar 

  46. Xu, Z., Zhou, X., Wu, H., Li, X., Li, S.: Motion planning of manipulators for simultaneous obstacle avoidance and target tracking: an RNN approach with guaranteed performance. IEEE Trans. Ind. Electron. 1–1. https://doi.org/10.1109/TIE.2021.3073305 (2021)

  47. Yang, C., Peng, G., Li, Y., Cui, R., Cheng, L., Li, Z.: Neural networks enhanced adaptive admittance control of optimized robot–environment interaction. IEEE Trans. Cybern. 49(7), 2568–2579 (2019). https://doi.org/10.1109/TCYB.2018.2828654

    Article  Google Scholar 

Download references

Funding

This study was funded by the Key-Area Research and Development Program of Guangdong Province, China (grant number 2019B010154003).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Shiqi Li, Ke Han; Methodology: Shiqi Li, Ke Han and Shuai Zhang; Software: Ke Han and Xiao Li; Writing - original draft preparation: Ke Han; Writing - review and editing: Xiao Li and Zheng Xie; Resources: Youjun Xiong; Supervision: Shiqi Li.

Corresponding author

Correspondence to Ke Han.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Han, K., Li, X. et al. Hybrid Trajectory Replanning-Based Dynamic Obstacle Avoidance for Physical Human-Robot Interaction. J Intell Robot Syst 103, 41 (2021). https://doi.org/10.1007/s10846-021-01510-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01510-2

Keywords

Navigation