
https://doi.org/10.1007/s10846-022-01574-8

REGULAR PAPER

Generation of Dynamically Feasible Window Traversing Quadrotor
Trajectories Using Logistic Curve

Saurabh Upadhyay1 · Thomas Richardson1,2 · Arthur Richards1,2

Received: 20 October 2020 / Accepted: 13 January 2022
© The Author(s) 2022

Abstract
This work considers dynamically feasible point-to-point trajectory generation problem for a quadrotor flying through a cons-
trained planner region referred as window (narrow gap). A four parameter logistic (4PL) curve is investigated as a prospective
candidate and closed-form conditions are derived on the 4PL design parameters to satisfy the window traversability and ve-
hicle dynamic feasibility constraints. A hierarchical approach first computes a dynamically feasible design parameter set
for decoupled trajectory components and then obtains a solution set satisfying 3-D axis-coupled window traversability
conditions. Numerical examples with a comparative study are presented to validate the analytical findings that highlight the
quick computation of the dynamically feasible window traversing trajectories in complex window scenarios.

Keywords Kinodynamic trajectory planning · Window traversal · Unmanned aerial vehicle · Motion planning

1 Introduction

Quadrotors are widely used in constrained environment
operations such as search and rescue, structure inspection,
and drone racing competitions due to their agile and fast
maneuverability [1–4]. Pertaining to these applications, a
quadrotor often requires to fly through arbitrary tilted
windows, and hence, the window traversal problem is gai-

A version of the submitted paper appeared in the Proceedings of
the 2020 International Conference on Unmanned Aircraft Systems
(ICUAS’20), Athens, Greece.

This work is funded by the Engineering and Physical Sciences
Research Council CASCADE Programme (ref EP/R009953/1).

� Saurabh Upadhyay
Saurabh.Upadhyay@cranfield.ac.uk

Thomas Richardson
thomas.richardson@bristol.ac.uk

Arthur Richards
arthur.richards@bristol.ac.uk

1 Department of Aerospace Engineering, University of Bristol,
Bristol, UK

2 Bristol Robotics Laboratory, Bristol, UK

ning interest among UAV researchers [5–11]. From a trajec-
tory planning perspective, vehicle dynamic and input feasi-
bility constraints, end-point reachability in a given time, and
window traversal are the key challenges that a prospective
planner should address. Rapid computation of the multiple
trajectories is desirable for online operation.

1.1 Literature Review

A variety of approaches have been proposed for generating
point-to-point dynamically feasible quadrotor trajectories.
A hierarchical spatial and temporal planning approach gen-
erates the spatial paths from the geometric curves (lines
[13], polynomials [14], splines [15]) in the first step and
then time parameterized them to satisfy the vehicle dynamic
and input constraints. A direct optimization based approach
formulates the trajectory generation problem as an optimal
control problem subjected to vehicle dynamics and input
constraints [16–18]. An explicit numerical optimization
based approach for a fixed-wing UAV was proposed in [19]
where obstacle avoidance is handled by using policy itera-
tion for a Markov decision process. The numerical optimi-
zation approaches offers a natural framework for constrai-
ned path generation but suffers from computational com-
plexity. A third approach uses differential flatness prop-
erty to map the trajectory planning problem into a lower

/ Published online: 7 May 2022

Journal of Intelligent & Robotic Systems (2022) 105: 16

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-022-01574-8&domain=pdf
http://orcid.org/0000-0002-2030-1594
http://orcid.org/0000-0001-7767-452
http://orcid.org/0000-0001-9500-5514
mailto: Saurabh.Upadhyay@cranfield.ac.uk
mailto: thomas.richardson@bristol.ac.uk
mailto: arthur.richards@bristol.ac.uk

dimension curve-fitting problem where each curve repre-
sents the differentially flat quadrotor outputs: three trajec-
tory components and a yaw angle [20–22]. The differential
flatness approach based methods typically use time param-
eterized polynomial curve due to its simplicity in imposing
the input feasibility constraints and pose the trajectory gen-
eration problem as a constrained optimal problem in the
curve design parameter space.

Quadrotor window traversal problem from the percep-
tion and control perspective was addressed in [5]. Therein,
a window traversing ballistic trajectory with constant con-
trol inputs was planned with a polynomial time approaching
trajectory [22] which brings the quadrotor from its hovering
position to the initial pose (position and control inputs) of
the ballistic trajectory. Robust estimation, control and plan-
ning for the window traversal problem was considered in [6]
wherein a collision-free orientation at a point on the window
plane was imposed for generating a feasible polynomial
time trajectory. A combination of deep learning and guidance
theory was used in [7] for the window traversal. Therein,
a robust estimate of the window center was obtained by a
convolution neural network based algorithm, and quadro-
tor heading and roll commands were generated for flying
through the window center along the line perpendicular to
the window. The work of [8] used a deep network-based
perception algorithm to estimate the window position and
defined two waypoints such that the line connecting the
waypoints passes through the window. Subsequently, the
linear interpolation of all window waypoints was given as
a reference path to a perception aware model predictive
controller [23] for finding the feasible trajectory. An end-
to-end reinforcement learning approach was proposed in [9]
wherein the geometric tracking controller was replaced by
a neural network-based policy controller and the trajectory
planning of [5] was used for generating the feasible win-
dow traversing trajectories. The works of [5–9] primarily
focus on the perception and control approaches, and gener-
ate a feasible trajectory passing through a fixed point on the
window plane. This specific window point traversal app-
roach restricts the number of solutions and in case of arbi-
trary tilted windows may require complex window travers-
ing approaches.

Quadrotor trajectory generation in a known window
scenario was addressed in [24]. Therein, a sequence of con-
trollers namely, hover control, 3-D path following, and atti-
tude control, was used to generate a sequence of controller
parameterized segments, each defined with controller gains
and a goal state. The problem of window traversal for a qua-
drotor with a cable-suspended load was addressed in [10]
wherein, orthogonal collocation based optimization method
was used for generating the feasible trajectory. In [11],
dynamically feasible motion primitives were generated
from the time parameterized polynomial curves and window

traversability was checked by taking the intersection of
the ellipsoid-shaped vehicle orientation with the window.
Differential flatness based motion primitives generation is
computationally inexpensive [22] and in case of window
traversal, can cover the whole window plane rather than
a point. Motivated from the motion primitive based
approaches, this work explores the possibility of generating
multiple feasible trajectories quickly by reducing the
design parameters space with simple closed-form dynamic
feasibility and window traversal conditions.

1.2 Contributions

In contrast to the existing literature, this work investigates
the four parameter logistic (4PL) curve as a prospective
candidate for the window traversal problem with given
initial and final positions, arbitrary oriented window, and
vehicle dynamic and input constraints. The 4PL curve
based smooth path planning tool was recently introduced
in [25] and applied in obstacle cluttered, passages, airspace
restrictions, and parallel parking scenarios [26]. The 4PL
curve has shape flexibility with just four design parameters
and has significant computational advantages over other
smooth curves (e.g. Bézier curves, B-splines, etc.) [25].

As the major contribution, the problem of [27] is
revisited for arbitrary oriented static windows and a corridor
based approach is proposed to determine the window
traversability of 4PL trajectories. Vehicle input feasibility
conditions (respecting speed, acceleration, and jerk limits)
for the 4PL trajectory are derived in closed-form and a
hierarchical trajectory planning method is proposed that
generates dynamically feasible trajectories passing through
the window. Performance of the proposed approach is tested
in simple and specific window scenarios with extreme
orientations and a comparative study is carried out to
highlight the fast-computation capability.

The remainder of this paper is organized as follows: The
window traversal problem is described in Section 2. Basics
of the 4PL trajectory are reviewed in Section 3. The propo-
sed trajectory generation approach with input feasibility
and window traversal conditions is described in Section 4.
Numerical examples including a comparative study with
an optimization approach [20] are presented in Section 5.
Section 6 provides the concluding remarks.

2 ProblemDescription

This section discusses the relationship between quadrotor
motion and time parameterized curve based dynamic fea-
sibility trajectories and states the window traversal problem.
For details on the quadrotor working principles, the inte-
rested readers are referred to [28].

16 Page 2 of 17 J Intell Robot Syst (2022) 105: 16

2.1 Quadrotor Motion in Terms of Time
Parameterized Curves

Consider a quadrotor in an inertial frame with orthogonal
axes (Xi , Y i , Zi) and a body frame with origin at the
quadrotor center of mass, two body axes Xb and Yb in
the direction of vehicle front and left side, and the third
axis Zb normal to the vehicle plane as shown in Fig. 1.
The quadrotor is modeled as a rigid body with six degrees
of freedom where three degrees of freedom describe the
linear translation motion of the quadrotor center of mass
x = [x, y, z]T in the inertial frame and the remaining three
describe the vehicle attitude in the body frame. Assume
that the quadrotor is sufficiently agile and equipped with an
autopilot such that the thrust (mass-normalized force) f and
angular rates ω(ωx, ωy, ωz) can be considered as control
inputs. The rigid body quadrotor motion is governed by [22]

ẍ = Re3f + g (1)

Ṙ = Rω× (2)

where R is a proper orthogonal rotation matrix that
converts a body frame vector to an inertial frame vector,
g = [0, 0, −g]T with g representing the gravitational
acceleration, ω× is a skew-symmetric matrix of vehicle
angular rates ω given as

ω× =
⎡
⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦

Fig. 1 A quadrotor schematic in an inertial frame (Xi, Y i , Zi) with a
mass normalized thrust f along the body fixed axis Zb and angular
rates ω(ωx, ωy, ωz) in the body frame (Xb, Y b, Zb)

and e3 = [0, 0, 1]T . Using Eqs. 1 and 2, the control inputs
(f, ωx, ωy, ωz) in terms of second and third derivatives of
the trajectory can be deduced as

f = ||ẍ − g|| (3)[
ωy

−ωx

]
= 1

f

[
1 0 0
0 1 0

]
R−1...x (4)

where the absence of ωz indicates that the yaw motion
can be decoupled from the translation motion and hence
ωz = 0 (constant yaw ψ) is considered in this work. Also,
as discussed in [20], the vehicle dynamics and inputs of
the quadrotor can be written in terms of four independent
flat outputs x, y, z, ψ (yaw) and their derivatives. Hence,
for dynamically feasible trajectory planning, typically the
vehicle motion x can be decoupled in each axis separately
by considering thrice differentiable time-parameterized
curves in each axis, and the derivatives of curves (velocity
v = ẋ, acceleration a = ẍ, and jerk j = ...

x) are used to
obtain the control inputs from Eqs. 3 and 4. Also, the bounds
on the inputs (thrust and angular rates) can be considered in
terms of the trajectory acceleration and jerk bounds [11].

2.2 Problem Statement

Consider a window traversal problem with given initial
position i = [xi, yi, zi]T , final position f = [xf , yf , zf]T ,
and a planar static window W as shown in Fig. 2.
Without loss of generality, assume that the window has four
vertices W1(x1, y2, z4), W2(x2, y1, z2), W3(x3, y4, z3), and
W4(x4, y3, z1), such that x1 ≤ x2 ≤ x3 ≤ x4, y1 ≤ y2 ≤
y3 ≤ y4, and z1 ≤ z2 ≤ z3 ≤ z4. The body of the quadrotor
is bounded by a sphere with center at x and radius r

(depends on the quadrotor size) which can traverse through
the window. With this, the concerned window traversability
problem can be formally stated as follows: Find feasible
quadrotor trajectories �(t) := {t → x(t) ∈ R

3}, t ∈ [ti , tf]
such that

1. (End-point reachability) starts from i at t = ti and
reaches f at t = tf , that is, x(ti) = i and x(tf) = f ,

2. (Input feasibility) satisfy the given axis-wise bounds
on velocity, acceleration and jerk (vbnd , abnd , jbnd), that
is,

|v(t)|∞ ≤ vbnd (5)

|a(t)|∞ ≤ abnd, and (6)

|j(t)|∞ ≤ jbnd (7)

for all t ∈ [ti , tf] which represent the vehicle input
constraints.

3. (Window traversal) passes through the window W

without colliding with the window edges, that is,
�(tw) ∈ W̃ for some tw ∈ [ti , tf], where W̃ :=

Page 3 of 17 16J Intell Robot Syst (2022) 105: 16

Fig. 2 A quadrotor flying
through an arbitrary oriented
Window W(W1, W2, W3, W4).
The quadrotor is bounded in a
sphere of radius r and the
feasible trajectory (green line)
connects the end points i and f

while satisfying the input
feasibility and window traversal
constraints

W � B(r) represent the window plane shrunk by the
quadrotor sphere radius r .

It is desirable that quadrotor holds position at f , that is,
lim

t→∞ �(t) = f which could be considered simply as a safe

terminal (basis) state in a broader receding horizon setting.
Discussion on this receding horizon setting is out of the
scope of this work and the interested readers are referred to
[12] for details.

3 Basics of the 4PL Trajectory

A generic 4PL trajectory in 1-D is defined as

p(t; pi, pf , B, C) = pf + pi − pf

1 + (
t−ti
C

)B
(8)

where ti , pi , and pf represent the initial time, and initial
and final values of trajectory, respectively, with t ∈ [ti , tf].
Two design parameters, B > 3 and C > ti , that control the
shift and slope of the 4PL trajectory. From Eq. 8, the 3-D
4PL trajectory components are given as

x = p(t; xi, xf , Bx, Cx) (9)

y = p(t; yi, yf , By, Cy) (10)

z = p(t; zi, zf , Bz, Cz) (11)

Useful properties [25, 27] of the 4PL trajectory are as
follows:

1. End-point reachability: From Eq. 8, the 4PL trajectory
starts from the pi at time t = ti and reaches pf asym-
ptotically. For a given tf , a final position reachability
with an acceptable ε error can be imposed as

|pf − p(tf)| ≤ ε

=⇒ C ≤ (tf − ti)

(
ε

|pi − pf | − ε

) 1
B

(12)

2. Continuous velocity, acceleration, and jerk variations:
The first, second, and third derivatives of Eq. 8 with
respect to time, give component-wise velocity, accelera-
tion, and jerk expressions for the 4PL trajectory as

vp = ṗ= BCB(pf −pi)(t−ti)
B−1

(
(t−ti)B +CB

)2 , (13)

ap = p̈= BCB(pf −pi)(t−ti)
B−2

(
(t−ti)B +CB

)2
[
(B−1)− 2B(t−ti)

B

(t−ti)B +CB

]
, (14)

jp = ...
p = BCB(pf −pi) (t−ti)

B−3

(
(t−ti)B +CB

)2 [(B−1)(B−2)−

6B(B−1)(t−ti)
B

(t−ti)B +CB
+ 6B2(t−ti)

2B

((t−ti)B +CB)2

]
,(15)

respectively which have continuous variations for
B > 3.

16 Page 4 of 17 J Intell Robot Syst (2022) 105: 16

3. Position hold at the final position: From Eqs. 12–15, it
can be deduced that

vp = ap = jp ≈ 0, for t > tf , (16)

which corresponds to constant force and zero angular
rates and hence, position hold at the final point for
t > tf .

4. Monotonicity From Eq. 13 it can be seen that

ṗ

{
> 0, for pi < pf (monotonically increasing)

< 0, for pi > pf (monotonically decreasing)
(17)

and hence, the 4PL trajectory components vary
monotonically with respect to t .

5. Confinement region for the 4PL trajectories: As
discussed above, the 4PL trajectory components vary
monotonically with time and hence, the 4PL trajectories
always confined in a rectangular box region defined as

R4PL := {(x, y, z)|x ∈ [xi, xf], y ∈ [yi, yf], z ∈ [zi , zf]} (18)

4 Proposed Feasible Trajectory Generation
Method

This section provides vehicle input feasibility and window
traversal conditions for the 4PL trajectory, and proposes a
feasible trajectory generation approach, subsequently.

4.1 Vehicle Input Constraints

This subsection derives input feasibility conditions satisfy-
ing Eqs. 5, 6, and 7, respectively for the 4PL trajectories.

4.1.1 Bounded Velocity

Equating Eq. 14 to zero gives

t�v = ti + C

(
B − 1

B + 1

) 1
B

which upon substitution in Eq. 13 gives the component-wise
velocity extremum v�

p as

max
t∈[ti ,tf] vp(t) = v�

p = (pf − pi)(B + 1)
1
B

+1

4BC(B − 1)
1
B

−1
(19)

Imposing the bounded velocity constraint of Eq. 5 on Eq. 19
leads to

|v�
p| ≤ vbnd =⇒ C ≥

∣∣∣∣
(pf − pi)(B + 1)

1
B

+1

4Bvbnd(B − 1)
1
B

−1

∣∣∣∣ (20)

4.1.2 Acceleration Constraint

Now, the two time instants corresponding to the componen-
twise trajectory acceleration extrema can be computed by
equating Eq. 15 to zero as

t�a1,2 = ti + C

(
4(B − 1)(B + 1) ± 2B

√
3(B − 1)(B + 1)

2(B + 1)(B + 2)

) 1
B

which from Eq. 6 gives the bounded acceleration conditions

max
t∈[ti ,tf] |a(t)| = max{|ap(t�a1,2)|} ≤ abnd

=⇒ C2 ≥ max
i=1,2

⎧⎨
⎩

∣∣∣∣
(pf − pi)

abnd

Bk
1− 2

B

i

(1 + ki)2

[
(B − 1) − ki (B + 1)

1 + ki

] ∣∣∣∣

⎫⎬
⎭(21)

where,

k1 = 4(B − 1)(B + 1) + 2B
√
3(B − 1)(B + 1)

2(B + 1)(B + 2)
(22)

k2 = 4(B − 1)(B + 1) − 2B
√
3(B − 1)(B + 1)

2(B + 1)(B + 2)
(23)

4.1.3 Bounded Jerk Constraints

For jerk extrema, differentiating Eq. 15 with respect to t and
equating to zero result in

(k1 − k2 + k3 − k4)T
3 − (k2 − 2k3 − 3k4)T

2

+(k3 − 3k4)T − k4 = 0 (24)

where,

T =
(

t − ti

C

)B

k1 = 24B3

k2 = 36B2(B − 1)

k3 = 2B(B − 1)(7B − 11)

k4 = (B − 1)(B − 2)(B − 3)

Three roots {kji}3i=1 of Eq. 24 can be obtained by using
Cardano’s method [29] on the depressed cubic form of
Eq. 24 which is not presented here for the sake of brevity.
Substituting kj1,2,3 in Eq. 15 gives three jerk extrema

j�
i = (pf −pi)

C3

Bk
1− 3

B

ji

(1+kji)2

[
6B2k2ji

(1+kji)2
− 6B(B−1)kji

(1+kji)
+ (B−1)(B−2)

]
(25)

Using Eqs. 7 and 25, conditions for the bounded jerk can be
obtained as

C3 ≥ max
i

{∣∣∣∣
(pf − pi)k̂j i

jbnd

∣∣∣∣
}

(26)

Page 5 of 17 16J Intell Robot Syst (2022) 105: 16

where

k̂j i = Bk
1− 3

B

ji

(1 + kji)2

[
6B2k2ji

(1 + kji)2
− 6B(B − 1)kji

(1 + kji)
+ (B−1)(B−2)

]
(27)

4.2 Corridor-BasedWindow Traversal

Since the window is not assumed to be aligned with
the inertial axes, the window traversibility conditions are
coupled across the axes. To avoid the need for an exhaustive
search through all combinations of axis-by-axis trajectories,
this section proposes an approximation of the problem that
admits an axis-by-axis search.

The key idea here is to define three axis-aligned
rectangular cuboid corridors passing through the window
and ensure trajectory traversal through at least one of them,
that is,

(∃Tx ⊆ [ti , tf] : �(t) ∈ Cx ,∀t ∈ Tx) ∨ (∃Ty ⊆ [ti , tf] :�(t) ∈ Cy , ∀t ∈ Ty)

∨ (∃Tz ⊆[ti , tf] : �(t)∈Cz, ∀t ∈Tz) (28)

where, Cx , Cy , and Cz represent the x, y, and z corridors,
respectively, which are shown by the dashed boxes in
Fig. 3a. The monotonic property (given by Eq. 17) of
the 4PL trajectory is used to obtain the corridor traversal
conditions which also guarantees that a corridor traversing
4PL trajectory cannot loop back outside the corridor and
hence traverses window without collision. Without loss
of generality, traversal conditions for Cx and hence, the
window are derived in Proposition 1.

Proposition 1 Consider a rectangular window W and an
x−axis aligned corridor Cx passing through the window as
shown in Fig. 3 by the solid red line and dotted black cube,
respectively. Without loss of generality assume that window
has four vertices (x1, y2, z4), (x2, y1, z2), (x3, y4, z3), and
(x4, y3, z1), such that x1 ≤ x2 ≤ x3 ≤ x4, y1 ≤ y2 ≤ y3 ≤
y4, and z1 ≤ z2 ≤ z3 ≤ z4. The corridor Cx is defined as

Cx := {(x, y, z)|x ∈ [x1 − r, x4 + r], y ∈ [y2 + r, y3 − r],
z ∈ [z2 + r, z3 − r]} (29)

where r represents the radius of the quadrotor boundary
sphere. A 4PL quadrotor trajectory governed by Eq. 8 is
guaranteed to pass through the corridor and through the
window for

Cy ∈ (Cwnd
xy , C̄wnd

xy) (30)

Cz ∈ (Cwnd
xz , C̄wnd

xz) (31)

where

Cwnd
xy = Cx

(
x4 + r − xi

xf − x4 − r

) 1
Bx

(
yf − y3 + r

y3 − r − yi

) 1
By

(32)

C̄wnd
xy = Cx

(
x1 − r − xi

xf − x1 + r

) 1
Bx

(
y2 + r − yi

yf − y2 − r

) 1
By

(33)

Cwnd
xz = Cx

(
x4 + r − xi

xf − x4 − r

) 1
Bx

(
zf − z3 + r

z3 − r − zi

) 1
Bz

(34)

C̄wnd
xz = Cx

(
x1 − r − xi

xf − x1 + r

) 1
Bx

(
z2 + r − zi

zf − z2 − r

) 1
Bz

(35)

Bx > 3, By > 3, Bz > 3, Cx > 0, Cy > 0, Cz > 0,
t ∈ [ti , tf], xi < x1 − r , x4 + r < xf , yi < y1 − r ,
< y4 + r < yf , zi < z1 − r , and z4 + r < zf .

Proof The corridor Cx as defined by Eq. 29, has rectangular
projections in the decoupled planes (X − Y and X − Z) as
shown in Fig. 3 by the dotted boxes. Corridor traversal is
achieved by ensuring the traversal of rectangle projections
by the respective 2-D 4PL trajectory components. These
2-D 4PL trajectory components are obtained by using
Eq. 8 of the 4PL trajectory that leads to an inverted
expression

t = ti + C

(
p − pi

pf − p

) 1
B

(36)

Equating the inverted expressions of the two 4PL trajectory
components, one trajectory component can be reparame-
terized with respect to the second one. Accordingly, from
Eqs. 9, 10, 11, and 36, the X − Y and X − Z 4PL trajectory
components can be written as

y(x) = yf + yi − yf

1 +
(

Cx

Cy

(
x−xi

xf −x

) 1
Bx

)By
(37)

z(x) = zf + zi − zf

1 +
(

Cx

Cz

(
x−xi

xf −x

) 1
Bx

)Bz
(38)

The traversal of the y(x) and z(x) in the X − Y and
X−Z corridor projections, respectively, guarantees window
traversal as shown in Fig. 3 by the solid green lines. Due to
the monotonic property of the 4PL curve, the 2-D trajectory
components have monotonic variations in the decoupled

16 Page 6 of 17 J Intell Robot Syst (2022) 105: 16

Fig. 3 Proposed window traversal approach defines three axis-aligned
window-traversing corridors (dotted cuboids) and ensures that the fea-
sible trajectory (solid green line) passes through at least one corridor

(a). The X−axis corridor in Y − Z plane (b), corridor traversal con-
ditions (blue arrows) in X − Y (c) and X − Z planes (d) for the
X−corridor with i < f

planes (please see Table 1) and hence, only two conditions
(the blue arrows in Fig. 3c and d) need to be imposed for
each plane projection to ensure the traversal. Using Eq. 37,

Table 1 Monotonicity of the y(x) and z(x) 4PL trajectory components
with respect to x

yi < yf yi > yf zi < zf zi > zf

xi < xf Increasing Decreasing Increasing Decreasing

xi > xf Decreasing Increasing Decreasing Increasing

the traversal conditions for the corridor projection in X − Y

plane are given as

y(x4 + r) < y3 − r =⇒ Cy < Cwnd
xy = Cx

(
x4 + r − xi

xf − x4 − r

) 1
Bx

×
(

yf − y3 + r

y3 − r − yi

) 1
By

y(x1 − r) > y2 + r =⇒ Cy > C̄wnd
xy = Cx

(
x1 − r − xi

xf − x1 + r

) 1
Bx

×
(

y2 + r − yi

yf − y2 − r

) 1
By

Page 7 of 17 16J Intell Robot Syst (2022) 105: 16

Table 2 Window traversal conditions for the x corridor approach

xi < xf xi > xf

yi < yf {y(x1 − r) > y2 + r} {y(x1 − r) < y3 − r}
{y(x4 + r) < y3 − r} {y(x4 + r) > y2 + r}

yi > yf {y(x1 − r) < y3 − r} {y(x1 − r) > y2 + r}
{y(x4 + r) > y2 + r} {y(x4 + r) < y3 − r}

zi < zf {z(x1 − r) > z2 + r} {z(x1 − r) < z3 − r}
{z(x4 + r) < z3 − r} {z(x4 + r) > z2 + r}

zi > zf {z(x1 − r) < z3 − r} {z(x1 − r) > z2 + r}
{z(x4 + r) > z2 + r} {z(x4 + r) < z3 − r}

Similarly, using Eq. 38, the traversal conditions for the
X − Z corridor projection are obtained as

z(x4 + r) < z3 − r =⇒ Cz < Cwnd
xz = Cx

(
x4 + r − xi

xf − x4 − r

) 1
Bx

×
(

zf − z3 + r

z3 − r − zi

) 1
Bz

z(x1 − r) > z2 + r =⇒ Cz > C̄wnd
xz = Cx

(
x1 − r − xi

xf − x1 + r

) 1
Bx

×
(

z2 + r − zi

zf − z2 − r

) 1
Bz

Fig. 4 Block diagrams of the proposed algorithms: Algorithm 1 satisfying end point reachability and input feasibility (top), Algorithm 2 for a
corridor traversal (middle), and the proposed 3-stage approach (bottom)

16 Page 8 of 17 J Intell Robot Syst (2022) 105: 16

A set of design parameter satisfying above equations corres-
ponds to the corridor traversing 4PL trajectories. As shown
in Table 1, both 2-D trajectory components have monotonic
variations and hence a corridor traversing trajectory cannot
loop back outside the corridor which guarantees window
traversal.

Remarks on window traversal using the corridor app-
roach are as follows:

1. Based on i and f values, and respective monotonic va-
riations as discussed in Table 1, the traversal conditions
for Cx are listed in Table 2.

2. Similar conditions can be imposed for Cy and Cz and
check independently for the window traversal, where Cy

and Cz are defined as

Cy := {(x, y, z)|x ∈ [x2 + r, x3 − r],
×y ∈ [y1 − r, y4 + r], z ∈ [z2 + r, z3 − r]}

Cz := {(x, y, z)|x ∈ [x2 + r, x3 − r],
×y ∈ [y2 + r, y3 − r], z ∈ [z1 − r, z4 + r]}

3. Any window outside the 4PL confined region (W ∩
R4PL = ∅), where R4PL is given by Eq. 18, is not
traversable by the 4PL trajectories. Also, a window
only partially overlapping with the 4PL confined
region(W �⊂ R4PL) needs to be clipped to apply the
window traversal conditions.

4.3 Computation of Solution Design Parameter Set

A hierarchical method for computing feasible solution set is
described in Algorithm 3 and its block diagram is shown in
Fig. 4. Here, the first stage considers final point reachability
and input feasibility (Algorithm 1) followed by the window
traversal (Algorithm 2). Details of the algorithms are given
as follows:

4.3.1 Input Feasibility and Final Point Reachability

Algorithm 1 provides a design parameter set satisfying input
feasibility and end-point reachability constraints for a 4PL
trajectory component. Step 2 and 3 in Algorithm 1, sample
a B ∈ (3, ∞) and compute a lower bound on C such that a
4PL trajectory component generated with the sample B and
a C greater than the lower bound satisfy all input feasibility
conditions altogether. This lower bound is given as

C = max{fv,
√

fa,
3
√

fj } (39)

where, fv, fa , and fj are the right hand side terms of
Eqs. 20, 21, and 26, respectively. From Eq. 12, an upper
bound (C̄) on C is computed in step 4 for the sample
B that ensures the end point reachability of the 4PL

trajectory component for the sample B and any C ≤ C̄.
A 4PL trajectory component with the sample B and any
C ∈ [C, C̄] satisfies the input feasibility and final point
reachability constraints (Step 5). Hence, the feasible tuple
(B, C, C̄) is stored in a feasible set Sdyn (Step 6). This
procedure is shown in Fig. 4 by the light blue box which
is repeated for generating the desired number of samples.
Typically sample B is in a range of a few points increasing
from 3. However, to minimize computation, it is possible to
pick just a single value of B and still find many solutions.
This trade will be explored further in the comparative study
in Section 5.4. Algorithm 1 is used independently on the
x, y, and z axis components to obtain the feasible sets
S

dyn
x := {(Bx, Cx, C̄x)}, S

dyn
y := {(By, Cy, C̄y)}, and

S
dyn
z := {(Bz, Cz, C̄z)}, respectively.

Algorithm 1 TrajFeasibility: Feasible design parameter set
satisfying final point reachability and input feasibility.

INPUT: Initial position pi , final position pf , input
bounds (fbnd, fmin, ωbnd), intial and final times (ti , tf),
reachability tolerance ε, sample set B : B ⊂ (3, ∞)

OUTPUT: Feasible set Sdyn := {(B, C, C̄)}
1: Initialize Sdyn ← ∅
2: for B ∈ B do
3: C = max{fv,

√
fa,

3
√

fj } � fv, fa , and fj are the
right hand side terms of Eqs. 20, 21, and 26,
respectively

4: C̄ = (tf − ti)
(

ε
|xi−xf |−ε

) 1
Bx

5: if C < C̄ then
6: Sdyn ← Sdyn ∪ (B, C, C̄)

7: end if
8: end for

4.3.2 Feasible Window Traversing Set

For sake of simplicity, Algorithm 2 only considers the
window traversal through Cx corridor for xi < xf , yi < yf ,
and zi < zf which is shown in Fig. 4 by the light cyan
box. Window traversal through Cy and Cz corridors can be
checked by changing the order of the input set in Algorithm
2. Also, any initial and final position conditions can be
addressed by imposing respective corridor traversability
conditions from Tables 1 and 2.

In step 2 to 5, Algorithm 2 selects three samples
(Bx, Cx, C̄x) ∈ S

dyn
x , (By, Cy, C̄y) ∈ S

dyn
y , and

(Bz, Cz, C̄z) ∈ S
dyn
z which correspond to multiple

4PL trajectories satisfying input feasibility and end-point
reachability constraints for all Cx ∈ [Cx, C̄x], Cy ∈
[Cy, C̄y], and Cz ∈ [Cz, C̄z]. Steps 6 and 7 of Algorithm 2

Page 9 of 17 16J Intell Robot Syst (2022) 105: 16

check if the X − Y 4PL trajectory passes through the
projection of the corridor into the X-Y plane and provides
window traversing limits for Cy . Step 8 and 9 do the same
for the X − Z plane. In summary, all 4PL trajectories with
(Bx, Cx, By, Cy, Bz, Cz) where Cy ∈ (Cwnd

xy , C̄wnd
xy) and

Cz ∈ (Cwnd
xz , C̄wnd

xz) pass the window through the corridor
Cx . However, these window traversing sets do not guarantee
the input feasibility and end-point reachability in y and z

axis.
In steps 10 to 12, the window traversal limits are

combined, by intersection, with the respective dynamic
feasibility limits [Cy, C̄y] and [Cz, C̄z]. If any feasible
trajectories remain (Step 13), meaning a set of parameters
satisfying input feasibility, end-point reachability, and
window constraints. The corresponding parameter set is
added to the set of feasible solutions Sf es in Step 14. At the
very end Steps 21 to 25 convert the set of intervals to set of
6−tuple parameter options by grid-based sampling.

4.3.3 Proposed Hierarchical Approach

In the first stage, Algorithm 3 initiates Algorithm 1 to
compute the feasible design parameter sets S

dyn
x , Sdyn

y , and

S
dyn
z in the decoupled axis (steps 1 to 3) that correspond

to 4PL trajectory components satisfying component-wise
input feasibility and final point reachability constraints. In
steps 4 to 6, these sets are given to Algorithm 2 for corridors
Cx , Cy , and Cz with rearranged order that provides the
feasible window traversing sets Sx , Sy , and Sz, respectively.
The last stage gives the solution set S by taking the
union of all window-traversing sets (step 7). All design
parameter pairs in S satisfy the end-point reachability,
input feasibility, and window traversal constraints and
hence multiple dynamically feasible window traversing
trajectories can be generated simultaneously using Eqs. 9,
10, and 11 by choosing samples from S.

5 Numerical Examples

This section tests the performance of the proposed approach
in three cases and provides a comparative study. The initial
and final positions are at i(0, 0, 0) and f (5, 3, 3) which
are shown in Fig. 5 by the blue and red “+” markers,
respectively, and t ∈ [0, 10]. The dynamic feasibility
constraints of |vbnd | = 5 m/s, |abnd | = 10 m/s2, and
|jbnd | = 20 m/s3 are considered. Window and computation
data for each case is provided in Table 3. For all simulations,
B ∈ [4, 10] with step size of one, C with step size of
0.1, r = 0.045 m (Crazyflie 2.0 quadrotor) and ε = 0.01
are considered. All computations are performed on a 3.20
GHz Intel� Core™ i7-8770 CPU with 16 GB RAM and the
proposed approach is implemented in MATLAB R2019a.

Algorithm 2 WindowCheck: Feasible deign parameter set
satisfying Cx corridor traversal for xi < xf , yi < yf , and
zi < zf .

INPUT: ti , i, f , W , Sdyn
x , Sdyn

y , Sdyn
z

OUTPUT: Design parameter set Sx := {(Bx, Cx, By, Cy, Bz, Cz)}
1: Initialize S

f es
x ← ∅

2: for (Bx, Cx, C̄x) ∈ S
dyn
x do

3: for Cx ∈ (Cx, C̄x) do

4: for (By, Cy, C̄y) ∈ S
dyn
y do

5: for (Bz, Cz, C̄z) ∈ S
dyn
z do

6: Cwnd
xy = Cx

(
x4+r−xi

xf −x4−r

) 1
Bx

(
yf −y3+r

y3−r−yi

) 1
By

7: C̄wnd
xy = Cx

(
x1−r−xi

xf −x1+r

) 1
Bx

(
y2+r−yi

yf −y2−r

) 1
By

8: Cwnd
xz = Cx

(
x4+r−xi

xf −x4−r

) 1
Bx

(
zf −z3+r

z3−r−zi

) 1
Bz

9: C̄wnd
xz = Cx

(
x1−r−xi

xf −x1+r

) 1
Bx

(
z2+r−zi

zf −z2−r

) 1
Bz

10: if (Cwnd
xy < C̄wnd

xy) and (Cwnd
xz < C̄wnd

xz) then

11: C
f es
xy = max(Cwnd

xy , Cy), C̄f es
xy = min(C̄wnd

xy , C̄y)

12: C
f es
xz = max(Cwnd

xz , Cz), C̄
f es
xz = min(C̄wnd

xz , C̄z)

13: if C
f es
xy < C̄

f es
xy and C

f es
xz < C̄

f es
xz then

14: S
f es
x ← S

f es
x ∪ (Bx, Cx, By, C

f es
xy ,

C̄
f es
xy , Bz, C

f es
xz , C̄

f es
xz)

15: end if
16: end if
17: end for
18: end for
19: end for
20: end for
21: Initialize Sx ← ∅
22: for all (Bx, Cx, By, C

f es
xy , C̄

f es
xy , Bz, C

f es
xz , C̄

f es
xz) ∈ Swnd

x do

23: Sample Cy ∈ (C
f es
xy , C̄

f es
xy) and Cz ∈ (C

f es
xz , C̄

f es
xz)

24: Sx ← Sx ∪ (Bx, Cx, By, Cy, Bz, Cz)

25: end for

Algorithm 3 SolutionSet: Computation of solution set.

INPUT: Initial position i, final position f , input bounds
(fbnd , fmin, ωbnd), window (W), intial and final times (ti , tf),
ε, n, d

OUTPUT: Solution set S := {(Bx, Cx, By, Cy, Bz, Cz)}
1: S

dyn
x ← T rajFeasibility(xi , xf , fbnd , fmin, ωbnd , ti , tf , ε)

2: S
dyn
y ← T rajFeasibility(yi , yf , fbnd , fmin, ωbnd , ti , tf , ε)

3: S
dyn
z ← T rajFeasibility(zi , zf , fbnd , fmin, ωbnd , ti , tf , ε)

4: Sx ← WindowCheck(ti , i,f ,W, S
dyn
x , S

dyn
y , S

dyn
z)

5: Sy ← WindowCheck(ti , i,f ,W, S
dyn
y , S

dyn
x , S

dyn
z)

6: Sz ← WindowCheck(ti , i,f ,W, S
dyn
z , S

dyn
x , S

dyn
y)

7: S ← {Sx ∪ Sy ∪ Sz} � Reorder Sy and Sz before the operation
8: if S = ∅ then
9: Report failure
10: end if

5.1 Case 1: Trivial Window Passing Scenario

A simple scenario with a large window is considered
such that the all trajectory satisfying the final position

16 Page 10 of 17 J Intell Robot Syst (2022) 105: 16

Fig. 5 Case 1: The proposed approach in a trivial window passing case where all solutions of Algorithm 3 Stage 1 (Fig. 4) satisfy Cx traversal
conditions. Ten sample solutions are randomly selected from 11540 solutions and plotted

Page 11 of 17 16J Intell Robot Syst (2022) 105: 16

Table 3 Computation data for simulation results

Scenario tf Window vertices Solutions Planning time

Case 1 10 s. (2.5, 0.05, 0.05),(2.5, 2.95, 0.05), 11540 104 ms.

Trivial window traversal (2.5, 2.95, 2.95), (2.5, 0.05, 2.95)

No dynamic feasibility 5 s. 0 15 ms.

Case 2 10 s. (2.51 1.43 1.43), (2.51 1.56 1.43), 6 81 ms.

Limited solutions (2.48 1.56 1.56), (2.48, 1.43, 1.56)

Case 3a 10 s. (4.20,2.25,2.41),(4.28,2.68,2.58) 518 91 ms

(3.79,2.77,2.58), (3.71,2.31,2.41)

Case 3b 10 s. (1.25, 1.87,0.78),(1.25,2.12,1.21) 1060 93 ms

(0.75,2.12,1.21), (0.75,1.87,0.78)

Case 3c 10 s. (4.60.0.90,1),(4.60,1.10,1) 2858 104 ms

(4.40,1.10,1), (4.40,0.90,1)

reachability and input constraints satisfy the window
traversal conditions. The window data is provided in Table 3
and plotted by the solid red rectangle in Fig. 5a. As the
window is parallel to the Y −Z plane, only Cx corridor exists
for the given case which is plotted by the dashed black box
in Fig. 5a. The proposed approach takes average 25 ms to
provide the dynamically feasible design parameter set and
provides 11540 solutions in total 104 ms. Ten such window
traversing solutions are plotted by the solid green lines in
Fig. 5a. Figure 5b shows that all trajectory components
reach their final points within the ε = 0.01 error band at
the desired time tf = 10 and hence satisfy the final point
reachability constraint. The continuous bounded velocity,
acceleration, and jerk profiles of the trajectory components
are plotted in Fig. 5c, d, and e, respectively that satisfy the
vehicle input constraints. The same setup is tested for tf = 5
s where the proposed approach reports no solutions in 15 ms
due to the vehicle input infeasibility.

5.2 Case 2: Limited Solution Scenario

For exhaustive window traversal search, a window slightly
bigger than the quadrotor is considered. Due to the narrow
window size, the number of solutions reduced to six
solutions and the proposed approach took 81 ms to find
them. One such window traversing trajectory is plotted in
Fig. 6a by the solid green line. The trajectory points are
expanded by a sphere of r = 0.045 m radius and plotted by
the green spheres in Fig. 6a which demonstrates that a finite
dimension quadrotor can traverse the window collision-free.
As shown in Fig. 6b, all trajectory components reach the end
points in the given final time. Also, the generated trajectory
has smooth and bounded velocity, acceleration and jerk
variations as plotted in Figs. 6c, d, e, respectively.

5.3 Case 3: General Window Scenarios

Three scenarios (Case 3a, 3b, and 3C) with three arbitrary
oriented windows are considered to test the viability of the
proposed approach in a general window scenario. All three
windows are shown by the solid red rectangles in Fig. 7a
and their data is provided in Table 3. The proposed approach
results 518, 1060, and 2858 solutions in 91, 93, and 104
ms, for Case 3a, 3b, and 3C, respectively. Corresponding
dynamically feasible window-traversing trajectories are
plotted by the green, cyan, and gray lines, respectively in
the Fig. 7. Figure 7a, b, and c show that the generated
trajectories satisfy the end-point reachability constraint.
Also, the velocity (Fig. 7e, f, and g), acceleration (Fig. 7h,
i, and j) and jerk (Fig. 7k, l, and m) profiles of the generated
trajectories have continuous bounded variation that satisfy
the vehicle input feasibility. As shown in Fig. 8, all subcase
trajectories maintenance a minimum distance grater than
r = 0.045 m from window edges that validate window
traversal without collision.

5.4 Comparative Study

The proposed approach is compared with a polynomial
trajectory based approach [20] in randomly generated 1000
scenarios. The initial and final positions for each scenario
are sampled such that xi ∈ [0, 1], yi ∈ [0, 1], zi ∈ [0, 1],
xf ∈ [4, 5], yf ∈ [2, 3], and zf ∈ [2, 3]. Final position
reachability with ε = 0.2 and zero velocity and acceleration
at both ends are imposed. For windows traversal, random
X−corridors with centroids at (i + f)/2 and dimensions
between 0 to 1 m are generated. Integral of square trajectory
snap is considered as a cost and feasible solutions are
generated using both approaches.

16 Page 12 of 17 J Intell Robot Syst (2022) 105: 16

Fig. 6 Case 2: Feasible trajectory generation for a quadrotor sphere passing through a small window

Page 13 of 17 16J Intell Robot Syst (2022) 105: 16

Fig. 7 Case 3: Feasible trajectories traversing three different window scenarios (a), their trajectory components (b,c,d), and component-wise
smooth bounded velocity (e,f,g), acceleration (h,i,j), and jerk (k,l,m) profiles in Case 3a to Case 3c (left to right)

16 Page 14 of 17 J Intell Robot Syst (2022) 105: 16

For the polynomial trajectory approach, one corridor
constraint is imposed at both corridor ends (for more details,
please see [20]) for corridor traversal. Time to compute a
solution with respect to minimum cost is plotted in Fig. 9
by the red “+” markers for the polynomial approach in
all scenarios which shows that the polynomial approach
finds solutions for 997 scenarios in at least 5 ms per
scenario. For the proposed 4PL approach, the sample set
B = {4, 5, 6, 7} is considered first and using the empirical
knowledge on the relation between 4PL jerk peak and snap
value, a feasible trajectory with minimum peak jerk value
is chosen from the obtained 4PL solutions. The cost of
the chosen trajectory is computed numerically (MATLAB
trapz function) for comparison. As shown in Fig. 9 by
the green “+” markers, the proposed 4PL approach finds
cost solutions in the approximate half time of polynomial
approach with 172 fails and only a modest loss of minimum
cost.

As discussed in Section 4.3.1, to exploit the minimum
computation capability of the proposed approach, a sample
set with only one B (B = {7}) value is considered.
In this case, the computation time reduces significantly
with comparable minimum cost and 352 fails, as shown
in Fig. 9 by the blue “+” markers. The trade-off between
solution existence and computational efficiency can be
observed from Fig. 9 where the polynomial approach
provides solutions in the maximum number of scenarios and
the proposed approach generates solutions quickly with a
modest loss of path quality.

Fig. 8 Window traversal
without collision: Minimum
distances between all Case 3
trajectories and window edges
are greater than the collision
distance r = 0.045 m (quadrotor
sphere radius)

)c3(8582)b3(0601)a3(0150
0.04

r = 0.045

0.06

0.08

0.1

0.12

0.14

0.16

0 0.2 0.4 0.6
0

5

10

15

Fig. 9 Comparative study: Trade-off between solution existence and
fast computation. The proposed is tested in 1000 randomly generated
scenarios where it finds solutions in less time as compared to the
polynomial approach [20], with a modest loss of path quality and
existence

6 Conclusions

This work derived the closed-form input feasibility and
window traversability conditions for the 4PL trajectory
and proposed a hierarchical quadrotor trajectory planning
method for the window traversal problem. The input
feasibility conditions are decoupled in each axis and the

Page 15 of 17 16J Intell Robot Syst (2022) 105: 16

window traversal conditions are coupled in 2-D planes
which targets a window region rather than a specific point.
Using these simple conditions, the proposed hierarchical
approach initializes with only three design parameters and
reduces the search space after each step that decreases the
computation cost. Numerical examples demonstrate that the
proposed 4PL approach is capable of providing thousands
of solutions in a fraction of second for an arbitrary oriented
window. The detailed comparative study provides the trade-
off between the solution existence and fast computations,
and highlights computational efficiency of the proposed
approach in terms of fast computations for only modest loss
of path quality.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Delmerico, J., Mintchev, S., Giusti, A., Gromov, B., Melo, K.,
Horvat, T., Cadena, C., Hutter, M., Ijspeert, A., Floreano, D.,
Gambardella, L.M., Siegwart, R., Scaramuzza, D.: The current
state and future outlook of rescue robotics. J. Field Robot. 36,
1171–1191 (2019). https://doi.org/10.1002/rob.21887

2. Moon, H., Martinez-Carranza, J., Cieslewski, T., Faessler, M.,
Falanga, D., Simovic, A., Scaramuzza, D., Li, S., Ozo, M., Wagter,
C.D., Croon, G.D., Hwang, S., Jung, S., Shim, H., Kim, H., Park,
M., Au, T.C., Kim, S.J.: Challenges and implemented technologies
used in autonomous drone racing. Intell. Serv. Robot. 12, 137–148
(2019). https://doi.org/10.1007/s11370-018-00271-6

3. Birk, A., Wiggerich, B., Bülow, H., Pfingsthorn, M., Schwertfeger,
S.: Safety, security, and rescue missions with an unmanned aerial
vehicle. J. Intell. Robot. Syst. 64, 57–76 (2011). https://doi.org/
10.1007/s10846-011-9546-8

4. Sampedro, C., Rodriguez-Ramos, A., Bavle, H., Carrio, A.,
Puente, P.D.L., Campoy, P.: A fully-autonomous aerial robot
for search and rescue applications in indoor environments using
learning-based techniques. J. Intell. Robot. Syst. 95, 601–627
(2019). https://doi.org/10.1007/s10846-018-0898-1

5. Falanga, D., Mueggler, E., Faessler, M., Scaramuzza, D.: Aggres-
sive quadrotor flight through narrow gaps with onboard sensing
and computing using active vision. In: IEEE International Confer-
ence on Robotics and Automation, pp. 5774–5781. https://doi.org/
10.1109/ICRA.2017.7989679 (2017)

6. Loianno, G., Brunner, C., McGrath, G., Kumar, V.: Estimation,
control, and planning for aggressive flight with a small quadrotor
with a single camera and IMU. IEEE Robot. Autom. Lett. 2,
404–411 (2017). https://doi.org/10.1109/LRA.2016.2633290

7. Jung, S., Hwang, S., Shin, H., Shim, D.H.: Perception, guidance,
and navigation for indoor autonomous drone racing using deep
learning. IEEE Robot. Autom. Lett. 3, 2539–2544 (2018)

8. Kaufmann, E., Gehrig, M., Foehn, P., Ranftl, R., Dosovitskiy,
A., Koltun, V., Scaramuzza, D.: Beauty and the beast: Optimal
methods meet learning for drone racing. In: International Confe-
rence on Robotics and Automation, pp. 690–696 (2019)

9. Lin, J., Wang, L., Gao, F., Shen, S., Zhang, F.: Flying through
a narrow gap using neural network: An end-to-end planning and
control approach. In: IEEE/RSJ International Conference on
Intell, Robots and Systems, pp. 3526–3533 (2019)

10. Guo, M., Gu, D., Zha, W., Zhu, X., Su, Y.: Controlling a quadrotor
carrying a cable-suspended load to pass through a window. J.
Intell. Robot. Syst. 98, 387–401 (2020)

11. Liu, S., Mohta, K., Atanasov, N., Kumar, V.: Search-based motion
planning for aggressive flight in SE(3). IEEE Robot. Autom. Lett.
3, 2439–2446 (2018). https://doi.org/10.1109/LRA.2018.2795654

12. Schouwenaars, T., How, J., Feron, E.: Receding horizon path plan-
ning with implicit safety guarantees. In: Proc. of the 2004 Ameri-
can Control Conference, pp. 5576–5581. https://doi.org/10.23919/
ACC.2004.1384742 (2004)

13. Hoffmann, G.M., Waslander, S.L., Tomlin, C.J.: Quadrotor
helicopter trajectory tracking control. In: AIAA Guidance, Navi-
gation and Control Conference and Exhib. AIAA, pp. 2008–7410.
https://doi.org/10.2514/6.2008-7410 (2008)

14. Cowling, I.D., Yakimenko, O.A., Whidborne, J.F., Cooke, A.K.:
A prototype of an autonomous controller for a quadrotor UAV.
In: European Control Conference, pp. 4001–4008. https://doi.org/
10.23919/ecc.2007.7068316 (2007)

15. Bouktir, Y., Haddad, M., Chettibi, T.: Trajectory planning for a
quadrotor helicopter. In: Mediterranean Conference on Control
and Automation, pp. 1258–1263. https://doi.org/10.1109/MED.
2008.4602025 (2008)

16. Hehn, M., Ritz, R., D’Andrea, R.: Performance benchmarking of
quadrotor systems using time-optimal control. Auton. Robot. 33,
69–88 (2012). https://doi.org/10.1007/s10514-012-9282-3

17. Geisert, M., Mansard, N.: Trajectory generation for quadrotor
based systems using numerical optimal control. In: IEEE Inter-
national Conference on Robotics and Automation, pp. 2958–2964.
https://doi.org/10.1109/ICRA.2016.7487460 (2016)

18. Neunert, M., Crousaz, C.D., Furrer, F., Kamel, M., Farshidian,
F., Siegwart, R., Buchli, J.: Fast nonlinear model predictive
control for unified trajectory optimization and tracking. In: IEEE
International Conference on Robotics and Automation, pp. 1398–
1404. https://doi.org/10.1109/ICRA.2016.7487274 (2016)

19. Yu, X., Zhou, X., Zhang, Y.: Collision-free trajectory generation
and tracking for uavs using Markov decision process in a cluttered
environment. J. Intell. Robotics Systems 93, 17–32 (2019).
https://doi.org/10.1007/s10846-018-0802-z

20. Mellinger, D., Kumar, V.: Minimum snap trajectory generation
and control for quadrotors. In: IEEE International Conference
on Robotics and Automation, pp. 2520–2525. https://doi.org/10.
1109/ICRA.2011.5980409 (2011)

21. Hehn, M., D’Andrea, R.: Quadrocopter trajectory generation and
control. IFAC Proc. 44, 1485–1491 (2011). https://doi.org/10.
3182/20110828-6-IT-1002.03178

22. Mueller, M.W., Hehn, M., D’Andrea, R.: A computationally-
efficient motion primitive for quadrocopter trajectory generation.
IEEE Trans. Robot. 31, 1294–1310 (2015). https://doi.org/10.
1109/TRO.2015.2479878

23. Falanga, D., Foehn, P., Lu, P., Scaramuzza, D.: PAMPC:
Perception-aware model predictive control for quadrotors. In:
IEEE/RSJ International Conference on Intell, Robots and Sys-
tems, pp. 5200–5207 (2018)

16 Page 16 of 17 J Intell Robot Syst (2022) 105: 16

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/rob.21887
https://doi.org/10.1007/s11370-018-00271-6
https://doi.org/10.1007/s10846-011-9546-8
https://doi.org/10.1007/s10846-011-9546-8
https://doi.org/10.1007/s10846-018-0898-1
https://doi.org/10.1109/ICRA.2017.7989679
https://doi.org/10.1109/ICRA.2017.7989679
https://doi.org/10.1109/LRA.2016.2633290
https://doi.org/10.1109/LRA.2018.2795654
https://doi.org/10.23919/ACC.2004.1384742
https://doi.org/10.23919/ACC.2004.1384742
https://doi.org/10.2514/6.2008-7410
https://doi.org/10.23919/ecc.2007.7068316
https://doi.org/10.23919/ecc.2007.7068316
https://doi.org/10.1109/MED.2008.4602025
https://doi.org/10.1109/MED.2008.4602025
https://doi.org/10.1007/s10514-012-9282-3
https://doi.org/10.1109/ICRA.2016.7487460
https://doi.org/10.1109/ICRA.2016.7487274
https://doi.org/10.1007/s10846-018-0802-z
https://doi.org/10.1109/ICRA.2011.5980409
https://doi.org/10.1109/ICRA.2011.5980409
https://doi.org/10.3182/20110828-6-IT-1002.03178
https://doi.org/10.3182/20110828-6-IT-1002.03178
https://doi.org/10.1109/TRO.2015.2479878
https://doi.org/10.1109/TRO.2015.2479878

24. Mellinger, D., Michael, N., Kumar, V.: Trajectory generation
and control for precise aggressive maneuvers with quadrotors.
Int. J. Robot. Res. 31, 664–674 (2012). https://doi.org/10.1177/
0278364911434236

25. Upadhyay, S., Ratnoo, A.: Continuous-curvature path planning
with obstacle avoidance using four parameter logistic curves.
IEEE Robot. Autom. Lett. 1, 609–616 (2016). https://doi.org/10.
1109/LRA.2016.2521165

26. Upadhyay, S.: Continuous-curvature path planning using four
parameter logistic curves. Ph.D. Thesis, Indian Institute of Science
(2018)

27. Upadhyay, S., Richards, A., Richardson, T.: Generation of
window-traversing flyable trajectories using logistic curve. In:
International Conference on Unmanned Aircr. Systems, pp. 59–
65. https://doi.org/10.1109/ICUAS48674.2020.9214060 (2020)

28. Quan, Q.: Introduction to Multicopter Design and Control.
Springer, Singapore (2017)

29. Cardano’s Method. Brillient.org. https://brilliant.org/wiki/cardano-
method/. Accessed: 03 October 2020 (2020)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Saurabh Upadhyay received the B.E. degree from Shri Sant Gajanan
Maharaj College of Engineering, Shegaon in 2009, the M.Tech. degree
from the Indian Institute of Technology Guwahati in 2012, and the
Ph.D. degree from the Indian Institute of Science Bengaluru in 2018.
He was a Postdoctoral Researcher at University of Porto (FEUP) in
2018-2019 and research associate at University of Bristol in 2019-
2022. He is currently working as a Lecture in Space Engineering
at Centre for Autonomous and Cyber-Physical Systems, Cranfield
University, Cranfield, UK. His research interests include motion
planning and control, robot autonomy, and mobile robots.

ThomasRichardson is a professor of Aerial Robotics at the University
of Bristol. With a PhD in nonlinear control system design, he
specializes in the application of modern control theory and novel
sensors to Uncrewed Air Systems (UAS). Tom is also a founding
partner of Perceptual Robotics which has recently been awarded
’Robotics & AI in Extreme Environments’ funding by Innovate UK.

Arthur G. Richards received the M.Eng. degree from Cambridge
University in 2000 and the SM and PhD degrees from MIT in 2002
and 2004, respectively. Since 2004, he has been with the Department
of Aerospace Engineering at the University of Bristol, Bristol, U.K.
He is now Professor of Robotics and Control and also with the
Bristol Robotics Laboratory. His research interests include trajectory
optimization, model predictive control, robotics, and their combination
to develop high-performance guidance for autonomous vehicles.

Page 17 of 17 16J Intell Robot Syst (2022) 105: 16

https://doi.org/10.1177/0278364911434236
https://doi.org/10.1177/0278364911434236
https://doi.org/10.1109/LRA.2016.2521165
https://doi.org/10.1109/LRA.2016.2521165
https://doi.org/10.1109/ICUAS48674.2020.9214060
https://brilliant.org/wiki/cardano-method/
https://brilliant.org/wiki/cardano-method/

	Generation of Dynamically Feasible Window Traversing Quadrotor Trajectories Using Logistic Curve
	Abstract
	Introduction
	Literature Review
	Contributions

	Problem Description
	Quadrotor Motion in Terms of Time Parameterized Curves
	Problem Statement

	Basics of the 4PL Trajectory
	Proposed Feasible Trajectory Generation Method
	Vehicle Input Constraints
	Bounded Velocity
	Acceleration Constraint
	Bounded Jerk Constraints

	Corridor-Based Window Traversal
	Computation of Solution Design Parameter Set
	Input Feasibility and Final Point Reachability
	Feasible Window Traversing Set
	Proposed Hierarchical Approach

	Numerical Examples
	Case 1: Trivial Window Passing Scenario
	Case 2: Limited Solution Scenario
	Case 3: General Window Scenarios
	Comparative Study

	Conclusions
	References

