Skip to main content
Log in

Path Exploration in Unknown Environments Using Fokker-Planck Equation on Graph

  • Short Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper introduces a graph-based, potential-guided method for path planning problems in unknown environments, where obstacles are unknown until the robots are in close proximity to the obstacle locations. Inspired by the Fokker-Planck equation and the intermittent diffusion process, the proposed method generates a tree connecting the initial and target configurations, and then finds a path on it using the available environmental information. The tree and path are updated iteratively when newly encountered obstacle information becomes available. The resulting method is a deterministic procedure proven to be complete, i.e., it is guaranteed to find a feasible path, when one exists, in a finite number of iterations. The method is scalable to high-dimensional problems. In addition, our method does not search the entire domain for the path, instead, the algorithm only explores a sub-region that can be described by the evolution of the Fokker-Planck equation on graph with a changing of diffusion coefficient intermittently. We demonstrate the performance of our algorithm via several numerical examples with different environments and dimensions, including high-dimensional cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Availability of data and material

Not applicable

Code Availability

All source code can be accessed on https://github.com/haoyanzhai/path_planning.git

References

  1. Ahlin, K.: The secant and traveling artificial potential field approaches to high dimensional robotic path planning. PhD Thesis, Georgia Institute of Technology (2018)

  2. Amato, N. M., Wu, Y.: A randomized roadmap method for path and manipulation planning. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, pp 113–120. IEEE (1996)

  3. Bandyopadhyay, S., Chung, S. J., Hadaegh, F. Y.: Probabilistic swarm guidance using optimal transport. In: 2014 IEEE Conference on Control Applications (CCA), pp 498–505 (2014)

  4. Barraquand, J., Kavraki, L., Latombe, J. C., Motwani, R., Li, T. Y., Raghavan, P.: A random sampling scheme for path planning. Int. J. Robot. Res. 16(6), 759–774 (1997)

    Article  Google Scholar 

  5. Boor, V., Overmars, M. H., Van Der Stappen, A. F.: The Gaussian sampling strategy for probabilistic roadmap planners. In: 1999 IEEE International Conference on Robotics and Automation, 1999. Proceedings, vol. 2, pp 1018–1023. IEEE (1999)

  6. Branicky, M. S., LaValle, S. M., Olson, K., Yang, L.: Quasi-randomized path planning. In: IEEE International Conference on Robotics and Automation, 2001. Proceedings 2001 ICRA, vol. 2, pp 1481–1487. IEEE (2001)

  7. Brenier, Y.: Décomposition polaire et réarrangement monotone des champs de vecteurs. C. R. Acad. Sci. Paris sér. I Math. 305, 805–808 (1987)

    MathSciNet  MATH  Google Scholar 

  8. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991)

    Article  MathSciNet  Google Scholar 

  9. Chen, Y.B., Luo, G.C., Mei, Y.S., Yu, J.Q., Su, X.L.: Uav path planning using artificial potential field method updated by optimal control theory. Int. J. Syst. Sci. 47(6), 1407–1420 (2016)

    Article  MathSciNet  Google Scholar 

  10. Chow, S. N., Huang, W., Li, Y., Zhou, H.: Fokker–planck equations for a free energy functional or markov process on a graph. Arch. Ration. Mech. Anal. 203(3), 969–1008 (2012)

    Article  MathSciNet  Google Scholar 

  11. Chow, S. N., Yang, T. S., Zhou, H. M.: Global optimizations by intermittent diffusion. In: Chaos, CNN, Memristors and Beyond: a Festschrift for Leon Chua with DVD-ROM, Composed by Eleonora Bilotta, pp 466–479. World Scientific (2013)

  12. Contreras-Cruz, M. A., Ayala-Ramirez, V., Hernandez-Belmonte, U. H.: Mobile robot path planning using artificial bee colony and evolutionary programming. Appl. Soft Comput. 30, 319–328 (2015)

    Article  Google Scholar 

  13. Cui, R., Li, Y., Yan, W.: Mutual information-based multi-auv path planning for scalar field sampling using multidimensional rrt. IEEE Trans. Syst. Man Cybern.: Syst. 46(7), 993–1004 (2016)

    Article  Google Scholar 

  14. Das, P., Behera, H. S., Panigrahi, B. K.: A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning. Swarm Evol. Comput. 28, 14–28 (2016)

    Article  Google Scholar 

  15. Dijkstra, E. W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  16. Dolgov, D., Thrun, S., Montemerlo, M., Diebel, J.: Path planning for autonomous vehicles in unknown semi-structured environments. Int. J. Robot. Res. 29(5), 485–501 (2010)

    Article  Google Scholar 

  17. Doran, J. E., Michie, D.: Experiments with the graph traverser program. Proc. R. Soc. Lond. Ser.: A Mathematical and Physical Sciences 294(1437), 235–259 (1966)

    Google Scholar 

  18. Ersson, T., Hu, X.: Path planning and navigation of mobile robots in unknown environments. In: IROS, pp 858–864 (2001)

  19. Hassanzadeh, I., Sadigh, S. M.: Path planning for a mobile robot using fuzzy logic controller tuned by ga. In: 6th International Symposium on Mechatronics and Its Applications, 2009. ISMA’09, pp 1–5. IEEE (2009)

  20. Hsu, D., Latombe, J. C., Motwani, R.: Path planning in expansive configuration spaces. In: 1997 IEEE International Conference on Robotics and Automation, 1997. Proceedings, vol. 3, pp 2719–2726 (1997)

  21. Janson, L., Schmerling, E., Clark, A., Pavone, M.: Fast marching tree: a fast marching sampling-based method for optimal motion planning in many dimensions. Int. J. Robot. Res. 34(7), 883–921 (2015)

    Article  Google Scholar 

  22. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the fokker–planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  Google Scholar 

  23. Kamon, I., Rivlin, E.: Sensory-based motion planning with global proofs. IEEE Trans. Robot. Autom. 13(6), 814–822 (1997)

    Article  Google Scholar 

  24. Kamon, I., Rivlin, E., Rimon, E.: A new range-sensor based globally convergent navigation algorithm for mobile robots. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, pp 429–435. IEEE (1996)

  25. Kantarovich, L.: Mathematical methods in the organization and planning of production. Publication House of the Leningrad State University. (Translated in Management Sc., vol. 66, pp. 366–422) (1939)

  26. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

    Article  Google Scholar 

  27. Kavraki, L., Latombe, J. C.: Randomized preprocessing of configuration for fast path planning. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp 2138–2145. IEEE (1994)

  28. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Autonomous Robot Vehicles, pp 396–404. Springer (1986)

  29. Koenig, S., Likhachev, M.: Fast replanning for navigation in unknown terrain. IEEE Trans. Robot. 21(3), 354–363 (2005)

    Article  Google Scholar 

  30. Krishnan, V., Martínez, S.: Distributed optimal transport for the deployment of swarms. In: 2018 IEEE Conference on Decision and Control (CDC), pp 4583–4588 (2018)

  31. LaValle, S.M.: Rapidly-exploring random trees: a new tool for path planning (1998)

  32. Lei, L., Wang, H., Wu, Q.: Improved genetic algorithms based path planning of mobile robot under dynamic unknown environment. In: 2006 International Conference on Mechatronics and Automation, pp 1728–1732. IEEE (2006)

  33. Li, W.: A study of stochastic differential equations and Fokker-Planck equations with applications. Ph.D. thesis, Georgia Institute of Technology (2016)

  34. Li, W., Lu, J., Zhou, H., Chow, S. N.: Method of evolving junctions: a new approach to optimal control with constraints. Automatica 78, 72–78 (2017)

    Article  MathSciNet  Google Scholar 

  35. Lumelsky, V., Stepanov, A.: Dynamic path planning for a mobile automaton with limited information on the environment. IEEE Trans. Autom. Control 31(11), 1058–1063 (1986)

    Article  Google Scholar 

  36. Lumelsky, V. J., Stepanov, A. A.: Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica 2(1-4), 403–430 (1987)

    Article  MathSciNet  Google Scholar 

  37. Luo, C., Yang, S. X.: A bioinspired neural network for real-time concurrent map building and complete coverage robot navigation in unknown environments. IEEE Trans. Neural Netw. 19(7), 1279–1298 (2008)

    Article  Google Scholar 

  38. McGuire, K., de Croon, G., Tuyls, K.: A comparative study of bug algorithms for robot navigation. arXiv:1808.05050 (2018)

  39. Montiel, O., Orozco-Rosas, U., Sepúlveda, R.: Path planning for mobile robots using bacterial potential field for avoiding static and dynamic obstacles. Expert Syst. Appl. 42(12), 5177–5191 (2015)

    Article  Google Scholar 

  40. Moore, E. F.: The shortest path through a maze. In: Proceedings of the International Symposium Switching Theory, pp 285–292 (1959)

  41. Ng, J., Bräunl, T.: Performance comparison of bug navigation algorithms. J. Intell. Robot. Syst. 50(1), 73–84 (2007)

    Article  Google Scholar 

  42. Noreen, I., Khan, A., Habib, Z.: Optimal path planning using rrt* based approaches: a survey and future directions. Int. J. Adv. Comput. Sci. Appl 7, 97–107 (2016)

    Google Scholar 

  43. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation (2001)

  44. Overmars, M. H.: A random approach to motion planning, vol. 92. Unknown Publisher (1992)

  45. Podsedkowski, L., Nowakowski, J., Idzikowski, M., Vizvary, I.: A new solution for path planning in partially known or unknown environment for nonholonomic mobile robots. Robot. Auton. Syst. 34 (2–3), 145–152 (2001)

    Article  Google Scholar 

  46. Sfeir, J., Saad, M., Saliah-Hassane, H.: An improved artificial potential field approach to real-time mobile robot path planning in an unknown environment. In: 2011 IEEE International Symposium On Robotic and Sensors Environments (ROSE), pp 208–213 (2011)

  47. Stentz, A.: Optimal and efficient path planning for partially-known environments. In: ICRA, vol. 94, pp 3310–3317 (1994)

  48. Stentz, A.: The focussed Dˆ* algorithm for real-time replanning. In: IJCAI, vol. 95, pp 1652–1659 (1995)

  49. Svestka, P.: Robot motion planning using probabilistic roadmaps. PhD Thesis, Universiteit Utrecht (1997)

  50. Tian, Y., Yan, L., Park, G. Y., Yang, S. H., Kim, Y. S., Lee, S. R., Lee, C. Y.: Application of Rrt-based local path planning algorithm in unknown environment. In: International Symposium on Computational Intelligence in Robotics and Automation. CIRA 2007, pp 456–460. IEEE (2007)

  51. Van Den Berg, J., Ferguson, D., Kuffner, J.: Anytime path planning and replanning in dynamic environments. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp 2366–2371. IEEE (2006)

  52. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer Science & Business Media (2008)

  53. Wagner, G., Choset, H.: Subdimensional expansion for multirobot path planning. Artif. Intell. 219, 1–24 (2015)

    Article  MathSciNet  Google Scholar 

  54. Walker, M., Messom, C. H.: A comparison of genetic programming and genetic algorithms for auto-tuning mobile robot motion control. In: The First IEEE International Workshop on Electronic Design, Test and Applications, 2002. Proceedings, pp 507–509 (2002)

  55. Wang, M.: Liu: fuzzy logic based robot path planning in unknown environment. In: Proceedings of 2005 International Conference on Machine Learning and Cybernetics, 2005, vol. 2, pp 813–818. IEEE (2005)

  56. Yang, K., Keat Gan, S., Sukkarieh, S.: A gaussian process-based rrt planner for the exploration of an unknown and cluttered environment with a uav. Adv. Robot. 27(6), 431–443 (2013)

    Article  Google Scholar 

  57. Zuse, K.: Der plankalkül. 63. Gesellschaft für Mathematik und Datenverarbeitung (1972)

Download references

Funding

The research is partially support by grants NSF DMS-1830225, DMS-1620345, and ONR N00014-18-1-2852.

Author information

Authors and Affiliations

Authors

Contributions

All authors (Haoyan Zhai, Magnus Egerstedt and Haomin Zhou) contributed to the study conception and design. Experiment design, analysis and theory proof were performed by Haoyan Zhai and Haomin Zhou. The first draft of the manuscript was written by Haoyan Zhai and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Haoyan Zhai.

Ethics declarations

Conflict of Interest

We declare that we have no conflict of interest.

Ethics approval and consent to participate

Not applicable

Consent for Publication

Not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, H., Egerstedt, M. & Zhou, H. Path Exploration in Unknown Environments Using Fokker-Planck Equation on Graph. J Intell Robot Syst 104, 71 (2022). https://doi.org/10.1007/s10846-022-01598-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01598-0

Keywords

Navigation