Skip to main content
Log in

Design and Analysis of a Novel Swimming Mechanism Inspired from Frogs

  • Short Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This article presents a design of a novel swimming mechanism based on a linkage mechanism. The generated motions of the proposed mechanism mimic the purely aquatic locomotion of frogs such as Xenopus laevis (X. laevis), including both the motions of the hind legs and the webbed foot. A six-bar linkage mechanism is employed in this study combing with a spatial linkage mechanism to simplify the overall mechanism. Attributes to the optimal design, the number of Degrees of Actuations (DoA) reduces to two in each hindlimb, which realizes miniaturization in the current study. Kinematic analysis is conducted to analyze the locomotion of the spatial mechanism. The hydrodynamic model based on the blade element theory is established to estimate the swimming performance of the designed mechanism. The peak thrust (approximately 0.2 N) is dramatically larger than the minimum drag (−0.023 N) observed in the experiment which increases the efficiency of the prototype’s swimming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. Park, H.S., Floyd, S., Sitti, M.: Roll and pitch motion analysis of a biologically inspired quadruped water runner robot. Int. J. Robot. Res. 29(10), 1281–1297 (2010). https://doi.org/10.1177/0278364909354391

    Article  Google Scholar 

  2. Ramezani, A., Chung, S., Hutchinson, S.: A biomimetic robotic platform to study flight specializations of bats. Sci. Robot. 2(3), Art-No (2017)

    Article  Google Scholar 

  3. Kim, S., Spenko, M., Trujillo, S., Heyneman, B., Santos, D., Cutkoskly, M.R.: Smooth vertical surface climbing with directional adhesion. IEEE Trans. Robot. 24(1), 65–74 (2008). https://doi.org/10.1109/TRO.2007.909786

    Article  Google Scholar 

  4. Zhong, Y., Li, Z., Du, R.: A novel robot fish with wire-driven active body and compliant tail. IEEE/ASME Trans. Mechatronics. 22(4), 1633–1643 (2017). https://doi.org/10.1109/TMECH.2017.2712820

    Article  Google Scholar 

  5. Colorado, J., Barrientos, A., Rossi, C., Breuer, K.: Biomechanics of smart wings in a bat robot morphing wings using SMA actuators. Bioinspir. Biomim. 7(3), 036006 (2012). https://doi.org/10.1088/1748-3182/8/1/019501

    Article  Google Scholar 

  6. Jansson, N., Bale, R., Onishi, K., Tsubokura, M.: Optimizing the structure and movement of a robotic bat with biological kinematic synergies. Int. J. Robot. Res. 37(10), 1233–1252 (2018). https://doi.org/10.1177/ToBeAssigned

    Article  Google Scholar 

  7. Floyd, S., Keegan, T., Palmisano, J., Sitti, M.: A novel water running robot inspired by basilisk lizards. IEEE Int. Conf. Intell. Robot. Syst. 1, 5430–5436 (2006). https://doi.org/10.1109/IROS.2006.282111

    Article  Google Scholar 

  8. Kim, H., Lee, D., Jeong, K., Seo, T.: Water and ground-running robotic platform by repeated motion of six spherical footpads. IEEE/ASME Trans. Mechatronics. 21(1), 175–183 (2016). https://doi.org/10.1109/TMECH.2015.2435017

    Article  Google Scholar 

  9. Park, H.S., Sitti, M.: Compliant footpad design analysis for a bio-inspired quadruped amphibious robot. 2009 IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS. 2009, 645–651 (2009). https://doi.org/10.1109/IROS.2009.5354680

    Article  Google Scholar 

  10. Crespi, A., Karakasiliotis, K., Guignard, A., Ijspeert, A.J.: Salamandra Robotica II: an amphibious robot to study salamander-like swimming and walking gaits. IEEE Trans. Robot. 29(2), 308–320 (2013). https://doi.org/10.1109/TRO.2012.2234311

    Article  Google Scholar 

  11. Karakasiliotis, K., Thandiackal, R., Melo, K., Horvat, T., Mahabadi, N.K., Tsitkov, S., Cabelguen, J.M., Ijspeert, A.J.: From cineradiography to biorobots: An approach for designing robots to emulate and study animal locomotion. J. R. Soc. Interface. 13, 119 (2016). https://doi.org/10.1098/rsif.2015.1089

    Article  Google Scholar 

  12. Aerts, P., Nauwelaerts, S.: Environmentally induced mechanical feedback in locomotion: frog performance as a model. J. Theor. Biol. 261(3), 372–378 (2009). https://doi.org/10.1016/j.jtbi.2009.07.042

    Article  MathSciNet  MATH  Google Scholar 

  13. Pandey, J., Reddy, N.S., Ray, R., Shome, S.N.: Biological swimming mechanism analysis and design of robotic frog. 2013 IEEE Int. Conf. Mechatronics Autom. IEEE ICMA. 2013, 1726–1731 (2013). https://doi.org/10.1109/ICMA.2013.6618176

    Article  Google Scholar 

  14. Johansson, L.C., Lauder, G.V.: Hydrodynamics of surface swimming in leopard frogs (Rana pipiens). J. Exp. Biol. 207, 3945–3958 (2004). https://doi.org/10.1242/jeb.01258

    Article  Google Scholar 

  15. Fan, J.Z., Zhang, W., Kong, P.C., Cai, H.G., Liu, G.F.: Design and dynamic model of a frog-inspired swimming robot powered by pneumatic muscles. Chinese J. Mech. Eng. English Ed. 30(5), 1123–1132 (2017). https://doi.org/10.1007/s10033-017-0182-5

    Article  Google Scholar 

  16. Fan, J., Wang, S., Yu, Q., Zhu, Y.: Swimming performance of the frog-inspired soft robot. Soft Robot. 7(5), 615–626 (2020). https://doi.org/10.1089/soro.2019.0094

    Article  Google Scholar 

  17. Richards, C.T.: The kinematic determinants of anuran swimming performance: an inverse and forward dynamics approach. J. Exp. Biol. 211(Pt 19), 3181–3194 (2008). https://doi.org/10.1242/jeb.019844

    Article  Google Scholar 

  18. Y. Tang, L. Qin, X. Li, C. Chew, and J. Zhu: A frog-inspired swimming robot based on dielectric elastomer actuators. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 1–6

  19. O’Brien, B., Calius, E., Xie, S., Anderson, I.: An experimentally validated model of a dielectric elastomer bending actuator. Proc. SPIE 6927. 6927, 69270T–69270T–11 (2008). https://doi.org/10.1117/12.776098

    Article  Google Scholar 

  20. O’Brien, B., McKay, T., Calius, E., Xie, S., Anderson, I.: Finite element modelling of dielectric elastomer minimum energy structures. Appl. Phys. A Mater. Sci. Process. 94(3), 507–514 (2009). https://doi.org/10.1007/s00339-008-4946-8

    Article  Google Scholar 

  21. Zhao, J., et al.: Equivalent dynamic model of DEMES rotary joint. Smart Mater. Struct. 25(7), 75025 (2016)

    Article  Google Scholar 

  22. Kargo, W.J., Nelson, F., Rome, L.C.: Jumping in frogs: assessing the design of the skeletal system by anatomically realistic modeling and forward dynamic simulation. J Exp Biol. 205(12), 1683–1702 (2002) [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/12042328

    Article  Google Scholar 

  23. A. J. Collings, L. B. Porro, C. Hill, and C. T. Richards: The impact of pelvic lateral rotation on hindlimb kinematics and stride length in the red-legged running frog, Kassina maculata. R. Soc. Open Sci., vol. 6, no. 5, 2019. https://doi.org/10.1098/rsos.190060

  24. Kargo, W.J., Rome, L.C.: Functional morphology of proximal hindlimb muscles in the frog Rana pipiens. J. Exp. Biol. 205(2002), 1987–2004 (2002)

    Article  Google Scholar 

  25. Haldane, D.W., Plecnik, M.M., Yim, J.K., Fearing, R.S.: Robotic vertical jumping agility via series-elastic power modulation. Sci. Robot. 1(1), eaag2048 (2016). https://doi.org/10.1126/scirobotics.aag2048

    Article  Google Scholar 

  26. Richards, C.T.: Kinematics and hydrodynamics analysis of swimming anurans reveals striking inter-specific differences in the mechanism for producing thrust. J. Exp. Biol. 213(4), 621–634 (2010). https://doi.org/10.1242/jeb.032631

    Article  Google Scholar 

  27. Richards, C.T., Clemente, C.J.: Built for rowing: frog muscle is tuned to limb morphology to power swimming. J. R. Soc. Interface. 10, 20130236 (2013). https://doi.org/10.1098/rsif.2013.0236

    Article  Google Scholar 

  28. Plecnik, M.M., Michael McCarthy, J.: Numerical Synthesis of Six-Bar Linkages for Mechanical Computation. J. Mech. Robot. 6(3), 031012 (2014). https://doi.org/10.1115/1.4027443

    Article  Google Scholar 

  29. Plecnik, M.M., McCarthy, J.M.: Kinematic synthesis of Stephenson III six-bar function generators. Mech. Mach. Theory. 97, 112–126 (2016). https://doi.org/10.1016/j.mechmachtheory.2015.10.004

    Article  Google Scholar 

  30. Plecnik, M.M., McCarthy, J.M.: Design of Stephenson linkages that guide a point along a specified trajectory. Mech. Mach. Theory. 96, 38–51 (2016). https://doi.org/10.1016/j.mechmachtheory.2015.08.015

    Article  Google Scholar 

  31. Plecnik, M.M., McCarthy, J.M.: Computational Design of Stephenson II six-Bar function generators for 11 accuracy points. J. Mech. Robot. 8(1), 1–9 (2016). https://doi.org/10.1115/1.4031124

    Article  Google Scholar 

  32. Huang, H., Brown, D.D.: Overexpression of Xenopus laevis growth hormone stimulates growth of tadpoles and frogs. Proc. Natl. Acad. Sci. U. S. A. 97(1), 190–194 (2000). https://doi.org/10.1073/pnas.97.1.190

    Article  Google Scholar 

  33. Kashem, S.B.A., Jawed, S., Ahmed, J., Qidwai, U.: Design and implementation of a quadruped amphibious robot using duck feet. Robotics. 8(3), 77 (2019). https://doi.org/10.3390/robotics8030077

    Article  Google Scholar 

  34. S. Guo et al.: Basic characteristics evaluation of a duck-like robot. Proc. 2019 IEEE Int. Conf. Mechatronics Autom. ICMA 2019, pp. 1502–1507, 2019. https://doi.org/10.1109/ICMA.2019.8816536

  35. Gal, J.M., Blake, R.W.: Biomechanics of frog swimming I. estimation of the force generated by Hymenochirus boettgeri. J. Exp. Biol. 138, 399–411 (1988)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (2018YFB2001303), the National Natural Science Foundation of China (Grant No. 52075267), the Natural Science Foundation of Jiangsu Province (Grant no. BK20210341), Grant the Fundamental Research Funds for the Central Universities (Grant No. 309201A8801), and the Open Fund of State Key Laboratory of Intelligent Manufacturing System Technology.

Author information

Authors and Affiliations

Authors

Contributions

Yucheng Tang conceived the presented idea of the mechanism and organized the whole paper. Xiaolong Yang built the inversed kinematic modeling. Wei Liu built the CAD model and analyzed the assembly simulation. Lizhi Qi proposed multi-objective optimization and selected the design parameters. Yan Wang calculated the kinematic simulation of the designed mechanism. Yulin Wang analyzed the functions of the mechanism and he was responsible for planning and coordinating the steps of the research.

Corresponding author

Correspondence to Yulin Wang.

Ethics declarations

This paper does not report research that requires ethical approval. Consent to participate or consent to publish statements is accordingly also not required.

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Yang, X., Liu, W. et al. Design and Analysis of a Novel Swimming Mechanism Inspired from Frogs. J Intell Robot Syst 105, 23 (2022). https://doi.org/10.1007/s10846-022-01638-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01638-9

Keywords

Navigation