Skip to main content
Log in

Review of Bionic Crawling Micro-Robots

  • Review Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This article introduces and explores the current frontier four-legged (quadruped) and six-legged (hexapod) crawling micro-robots. The performances of various crawling micro-robots are compared, and their driving modes are analyzed. Moreover, the research status of crawling micro-robots is summarized, and the future application prospects and development directions of these robots are put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Zhu, C.: In-pipe robot for inspection and sampling tasks[J]. Ind. Robot: An Int. J. 34(1), 39–45 (2007)

    Article  Google Scholar 

  2. Casper, J., Murphy, R.R.: Human-robot interactions during the robot-assisted urban search and rescue response at the world trade center[J]. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics). 33(3), 367–385 (2003)

    Article  Google Scholar 

  3. Zhang, L., Huang, Q., Li, Y., et al.: Research and development of throwable miniature reconnaissance robot[C]//2012 IEEE international conference on mechatronics and automation. IEEE, 1254–1259 (2012)

  4. Seo, T.W., Sitti, M.: Tank-like module-based climbing robot using passive compliant joints[J]. IEEE/ASME Trans. Mechatronics. 18(1), 397–408 (2012)

    Article  Google Scholar 

  5. Dolghi, O., Strabala, K.W., Wortman, T.D., Goede, M.R., Farritor, S.M., Oleynikov, D.: Miniature in vivo robot for laparoendoscopic single-site surgery[J]. Surg. Endosc. 25(10), 3453–3458 (2011)

    Article  Google Scholar 

  6. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system for collective behaviors[C]//2012 IEEE international conference on robotics and automation. IEEE, 3293–3298 (2012)

  7. Churaman, W.A., Currano, L.J., Morris, C.J., Rajkowski, J.E., Bergbreiter, S.: The first launch of an autonomous thrust-driven microrobot using nanoporous energetic silicon[J]. J. Microelectromech. Syst. 21(1), 198–205 (2011)

    Article  Google Scholar 

  8. Casanova, R., Arbat, A., Alonso, O., Sanuy, A., Canals, J., Dieguez, A.: An optically programmable SoC for an autonomous Mobile mm3-sized microrobot[J]. IEEE Trans. Circuits Sys. I: Regular Papers. 58(11), 2673–2685 (2011)

    Article  Google Scholar 

  9. Casanova, R., Dieguez, A., Sanuy, A., et al.: Enabling swarm behavior in mm 3-sized robots with specific designed integrated electronics[C]//2007 IEEE/RSJ international conference on intelligent robots and systems. IEEE, 3797–3802 (2007)

  10. Casanova, R., Dieguez, A., Arbat, A., et al.: Integration of the control electronics for a mm 3-sized autonomous microrobot into a single chip[C]//2009 IEEE international conference on robotics and automation. IEEE, 3007–3012 (2009)

  11. Caprari, G., Siegwart, R.: Mobile micro-robots ready to use: Alice[C]//2005 IEEE/RSJ international conference on intelligent robots and systems. IEEE, 3295–3300 (2005)

  12. Casanova, R., Saiz-Vela, A., Arbat, A., et al.: Integrated electronics for a 1cm3 robot for Micro and Nanomanipulation applications: MiCRoN[C]//the first IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics. BioRob IEEE. 2006, 13–18 (2006)

    Google Scholar 

  13. Churaman, W.A., Gerratt, A.P., Bergbreiter, S.: First leaps toward jumping microrobots[C]//2011 IEEE/RSJ international conference on intelligent robots and systems. IEEE, 1680–1686 (2011)

  14. Paradiso, J.A., Starner, T.: Energy scavenging for mobile and wireless electronics[J]. IEEE Pervasive Comput. 4(1), 18–27 (2005)

    Article  Google Scholar 

  15. Miyashita, S., Guitron, S., Ludersdorfer, M., et al.: An untethered miniature origami robot that self-folds, walks, swims, and degrades[C]//2015 IEEE international conference on robotics and automation (ICRA). IEEE, 1490–1496 (2015)

  16. Huang, J., Farritor, S.M., Qadi, A., et al.: Localization and follow-the-leader control of a heterogeneous group of mobile robots[J]. IEEE/ASME Trans. Mechatron. 11(2), 205–215 (2006)

    Article  Google Scholar 

  17. Edqvist, E., Snis, N., Mohr, R.C., Scholz, O., Corradi, P., Gao, J., Diéguez, A., Wyrsch, N., Johansson, S.: Evaluation of building technology for mass producible millimetre-sized robots using flexible printed circuit boards[J]. J. Micromech. Microeng. 19(7), 075011 (2009)

    Article  Google Scholar 

  18. Alonso, O., Canals, J., Freixas, L., et al.: Enabling multiple robotic functions in an endoscopic capsule for the entire gastrointestinal tract exploration[C]//2010 proceedings of ESSCIRC. IEEE, 386–389 (2010)

  19. Goldberg, B., Zufferey, R., Doshi, N., Helbling, E.F., Whittredge, G., Kovac, M., Wood, R.J.: Power and control autonomy for high-speed locomotion with an insect-scale legged robot[J]. IEEE Robot. Autom. Lett. 3(2), 987–993 (2018)

    Article  Google Scholar 

  20. Ozcan, O., Baisch, A.T., Wood, R.J.: Design and feedback control of a biologically-inspired miniature quadruped[C]//2013 IEEE/RSJ international conference on intelligent robots and systems. IEEE, 1438–1444 (2013)

  21. Chen, Y., Doshi, N., Goldberg, B., Wang, H., Wood, R.J.: Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot[J]. Nat. Commun. 9(1), 1–11 (2018)

    Google Scholar 

  22. Seitz, B.F., Goldberg, B., Doshi, N., et al.: Bio-inspired mechanisms for inclined locomotion in a legged insect-scale robot[C]//2014 IEEE international conference on robotics and biomimetics (ROBIO 2014). IEEE, 791–796 (2014)

  23. de Rivaz, S.D., Goldberg, B., Doshi, N., Jayaram, K., Zhou, J., Wood, R.J.: Inverted and vertical climbing of a quadrupedal microrobot using electroadhesion[J]. Sci. Robot. 3, 3(25) (2018)

    Article  Google Scholar 

  24. Chen, Y., Doshi, N., Wood, R.J.: Inverted and inclined climbing using capillary adhesion in a quadrupedal insect-scale robot[J]. IEEE Robotics and Automation Letters. 5(3), 4820–4827 (2020)

    Article  Google Scholar 

  25. Wood, R. J, Avadhanula, S., Sahai, R., Steltz, E., Fearing, R. S.: Microrobot design using fiber reinforced composites[J]. J. Mech. Des., 130(5), 052304 (2008). https://doi.org/10.1115/1.2885509

  26. Baisch, A.T., Sreetharan, P.S., Wood, R.J.: Biologically-inspired locomotion of a 2g hexapod robot[C]//2010 IEEE/RSJ international conference on intelligent robots and systems. IEEE, 5360–5365 (2010)

  27. Baisch, A.T., Heimlich, C., Karpelson, M., et al.: HAMR3: An autonomous 1.7 g ambulatory robot[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 5073–5079 (2011)

  28. Ozcan, O., Baisch, A.T., Wood, R.J.: Design and feedback control of a biologically-inspired miniature quadruped[C]//2013 IEEE/RSJ international conference on intelligent robots and systems. IEEE, 1438–1444 (2013)

  29. Doshi, N., Goldberg, B., Sahai, R., et al.: Model driven design for flexure-based microrobots[C]//2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, 4119–4126 (2015)

  30. Baisch, A.T., Ozcan, O., Goldberg, B., Ithier, D., Wood, R.J.: High speed locomotion for a quadrupedal microrobot[J]. Int. J. Robot. Res. 33(8), 1063–1082 (2014)

    Article  Google Scholar 

  31. Goldberg, B., Doshi, N., Jayaram, K., Wood, R.J.: Gait studies for a quadrupedal microrobot reveal contrasting running templates in two frequency regimes[J]. Bioinspiration & biomimetics. 12(4), 046005 (2017)

    Article  Google Scholar 

  32. Doshi, N., Jayaram, K., Castellanos, S., Kuindersma, S., Wood, R.J.: Effective locomotion at multiple stride frequencies using proprioceptive feedback on a legged microrobot[J]. Bioinspiration & biomimetics. 14(5), 056001 (2019)

    Article  Google Scholar 

  33. Jayaram, K., Shum, J., Castellanos, S., et al.: Scaling down an insect-size microrobot, HAMR-VI into HAMR-Jr[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 10305–10311 (2020). https://doi.org/10.1109/ICRA40945.2020.9197436

  34. Karpelson, M., Wei, G.Y., Wood, R.J.: Driving high voltage piezoelectric actuators in microrobotic applications[J]. Sensors Actuators A Phys. 176, 78–89 (2012)

    Article  Google Scholar 

  35. Karpelson, M., Wei, G.Y., Wood, R.J.: Milligram-scale high-voltage power electronics for piezoelectric microrobots[C]//2009 IEEE international conference on robotics and automation. IEEE, 2217–2224 (2009)

  36. Jayaram, K., Jafferis, N.T., Doshi, N., Goldberg, B., Wood, R.J.: Concomitant sensing and actuation for piezoelectric microrobots[J]. Smart Mater. Struct. 27(6), 065028 (2018)

    Article  Google Scholar 

  37. Karakadıoğlu, C., Askari, M., Özcan, O.: Design and operation of miniaq: an untethered foldable miniature quadruped with individually actuated legs[C]//2017 IEEE international conference on advanced intelligent mechatronics (AIM). IEEE, 247–252 (2017)

  38. Askari, M., Karakadioglu, C., Ayhan, F., et al.: MinIAQ-II: a miniature foldable quadruped with an improved leg mechanism[C]//2017 IEEE international conference on robotics and biomimetics (ROBIO). IEEE, 19–25 (2017)

  39. Askari, M., Özcan, O.: Dynamic modeling and gait analysis for miniature robots in the absence of foot placement control[C]//2019 international conference on robotics and automation (ICRA). IEEE, 9754–9760 (2019)

  40. Tanaka, D., Uchiumi, Y., Kawamura, S., Takato, M., Saito, K., Uchikoba, F.: Four-leg independent mechanism for MEMS microrobot[J]. Artif. Life Robot. 22(3), 380–384 (2017)

    Article  Google Scholar 

  41. Sugita, K., Tanaka, T., Nakata, Y., Takato, M., Saito, K., Uchikoba, F.: Hexapod type MEMS microrobot equipped with an artificial neural networks IC[J]. J. Robot. Netw. Artif. Life. 4(1), 28–31 (2017)

    Article  Google Scholar 

  42. Ohara, M., Kurosawa, M., Sasaki, T., et al.: Development of hardware neural networks IC with switchable gait pattern for insect-type microrobot[C]//2019 IEEE/SICE international symposium on system integration (SII). IEEE, 663–668 (2019)

  43. Kawamura, S., Tanaka, D., Tanaka, T., Noguchi, D., Hayakawa, Y., Kaneko, M., Saito, K., Uchikoba, F.: Neural networks IC controlled multi-legged walking MEMS robot with independent leg mechanism[J]. Artif. Life Robot. 23(3), 380–386 (2018)

    Article  Google Scholar 

  44. Sugita, K., Takato, M., Saito, K., et al.: Mechanical structure for high speed locomotion of MEMS microrobot using SMA rotary actuator[C]//IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society. IEEE: 6146–6151 (2016). https://doi.org/10.1109/IECON.2016.7793930

  45. Min, L., Houbin, L.: A review of shape memory materials research[J]. Packaging J. 6(04), 17–23 (2014)

    Google Scholar 

  46. Güç, A.F., Kalin, M.A.İ., Karakadioğlu, C., et al.: C-quad: a miniature, foldable quadruped with c-shaped compliant legs[C]//2017 IEEE international conference on robotics and biomimetics (ROBIO). IEEE, 26–31 (2017)

  47. Kalın, M.A.I., Aygül, C., Türkmen, A., et al.: Design, fabrication, and locomotion analysis of an untethered miniature soft quadruped, SQuad[J]. IEEE Robot. Autom. Lett. 5(3), 3854–3860 (2020)

    Article  Google Scholar 

  48. Hoover, A. M., Steltz, E., Fearing, R. S.: RoACH: An autonomous 2.4 g crawling hexapod robot[C]//2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 26–33 (2008). https://doi.org/10.1109/IROS.2008.4651149

  49. Hoover, A.M., Burden, S., Fu, X.Y., et al.: Bio-inspired design and dynamic maneuverability of a minimally actuated six-legged robot[C]//2010 3rd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics. IEEE, 869–876 (2010)

  50. Pullin, A.O., Kohut, N.J., Zarrouk, D., et al.: Dynamic turning of 13 cm robot comparing tail and differential drive[C]//2012 IEEE international conference on robotics and automation. IEEE, 5086–5093 (2012)

  51. Haldane, D.W., Peterson, K.C., Bermudez, F.L.G., et al.: Animal-inspired design and aerodynamic stabilization of a hexapedal millirobot[C]//2013 IEEE international conference on robotics and automation. IEEE, 3279–3286 (2013)

  52. Casarez, C.S., Fearing, R.S.: Steering of an underactuated legged robot through terrain contact with an active tail[C]//2018 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, 2739–2746 (2018)

  53. Kohut, N.J., Zarrouk, D., Peterson, K.C., et al.: Aerodynamic steering of a 10 cm high-speed running robot[C]//2013 IEEE/RSJ international conference on intelligent robots and systems. IEEE, 5593–5599 (2013)

  54. Kohut, N.J., Hoover, A.M., Ma, K.Y., et al.: MEDIC: a legged millirobot utilizing novel obstacle traversal[C]//2011 IEEE international conference on robotics and automation. IEEE, 802–808 (2011)

  55. Jung, G.P., Casarez, C.S., Lee, J., Baek, S.M., Yim, S.J., Chae, S.H., Fearing, R.S., Cho, K.J.: Jumproach: a trajectory-adjustable integrated jumping–crawling robot[J]. IEEE/ASME Trans. Mechatronics. 24(3), 947–958 (2019)

    Article  Google Scholar 

  56. Koc, C., Koc, C., Su, B., et al.: Body lift and drag for a legged millirobot in compliant beam environment[C]//2019 international conference on robotics and automation (ICRA). IEEE, 3108–3114 (2019)

  57. Seo, T.W., Casarez, C.S., Fearing, R.S.: High-rate controlled turning with a pair of miniature legged robots[C]//2017 IEEE international conference on robotics and automation (ICRA). IEEE, 5962–5968 (2017)

  58. Birkmeyer, P., Peterson, K., Fearing, R.S.: DASH: a dynamic 16g hexapedal robot[C]//2009 IEEE/RSJ international conference on intelligent robots and systems. IEEE, 2683–2689 (2009)

  59. Peterson, K., Birkmeyer, P., Dudley, R., Fearing, R.S.: A wing-assisted running robot and implications for avian flight evolution[J]. Bioinspir. Biomim. 6(4), 046008 (2011)

    Article  Google Scholar 

  60. Rios, S.A., Fleming, A.J., Yong, Y.K.: Design and characterization of a miniature monolithic piezoelectric hexapod robot[C]//2016 IEEE international conference on advanced intelligent mechatronics (AIM). IEEE, 982–986 (2016)

  61. Rios, S.A., Fleming, A.J., Yong, Y.K.: Miniature resonant ambulatory robot[J]. IEEE Robot. Autom. Lett. 2(1), 337–343 (2016)

    Article  Google Scholar 

  62. Rios, S.A., Fleming, A.J., Yong, Y.K.: Monolithic piezoelectric insect with resonance walking[J]. IEEE/ASME Trans. Mechatronics. 23(2), 524–530 (2018)

    Article  Google Scholar 

  63. Mahkam, N., Bakir, A., Özcan, O.: Miniature modular legged robot with compliant backbones[J]. IEEE Robot. Autom. Lett. 5(3), 3923–3930 (2020)

    Article  Google Scholar 

  64. Mahkam, N., Yılmaz, T.B., Özcan, O.: Smooth and inclined surface locomotion and obstacle scaling of a C-legged miniature modular robot[C]//2021 IEEE 4th international conference on soft robotics (RoboSoft). IEEE, 9–14 (2021)

  65. Carrico, J.D., Kim, K.J., Leang, K.K.: 3D-printed ionic polymer-metal composite soft crawling robot[C]//2017 IEEE international conference on robotics and automation (ICRA). IEEE, 4313–4320 (2017)

  66. Umedachi, T., Vikas, V., Trimmer, B.A.: Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots[J]. Bioinspir. Biomim. 11(2), 025001 (2016)

    Article  Google Scholar 

  67. Zhang, W., Guo, S., Asaka, K.: Developments of two novel types of underwater crawling microrobots[C]//IEEE international conference mechatronics and automation, 2005. IEEE. 4, 1884–1889 (2005)

    Google Scholar 

  68. Pak, N. N., Scapellato, S., La Spina, G., et al.: Biomimetic design of a polychaete robot using IPMC actuator[C]//The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006. IEEE: 666–671 (2006). https://doi.org/10.1109/BIOROB.2006.1639166

  69. Shi, L., Guo, S., Asaka, K.: A bio-inspired underwater microrobot with compact structure and multifunctional locomotion[C]//2011 IEEE/ASME international conference on advanced intelligent mechatronics (AIM). IEEE, 203–208 (2011)

  70. Firouzeh, A., Ozmaeian, M., Alasty, A.: An IPMC-made deformable-ring-like robot[J]. Smart Mater. Struct. 21(6), 065011 (2012)

    Article  Google Scholar 

  71. Zhou, H., Mayorga-Martinez, C.C., Pané, S., Zhang, L., Pumera, M.: Magnetically driven micro and nanorobots[J]. Chem. Rev. 121(8), 4999–5041 (2021)

    Article  Google Scholar 

  72. Tottori, S., Zhang, L., Qiu, F., Krawczyk, K.K., Franco-Obregón, A., Nelson, B.J.: Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport[J]. Adv. Mater. 24(6), 811–816 (2012)

    Article  Google Scholar 

  73. Kim, H., Ali, J., Cheang, U.K., Jeong, J., Kim, J.S., Kim, M.J.: Micro manipulation using magnetic microrobots[J]. J. Bionic Eng. 13(4), 515–524 (2016)

    Article  Google Scholar 

  74. Ma, W., Wang, H.: Magnetically driven motile superhydrophobic sponges for efficient oil removal[J]. Appl. Mater. Today. 15, 263–266 (2019)

    Article  Google Scholar 

  75. Dong, M., Wang, X., Chen, X.Z., Mushtaq, F., Deng, S., Zhu, C., Torlakcik, H., Terzopoulou, A., Qin, X.H., Xiao, X., Puigmartí-Luis, J., Choi, H., Pêgo, A.P., Shen, Q.D., Nelson, B.J., Pané, S.: 3D-printed soft Magnetoelectric microswimmers for delivery and differentiation of neuron-like cells[J]. Adv. Funct. Mater. 30(17), 1910323 (2020)

    Article  Google Scholar 

  76. Zeeshan, M.A., Pané, S., Youn, S.K., Pellicer, E., Schuerle, S., Sort, J., Fusco, S., Lindo, A.M., Park, H.G., Nelson, B.J.: Graphite coating of iron nanowires for nanorobotic applications: synthesis, characterization and magnetic wireless manipulation[J]. Adv. Funct. Mater. 23(7), 823–831 (2013)

    Article  Google Scholar 

  77. Zeng, H., Wasylczyk, P., Wiersma, D.S., Priimagi, A.: Light robots: bridging the gap between microrobotics and photomechanics in soft materials[J]. Adv. Mater. 30(24), 1703554 (2018)

    Article  Google Scholar 

  78. Rogóż, M., Zeng, H., Xuan, C., Wiersma, D.S., Wasylczyk, P.: Light-driven soft robot mimics caterpillar locomotion in natural scale[J]. Adv. Opt. Mater. 4(11), 1689–1694 (2016)

    Article  Google Scholar 

  79. Zeng, H., Wani, O.M., Wasylczyk, P., Priimagi, A.: Light-driven, caterpillar-inspired miniature inching robot[J]. Macromol. Rapid Commun. 39(1), 1700224 (2018)

    Article  Google Scholar 

  80. Cheng, M., Zeng, H., Li, Y., Liu, J., Luo, D., Priimagi, A., Liu, Y.J.: Light-fueled polymer film capable of directional crawling, friction-controlled climbing, and self-sustained motion on a human hair[J]. Adv. Sci. 2103090, 2103090 (2021)

    Google Scholar 

  81. Wani, O.M., Zeng, H., Priimagi, A.: A light-driven artificial flytrap[J]. Nat. Commun. 8(1), 1–7 (2017)

    Article  Google Scholar 

  82. Palagi, S., Mark, A.G., Reigh, S.Y., Melde, K., Qiu, T., Zeng, H., Parmeggiani, C., Martella, D., Sanchez-Castillo, A., Kapernaum, N., Giesselmann, F., Wiersma, D.S., Lauga, E., Fischer, P.: Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots[J]. Nat. Mater. 15(6), 647–653 (2016)

    Article  Google Scholar 

  83. Da Cunha, M.P., Debije, M.G., Schenning, A.P.H.J.: Bioinspired light-driven soft robots based on liquid crystal polymers[J]. Chem. Soc. Rev. 49(18), 6568–6578 (2020)

    Article  Google Scholar 

  84. Karydis, K., Liu, Y., Poulakakis, I., Tanner, H.G.: A template candidate for miniature legged robots in quasi-static motion[J]. Auton. Robot. 38(2), 193–209 (2015)

    Article  Google Scholar 

  85. Abondance, T., Jayaram, K., Jafferis, N.T., Shum, J., Wood, R.J.: Piezoelectric grippers for mobile micromanipulation[J]. IEEE Robot. Autom. Lett. 5(3), 4407–4414 (2020)

    Article  Google Scholar 

  86. Karpelson, M., Waters, B.H., Goldberg, B., et al.: A wirelessly powered, biologically inspired ambulatory microrobot[C]//2014 IEEE international conference on robotics and automation (ICRA). IEEE, 2384–2391 (2014)

Download references

Code Availability

Not applicable.

Funding

Part of the work was funded by the National Key Research and Development Program of China (2017YFC0602102), the National Natural Science Foundation of China (Nos.61727818 and U20A20213), the Department of Science and Technology of Sichuan Province (No. 2021JDTD0030), AECC Sichuan Gas Turbine Research Establishment (WDZC-2020-3-2), the Chengdu Science and Technology Project (No.2020-GH02-0065-HZ), and the National Science and Technology Major Project (J2019-V-0006-0100).

Author information

Authors and Affiliations

Authors

Contributions

Jing Jiang, contributed to the conception of the study. The first draft of the manuscript was written by Mr. Chao Wang and Mr. Hongzu Li. Material preparation, data collection was performed by Mr. Lihao Yang, Mr. Jiale Du, Mr. Peifeng Yu and Mr. Zezhan Zhang. Yi Niu performed the data analyses and made constructive comments by reviewing the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Chao Wang, Yi Niu or Jing Jiang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Li, H., Zhang, Z. et al. Review of Bionic Crawling Micro-Robots. J Intell Robot Syst 105, 56 (2022). https://doi.org/10.1007/s10846-022-01649-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01649-6

Keywords

Navigation