Skip to main content
Log in

Development of a Robust Interval Type-2 TSK Fuzzy Logic Controlled UAV Platform

  • Short Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Type-2 Fuzzy Logic Controllers (FLCs) are capable of effectively capturing and accommodating uncertainties and disturbances. However, these controllers generally suffer from high computation costs. This paper develops a robust quadcopter UAV platform, equipped with a new interval type-2 (IT2) Takagi-Sugeno-Kang (TSK) fuzzy logic controller. The advantage of the developed controller is to enhance the robustness of the control structure, while managing the computation costs, making it appropriate for real-time control developments. The developed controller is applied to the attitude control of a UAV, which is relatively a fast dynamical system. The effectiveness of the proposed IT2 TSK FLC is verified through a developed software-in-the-loop (SITL) simulator for a quadcopter UAV. Then, actual flight experiments are conducted. The performance of the UAV when using the developed IT2 TSK FLC iscompared with its performance when using a classical PID controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Code Availability

The software used to support the findings of this study are available from the corresponding author upon request.

References

  1. Aghdam, A.S., Menhaj, M.B., Barazandeh, F., Abdollahi, F.: Cooperative load transport with movable load center of mass using multiple Quadrotor Uavs. In: 2016 4Th International Conference on Control, Instrumentation, and Automation (ICCIA), pp. 23–27 (2016)

  2. Akram, T., Awais, M., Naqvi, R., Ahmed, A., Naeem, M.: Multicriteria uav base stations placement for disaster management. IEEE Syst. J. 14(3), 3475–3482 (2020)

    Article  Google Scholar 

  3. Al-Mahturi, A., Santoso, F., Garratt, M.A., Anavatti, S.G.: Nonlinear altitude control of a Quadcopter drone using interval type-2 fuzzy logic. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 236–241. IEEE (2018)

  4. Al-Mahturi, A., Santoso, F., Garratt, M.A., Anavatti, S.G.: Chapter 2 - Modeling and control of a Quadrotor unmanned aerial vehicle using type-2 fuzzy systems. In: Koubaa, A., Azar, A.T. (eds.) Unmanned Aerial Systems, Advances in Nonlinear Dynamics and Chaos (ANDC), pp 25–46. Academic Press (2021)

  5. Basso, M., de Freitas, E.P.: A uav guidance system using crop row detection and line follower algorithms. J. Intell. Robotic Syst. 97(3), 605–621 (2020)

    Article  Google Scholar 

  6. Camci, E., Kayacan, E.: Game of Drones: Uav Pursuit-evasion game with type-2 fuzzy logic controllers tuned by reinforcement learning. In: 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 618–625. IEEE (2016)

  7. Canbek, K.O., Oniz, Y.: Real-time implementation of an interval Type-2 fuzzy logic controller for the trajectory tracking of an Uav. In: 2021 5Th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 418–423. https://doi.org/10.1109/ISMSIT52890.2021.9604539 (2021)

  8. Castillo, O., Amador-Angulo, L., Castro, J.R., Garcia-Valdez, M.: A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Inform. Sci. 354, 257–274 (2016)

    Article  Google Scholar 

  9. Castillo, O., Cervantes, L., Soria, J., Sanchez, M., Castro, J.R.: A generalized type-2 fuzzy granular approach with applications to aerospace. Inform. Sci. 354, 165–177 (2016)

    Article  Google Scholar 

  10. Chaoui, H., Gueaieb, W.: Type-2 fuzzy logic control of a flexible-joint manipulator. J. Intell. Robot. Syst. 51(2), 159–186 (2008)

    Article  Google Scholar 

  11. Doitsidis, L., Valavanis, K.P., Tsourveloudis, N.C., Kontitsis, M.: A framework for fuzzy logic based Uav navigation and control. In: Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE International Conference On, vol. 4, pp. 4041–4046 vol.4. IEEE (2004)

  12. Enyinna, N., Karimoddini, A., Opoku, D., Homaifar, A., Arnold, S.: Developing an interval type-2 tsk fuzzy logic controller. Fuzzy Information Processing Society NAFIPS 5(4), 1–6 (2015)

    Google Scholar 

  13. Fan, J., Li, D., Li, R., Yang, T., Wang, Q.: Analysis for cooperative combat system of manned-unmanned aerial vehicles and combat simulation. In: 2017 IEEE International Conference on Unmanned Systems (ICUS), pp. 204–209 (2017)

  14. Girma, A., Bahadori, N., Sarkar, M., Tadewos, T.G., Behnia, M.R., Mahmoud, M.N., Karimoddini, A., Homaifar, A.: Iot-enabled autonomous system collaboration for disaster-area management. IEEE/CAA Journal of Automatica Sinica 7(5), 1249– 1262 (2020)

    Google Scholar 

  15. Hailemichael, A., Salaken, S.M., Karimoddini, A., Homaifar, A., Abbas, K., Nahavandi, S.: Developing a computationally effective interval type-2 tsk fuzzy logic controller. Journal of Intelligent & Fuzzy Systems 38(2), 1915–1928 (2020)

    Article  Google Scholar 

  16. Hamrawi, H., Coupland, S.: Measures of uncertainty for type-2 fuzzy sets. Computational Intelligence (UKCI), 2010 UK Workshop 1–7 (2010)

  17. HekmatiAthar, S., Goudarzi, N., Karimoddini, A., Homaifar, A., Divakaran, D.: A systematic evaluation and selection of Uas-Enabled solutions for bridge inspection practices. In: 2020 IEEE Aerospace Conference, pp. 1–11 (2020)

  18. Hoang, V.T., Phung, M.D., Dinh, T.H., Ha, Q.P.: System architecture for real-time surface inspection using multiple uavs. IEEE Syst. J. 14(2), 2925–2936 (2020)

    Article  Google Scholar 

  19. Karnik, N.N., Mendel, J.M.: Applications of type-2 fuzzy logic systems to forecasting of time-series. Inform. Sci. 120(1), 89–111 (1999)

    Article  MATH  Google Scholar 

  20. Kim, H., Ben-Othman, J.: A collision-free surveillance system using smart uavs in multi domain iot. IEEE Commun. Lett. 22(12), 2587–2590 (2018)

    Article  Google Scholar 

  21. Koubaa, A.: Robot Operating System (ROS) The Complete Reference, vol. 2. Springer, Berlin (2017)

    Book  Google Scholar 

  22. Kwon, Y., Baek, H., Lim, J.: Uplink noma using power allocation for uav-aided csma/ca networks. IEEE Syst. J. 1–4 (2020)

  23. Le, T.L., Quynh, N.V., Long, N.K., Hong, S.K.: Multilayer interval type-2 fuzzy controller design for quadcopter unmanned aerial vehicles using jaya algorithm. IEEE Access 8, 181246–181257 (2020)

    Article  Google Scholar 

  24. Li, J., John, R., S.C., Kendall, G.: On nie-tan operator and type-reduction of interval type-2 fuzzy sets. IEEE Trans. Fuzzy Syst. PP(99), 1–13 (2017)

    Google Scholar 

  25. Liang, Q., Mendel, J.M.: An introduction to type-2 tsk fuzzy logic systems, pp 1534–1539 (1999)

  26. Liang, Q., Mendel, J.M.: Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filters. Fuzzy Systems IEEE Transactions on 8(5), 551–563 (2000)

    Article  Google Scholar 

  27. Liu, X., Zhong-Ren, P., Li-Ye, Z.: Real-time uav rerouting for traffic monitoring with decomposition based multi-objective optimization. Journal of Intelligent & Robotic Systems 94(2), 491–501 (2019)

    Article  Google Scholar 

  28. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)

    Article  MATH  Google Scholar 

  29. Meier, L., Honegger, D., Pollefeys, M.: Px4: A node-based multithreaded open source robotics framework for deeply embedded platforms. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 6235–6240. IEEE (2015)

  30. Meier, L., Tanskanen, P., Fraundorfer, F., Pollefeys, M.: Pixhawk: A system for autonomous flight using onboard computer vision. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2992–2997. IEEE (2011)

  31. Meier, L., Tanskanen, P., Heng, L., Lee, G.H., Fraundorfer, F., Pollefeys, M.: Pixhawk: A Micro Aerial vehicle design for autonomous flight using onboard computer vision. In: Masters Thesis. ETH Zurich (2013)

  32. Melin, P., Urias, J., Solano, D., Soto, M., Lopez, M., Castillo, O.: Voice recognition with neural networks, type-2 fuzzy logic and genetic algorithms. Engineering Letters 13(3) (2006)

  33. Mendel, J.M.: Uncertain rule-based fuzzy logic system: introduction and new directions. Prentice–Hall PTR (2001)

  34. Mendel, J.M., John, R.B.: Type-2 Fuzzy Sets Made Simple, pp 117–127. IEEE, New York (2002)

    Google Scholar 

  35. Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)

    Article  Google Scholar 

  36. Namvar, N., Homaifar, A., Karimoddini, A., Maham, B.: Heterogeneous uav cells: An effective resource allocation scheme for maximum coverage performance. IEEE Access 7, 164708–164719 (2019)

    Article  Google Scholar 

  37. Ontiveros-Robles, E., Melin, P., Castillo, O.: Comparative analysis of noise robustness of type 2 fuzzy logic controllers. Kybernetika 54(1), 175–201 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Quigley, M., Gerkeyy, B., Conley, K., Fausty, J., Footey, T., Leibsz, J., Bergery, E., Wheelery, R., Ng, A.: Ros: an Open-Source Robot Operating System. In: Masters Thesis. Stanford University and University of Southern California (2013)

  39. Ramasamy, M., Ghose, D.: A heuristic learning algorithm for preferential area surveillance by unmanned aerial vehicles. Journal of Intelligent & Robotic Systems 88(2-4), 655 (2017)

    Article  Google Scholar 

  40. Sarabakha, A., Fu, C., Kayacan, E., Kumbasar, T.: Type-2 fuzzy logic controllers made even simpler: From design to deployment for uavs. IEEE Trans. Ind. Electron. 65(6), 5069– 5077 (2017)

    Article  Google Scholar 

  41. Stellakis, H.M., Valavanis, K.P.: Fuzzy logic-based formulation of the organizer of intelligent robotic systems. J. Intell. Robot. Syst. 4(1), 1–24 (1991)

    Article  Google Scholar 

  42. Stojcsics, D.: Fuzzy controller for small size unmanned aerial vehicles. In: 2012 IEEE 10Th International Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 91–95. IEEE (2012)

  43. Sugeno, M.: Industrial Applications of Fuzzy Control. Elsevier Science Inc (1985)

  44. Vinh, K., Gebreyohannes, S., Karimoddini, A.: An area-decomposition based approach for cooperative tasking and coordination of uavs in a search and coverage mission. In: 2019 IEEE Aerospace Conference, pp. 1–8 (2019)

  45. Wu, H., Mendel, J.M.: Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 10(5), 622–639 (2002)

    Article  Google Scholar 

  46. Xia, C., Yongtai, L., Liyuan, Y., Lijie, Q.: Cooperative task assignment and track planning for multi-uav attack mobile targets. Journal of Intelligent & Robotic Systems 100(3), 1383–1400 (2020)

    Article  Google Scholar 

  47. Yerukayev, A.: An approach for the formation of the type-2 fuzzy sets, pp 460–462 (2016)

  48. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning ii. Inf. Sci. 8(4), 301–357 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second author would like to acknowledge the support from the National Science Foundation under the award number 1832110 and Sandia National Laboratories under the contract number 2086781.

Funding

This research is supported by Air Force Research Laboratory and Office of the National Science Foundation under the award number 1832110 and Sandia National Laboratories under the contract number 2086781. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes not withstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of OSD, NSF, or the U.S. Government.

Author information

Authors and Affiliations

Authors

Contributions

A. Karimoddini contributed to the conceptualization and supervision of the research, writing (review & editing) of the paper, and funding acquisition. A. Hailemichael contributed to the development of methodology and software as well as writing the original draft. The manuscript was read and approved by all authors.

Corresponding author

Correspondence to Ali Karimoddini.

Ethics declarations

Ethics approval

Not applicable (this article does not contain any studies with human participants or animals performed by any of the authors).

Consent to participate

Not applicable (this article does not human participants performed by any of the authors).

Consent for Publication

Not applicable (this article does not contain any studies with human participants performed by any of the authors).

Conflict of Interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hailemichael, A., Karimoddini, A. Development of a Robust Interval Type-2 TSK Fuzzy Logic Controlled UAV Platform. J Intell Robot Syst 107, 27 (2023). https://doi.org/10.1007/s10846-022-01798-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01798-8

Keywords

Mathematics Subject Classification (2010)

Navigation