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Abstract
In this paper, we present an approach for navigating a robotic wheelchair that provides users with multiple levels of autonomy
and navigation capabilities to fit their individual needs and preferences. We focus on three main aspects: (i) egocentric
computer vision based motion control to provide a natural human-robot interface to wheelchair users with impaired hand
usage; (ii) techniques that enable user to initiate autonomous navigation to a location, object or person without use of
the hands; and (iii) a framework that learns to navigate the wheelchair according to its user’s, often subjective, criteria
and preferences. These contributions are evaluated qualitatively and quantitatively in user studies with several subjects
demonstrating their effectiveness. These studies have been conducted with healthy subjects, but they still indicate that clinical
tests of the proposed technology can be initiated.

Keywords Robotic wheelchair · Egocentric camera · Assistive technology

1 Introduction

Wheelchairs are essential for people who face difficulties
while walking, and are required by about 1% of the
population. According to World Health Organization’s
Assistive Technology Fact Sheet (2016) [1], 75 million
people need a wheelchair and only 5% to 15% of those
in need have access to one. In the United States (US),
per the US 2010 census, there are 3.6 million wheelchair
users nationwide [2]. While in Canada, 49% of seniors in
institutional settings are wheelchair users [2]. Moreover,
Europe has around 5 million wheelchair users and, sadly, 2
million of them require alternative interfaces to control their
wheelchairs [3] as they suffer from upper-limb mobility
difficulty that prevent them from using the traditional
joystick. Additionally, approximately 10% of wheelchair
users need help controlling their wheelchair [4].

Our work is focused on wheelchair users with limited
or no upper-limb mobility, such as those who suffer from
quadriplegia, cervical spinal cord injury or other disabilities
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and the elderly. These people may have difficulty control-
ling the wheelchair via the joystick [5]. A number of alterna-
tive wheelchair control approaches, reviewed in Section 2,
have been developed to give access to wheelchairs to some
of these people.

At the core of our research lies a novel wheelchair
motion control approach based on an egocentric wearable
camera. In our prototype, a web camera mounted on a cap
is used, but other implementations are possible. To drive the
wheelchair using our design, users move their heads within
a small range to control a virtual joystick, which tracks the
motion of the head and is shown on a frontal display. The
movement of the head is slight to keep the amount of efforts
required small and apply no pressure on the user’s neck by
external forces [6]. The frontal display serves as feedback
helping the user understand the state of the robot and learn
how to control it. As described in Section 3, in addition to
the camera and the display, our system includes a consumer
depth camera and a laptop. An initial implementation of this
approach was presented by Li et al. [7].

There are three advantages due to this setup [7]. The
first is robustness compared to computer vision-based
systems relying on gesture recognition or face detection,
which are harder problems than the one our system faces
in uncontrolled environments. Factors such as cluttered
background, illumination and face pose variations can be
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very challenging for real-time gesture recognition and face
detection [8]. The second is that our system requires only
small head motions, which feel more natural to the users
and reduce their self-consciousness compared to having to
perform pre-determined expression or motion sequences to
control the wheelchair [6]. The third is that the egocentric
camera allows the robot to see what the user sees.

In contrast to our proposed method, most of the existing
hands-free control methods require the user’s full attention
during navigation [9–11]. (See Section 2 for details.) For
certain categories of users, such as the elderly or those with
disabilities, increasing the level of autonomy is desirable
in order to decrease effort and safety risks. Therefore,
we provide users with multiple levels of autonomy and
navigation control options to fit their individual needs.

We present four hands-free use cases. In the first use
case, the user can select a room in a known map via a
voice command. In the second use case, the user can trigger
navigation to an object that does not have to be known
a priori via an attention-based mechanism initiated by the
user’s gaze. The third use-case is similar, but navigation is
towards a known person identified by the robot via face
detection. Finally, in the fourth use-case, the wheelchair
follows an unknown person in a potentially unknown
environment.

In the above scenarios, the wheelchair navigates
autonomously towards destinations specified by the user.
Following previous research in human-robot interaction
[12], we would like our system to consider user preferences
and comfort, in addition to safety and efficiency, during nav-
igation. As preferences vary across users, there is a need
for a shared autonomy approach that allows path planning
to be individually customized. In our approach, the system
involves the user in path planning only when the system’s
estimated uncertainty is high. For example, destination is set
by the user, then, several path are planned by the wheelchair
to reach that destination, instead of one destination as it is
in a typical fully autonomous navigation system. If there
is an obvious preferred path among these paths according
to learned user’s preferences, the wheelchair immediately
navigate according to the preferred path. Otherwise, if the
provided paths are similarly preferred by the user, the user
is asked to make a choice. This research was first presented
by Chang et al. [13].

This paper provides a comprehensive description of
a long-term effort in the development of the robotic
wheelchair. It focuses on the technical aspects of the system,
while a companion paper [6] presents multiple studies to
evaluate its usability. The contributions of the current paper
include:

1. A hands-free navigation approach for wheelchairs
based on egocentric computer vision;

2. Four use cases for the autonomous navigation mode of
the wheelchair;

3. A user interface to enable multiple levels of autonomy
and involve the user only in hard decisions and,
whenever user is making decisions, system learns from
these decisions.

We are not aware of any other robotic wheelchair that
provides a set of capabilities at different levels of autonomy
similar to the ones presented in this paper. The rest of paper
is organized as follows: in Section 2, we briefly review
related publications from the literature; Section 3 is an
overview of our system; Section 4 contains a description
of our egocentric hands-free wheelchair control approach;
in Section 5, we present autonomous navigation use cases
implemented by our system; in Section 6.2, we describe
an approach for learning user preferences in wheelchair
navigation; Section 7 contains descriptions and results from
our experiments; we summarize our conclusion in Section 8.

2 RelatedWork

In this section, we review technologies for controlling
wheelchairs without use of the hands and for learning the
user’s navigation preferences.

2.1 Hands-free Methods for Wheelchair Control

We begin with methods that do not rely on computer vision
and then turn our attention to those that do.

In the sip-n-puff system [14], user control wheelchair
by “sipping” and “puffing” on a pneumatic tube in variant
levels of strength. The approach is suitable for users who
suffer from both upper and lower-limb mobility difficulties.
However, it disrupt their breathing by requiring them to
switch between deep and shallow inhales and exhales
affecting their natural breathing. Moreover, the user cannot
communicate with others during navigation. Chin-based
[15] or head-based control [9, 16] is feasible for users who
can move their heads. In a head-control system, switches
mounted on the headrest are operated by head movement.
In a chin-control system, the user’s chin sits in a cup-
shaped joystick. Users control the wheelchair by neck
flexion, extension, and rotation. Similar to ours, both control
schemes require frequent neck movement, but they also
require the users to apply forces on the tactile sensors, which
can be wearisome.

Tongue-based human machine interfaces [17, 18],
brain-controlled [19, 20] and voice-controlled wheelchairs
[21–23] are among recent work. Tongue-based control may
rely on inductive devices installed in the user’s mouth
and on the user’s tongue [17], or non-invasive techniques
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[18] that capture the tongue movement via the induced ear
pressure. All tongue-based solutions, unlike our system,
interfere with the user’s ability to speak.

Another class of control methods is the brain-computer
interface (BCI) which receives input by sensing the
electrical activity of the user’s brain. To drive the
wheelchair, users are not required to perform any physical
action nor use any mechanical control device, however, they
are required to place a set of electrodes on their scalp and
imagine a movement such as the kinaesthetic movement
of one or more limbs [19, 20, 24]. These motor imageries
can then be captured and classified generating different
commands to drive the wheelchair.

A semi-autonomous BCI system using electroencephalo-
gram (EEG) signals to interface with the user has been
proposed to enhance mobile robot navigation in an uncer-
tain environment [25]. It uses vanishing points and door
plate as environmental feature in performing Simultaneous
Localization and Mapping (SLAM) to allow the system to
build obstacle-free trajectories to the destination. BCI has
the potential to help severely disabled users, but requires
their full attention. On the other hand, our system require
less attention from the users.

Computer vision has been used to develop assistive
wheelchair controls. Previous methods either use fixed
cameras on the wheelchair to sense the environment
[26, 27] or use a camera looking at the user to translate
the user’s motion into control signals [28, 29]. The user
simply selects the target objects or locations on a screen
and the robot approaches and grasps the object. Pasteau et
al. [27] use computer vision to activate automatic trajectory
corrections and avoid collisions. Purwanto et al. [28] detect
the user’s gaze and blinks with a user-facing camera to
control the wheelchair. Similarly, Gray et al. [29] control
the wheelchair with head gestures recognized by a camera
focused on the user’s face. Xu et al. [30] designed a
wheelchair that can be driven by recognizing the gaze
orientation of the user. Additionally, with the help of
beacons and markers places in the scene the wheelchair
navigate and avoid obstacle.

The use of outward-facing cameras is more challenging,
especially due to motion and illumination changes in the
scene. According to Halawani et al. [31], an outward-facing
camera is superior to an inward-facing one due to its wider
field of view. Their system tracks head motion through
a camera on the user’s hat that is looking downwards
towards the user’s clothes and the wheelchair. As a result,
the observed motion is caused by head-motion instead
of wheelchair-motion and, therefore, allows the activation
of five discrete commands. Kim et al. [32] localize a
robotic wheelchair based on special visual markers whose
appearance changes according to viewing angle. Our design
requires a single marker printed on plain paper.

Zolotas et al. [33] propose a user interface based on the
Microsoft Hololens, which enables the system to augment
the user’s view of the scene with virtual annotations and
explanations to objects that are shown on the Hololens
screen. While the user drives the wheelchair via a joystick,
the Hololens localizes the user’s head in space and place
the virtual content accordingly. More recently, Chacón-
Quesada and Demiris [34] enabled the user to control the
wheelchair via an eye-gaze tracker. The egocentric camera
in our system is not in the user’s field of view.

2.2 Learning from Previous Navigation Experience

In this section, we review work on robotic wheelchairs
that considers shared autonomy. The relevant approaches
vary in terms of their criteria for measuring comfort
or safety and the human-robot collaboration mechanism.
Gulati et al. [35] assess how comfortable motions are
based on features including normal and tangential jerk,
angular velocity and acceleration. However, in contrast to
our work, obstacles in the scene are not included among the
criteria. Shiomi et al. [36] use the behavior of caregivers
to customize the behavior of the wheelchair. Our approach
learns directly from the users performing relevant actions
themselves.

Parikh et al. [37, 38] consider user inputs, reactive
behavior and deliberate notion plans to enhance semi-
autonomous navigation by helping users avoid collisions.
Ceres et al. [3] proposed a robotic platform with five
levels of autonomy to enable users, especially children, to
navigate safely. It uses an automatic obstacle avoidance
technique to increase safety. Zeng et al. [39] presented
a user-wheelchair collaborative system that requires user
to provide the destination and preferred speed while the
system plans and navigates accordingly. During navigation,
users have the option to modify the path. There are some
wheelchair platforms that allow the user to complement the
robot using a human-robot interaction interface e.g. door
opening which is a task that is easy for users to do but
challenging for a robot [40].

Urdiales et al. [41] proposed an efficiency measure,
based on smoothness, directness and safety, which is
later used to integrate user and robot-generated commands
to accomplish navigation goals. Another shared control
platform developed by Li et al. [42] integrates the
commands from the robot and the user while considering
a measure for the level of assistance adapted based on
the user’s capabilities. Carlsson and Demiris [43] propose
an approach that allows users to control the wheelchair,
while the robot can modify the control signals for safety
reasons. A different approach for combining human and
robot commands relies on machine learning to achieve
optimal navigation [44]. Speech recognition is a popular
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technique which have been used in many wheelchair shared
control applications [21], including our approach.

Lastly, we turn our attention to methods operating
in dynamic settings where the robot has to interact or
avoid people in the scene. For additional information on
this topic, we refer readers to a survey [45]. A motion
planning approach designed for dynamic environments was
developed by Sisbot et al. [12]. It uses safety and comfort in
its cost function, as most other approaches, but additionally,
its safety measure uses distance to humans while its comfort
measure requires the robot to be visible by people in the
scene. Kirby et al. [46] presented a framework, dubbed
the Companion, which integrates features for static and
dynamic elements of the scene, such as travel distance
and distances to obstacles and people. Companion takes
into consideration social norms such as not getting into
personal spaces and passing from the right. Cosgun et al.
[47] developed a path planner that uses the social force
model [48] to predict how people would react to the robot to
enhance navigation. It uses a static and a dynamic planner,
with the former computing an optimal path based on path
length, distance from people and disturbance of groups of
people, and the latter refining sections of the path that are
within a certain distance to people. Morales et al. [49] focus
on finding the optimal set of parameters to increase comfort
for pedestrians and the passenger of the wheelchair. A user
study shows that subjects favor the proposed planner to one
returning the shortest path. Our robotic wheelchair does
not currently model human behavior. It can only learn the
behavior of its user around people. This is an area for future
research for us.

3 Robotic Wheelchair

In this section, we introduce our robotic wheelchair. It is
designed as a modification of a commercially available
power wheelchair driven by a joystick, the Drive Medical
Titan Transportable Front Wheel Power Wheelchair, as
shown in Fig. 1. To control the wheelchair, our navigation
system uses an Arduino micro-controller (Arduino Mega
2560) to generate electrical signals mimicking those of the
joystick. The Arduino-generated signals are connected to
the joystick interface and passed to the motor.

The prototype described in this paper uses the following
sensors and software. A Kinect v2 sensor is mounted on the
wheelchair to enable RGB-D visual SLAM and to measure
the distance to objects. A tablet is mounted and used as
a display device in front of the user. A webcam, either
a Logitech C270 or a Logitech c930e, is attached to a
baseball cap which is worn by the user and shares the
user’s egocentric point of view with the robot. An additional
webcam is mounted on the back of the wheelchair and its

Fig. 1 The robotic wheelchair

video feed is displayed on the tablet when the wheelchair
moves in reverse. The resolution of the Kinect v2 RGB
camera is 960 × 540 and its focal length is 540.68 pixels,
while the resolution of the egocentric camera is 640 × 480
and its focal length is 823.1 pixels. Lastly, a QR visual
marker is attached to on top of the tablet mount facing the
user to help track his head pose.

The software system is built on the Robot Operating
System (ROS) [50]. Figure 2 shows a diagram of our
system. In this work, we focus on indoor navigation and rely
on the RGB-D camera to sense the environment. We use
Real-Time Appearance-Based Mapping (RTAB-Map) [51]
to build a map of the scene beforehand. RTAB-Map is a
RGB-D graph-based SLAM approach with an appearance-
based loop closure detector. The loop closure detector
uses a bag-of-words technique to determine whether a
new image is from a previously observed location or a
new location. A new constraint is added to the map’s
graph when a loop closure hypothesis is accepted. Then,
a graph optimizer minimizes the errors in the map. For
path planning in autonomous navigation, we use the ROS

Fig. 2 System Diagram: the flow of commands and information is
represented by the direction of the arrows. Components are activated
based on the mode of navigation: manual or autonomous

10   Page 4 of 21 J Intell Robot Syst (2023) 107:10



Fig. 3 The visual marker is
reliably tracked in the presence
of motion blur. See blue outlines

navigation stack [52]. All software runs on a laptop mounted
on the wheelchair.

4 Egocentric Hands-free Control

In this section, we describe the hands-free wheelchair
control approach in detail. Conceptually, the approach
is divided in two parts: head motion tracking and user
interface.

4.1 HeadMotion Tracking

As shown in Fig. 1, the head motion tracking relies on two
components: a head-mounted camera and a visual marker
facing the user mounted on the wheelchair. We use a Quick
Response (QR) code marker, which can be reliably detected
in the images captured by the head-mounted camera via
the ViSP library [53]. After the marker is detected initially,
we use the Consensus-based Matching and Tracking of
Keypoints (CMT) tracker [54] to track it. The resulting
technique is robust to blur due to the use of a distinct marker
and tracking, rather than re-detection in each frame (see
Fig. 3). This allows reliable control of the wheelchair.

The motion of the tracked visual marker is converted to
motion of the cursor on the display. Because one of the
objectives of our system design is to keep head motion
small, and also due to size mismatch between the display
and the range of motion of the user’s neck, we scale the
tracked motion before updating the location of the cursor.

Because the proposed head motion estimation module
can capture even small head movements, the cursor, and as
a result the wheelchair, can be controlled with very small
head motion and user effort. This is advantageous compared
to alternatives, such as chin and head-based motion control
devices that require forces to be applied by the user’s
head and indirectly by the neck. The frequent movement
of the neck combined with these forces may cause neck
problem due to repetitive stress injury or repetitive motion
injury. It should be noted that we have not assessed whether
our technology or alternatives strain the user’s neck, but
users preferred our contact-free control mechanism to a
chin-based alternative in a previous study [6].

An additional advantage of our approach is that it
enables the user to give continuous commands to the robot.
In contrast, most previous hands-free mobility solutions
provide discrete motion commands, such as move backward
or forward, turn right or left, and stop.

(a) switch to hands-free navi-

gation

(b) GUI of the manual naviga-

tion mode

(c) take control of the virtual

joystick

(d) move forward (e) move left

(f) move backward - backup

camera on

(g) move backward - backup

camera off

(h) automatic brake (i) stop controlling the virtual

joystick

(j) stop hands-free navigation

Fig. 4 The GUI of the manual control
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4.2 User Interface

In the proposed system, the Graphical User Interface (GUI)
is presented to the user on the tablet, as shown in Fig. 4(b).
The position of the cursor on the display is controlled by
the user’s head motion, while actions can be deployed by
hovering with the cursor over pre-specified locations on the
screen for a given amount of time.

A typical work-flow is shown in Fig. 4. The hands-free
navigation mode is engaged by holding the cursor on the
corresponding button for a pre-specified amount of time.
The virtual joystick is picked up by placing the cursor on
the center of the display. Once the virtual joystick has been
picked up, the direction and speed of the wheelchair are
proportional to the placement of the cursor relative to the
center of the display. As shown in Fig. 4(h), the bar at
the bottom indicates the maximum speed of the wheelchair.
To exit hands-free navigation, the virtual joystick must be
released at the center and the “navigation mode” button
must be pressed again for the same amount of time.

For safety, an automatic brake has been designed to slow
down and eventually stop the robot when the marker is not
in the view of the wearable camera which could be due to
user being distracted or rapid change in lighting conditions
affecting the tracker’s ability to track the marker.

The similarity of the our control mechanism to conven-
tional joysticks makes its use intuitive for users with experi-
ence using joysticks. Subjects in our experiments were able
to learn how to operate the virtual joystick quickly.

5 Autonomous Navigation Use Cases

In this section, we present four use cases with our
wheelchair in autonomous navigation mode.

5.1 Map-based Navigation

Map-based navigation allows the user to communicate with
the system and specify the destination verbally. The system
offers multiple routes to the user to pick from, as discussed
in Section 6. This use case requires a pre-built map and a
set of pre-defined locations on that map, each associated
with a word or phrase. Paths are automatically generated
and colored, while a voice recognition interface [55] is used
to interpret commands and locations.

A typical interaction with the wheelchair in this context
involves the following steps. The user engages the voice
recognition system by saying “attention” followed by one of
the pre-specified locations. The system provides feedback
informing the user that it has received the location and, then,
starts searching for available paths using a path planner (see
Section 6), gathers and evaluates all available paths. If two

or more paths are similarly preferred according to the user’s
learned preferences, then the decision is given to the user.
The system shows the available paths on the map each with
specific color e.g. “red” or “green” and asks the user to
select from them using a voice command by naming the
path color. Otherwise, the system picks the most preferred
path without involving the user, and begins navigation. The
preferences are learned gradually and a completely new
preference can be re-learned gradually if the user’s choices
and decision changed drastically.

5.2 Attention-driven Navigation

Autonomous navigation is only applicable when a represen-
tation of the destination is given to the motion planner. In
this section, we present an attention-driven method which
provides an interface for users to specify the destination
they want to navigate to if there is no name attached to it.
The egocentric camera naturally follows the user’s attention
since its field of view largely overlaps with the center of
the user’s field of view. When an object persistently appears
in the video steam of the wearable camera that means the
user is staring at it and it is regarded as an object of interest.
Then, the system can navigate to it autonomously upon the
user’s request.

The system switches to attention-driven navigation mode
based on a voice command, typically “attention”. In this
mode, the user finds an object of interest and places it
in the center of her/his field of view for a predefined
period of time. Since the egocentric camera shares the user’s
viewpoint, the system can identify the attentional object,
and set its location as the destination. The system, then,
displays the attentional object on the frontal display and
requests user confirmation. After receiving confirmation,
the system hands over the image of the object taken from the
egocentric camera to the RGB-D camera. The robot, then,
navigates autonomously towards the object, first by rotating
to the left or right according to the pose of the egocentric
camera relative to the RGB-D camera, which is fixed on
the frame of the robot, and then by translating once the
object becomes visible in the RGB-D camera. During the
autonomous phase, the user does not have to keep fixating
at the object and can focus on other tasks, including setting
the next destination.

5.2.1 Attentional Object Detection

To enable the above functionality, we developed an efficient
object detection technique, shown in Fig. 5. We begin by
detecting contours in the images of the egocentric camera
[56] and obtain the bounding rectangles of all closed
contours as hypotheses for the attentional object. To identify
the bounding rectangle of the attentional object, we use

10   Page 6 of 21 J Intell Robot Syst (2023) 107:10



Detected Closed Contours Estimated Bounding Boxes Selected Object

Matches after RANSAC with homography constraint

anchor frame new frame anchor frame new frame

Fig. 5 Work-flow of the proposed attentional object detection. The top row shows how the system detects the attentional object. The bottom row
shows how the system matches images from two cameras

the Intersection-Over-Union (IoU) of the hypotheses with
a pre-specified attentional area in the center of the image
as a score. If the score exceeds a threshold, set to 0.2
here, the current frame is identified as the anchor and the
object enclosed by the corresponding contour as a potential
attentional object. Then, as shown in the bottom row of
Fig. 5, the system tracks the object in the video. Optical flow
is estimated between the anchor and current frame and a
homography is estimated using Random sample consensus
(RANSAC) [57]. To evaluate the quality of the matching,
we use the ratio of the inliers of the estimated homography
over the total number of matches. If at least 50 frames
with an inlier ratio of at least 50% are accumulated, the
attentional object is considered initialized and it is handed
over to the RGB-D camera.

5.2.2 Object Hand-over

After the object of interest has been initialized, it is
presented in the frontal display and the user is asked to
confirm that navigation to the object should commence.
After user confirmation, detecting and tracking the object
is handed over to the RGB-D camera, which, however,
may not initially observe the object. If that is the case,
the robot rotates to the left or to the right guided by the
user’s estimated head pose until the object is detected in the
RGB-D camera.

We use feature correspondences to make the initial
detection in the RGB-D camera. Specifically, we apply
the Features from Accelerated Segment Test (FAST) [58]
feature detector and the Oriented FAST and rotated BRIEF
(ORB) [59] feature descriptor on the anchor frame from the
egocentric camera and the frames of the RGB-D camera.
Potential correspondences are used as input to RANSAC
for estimating a homography between the two views. The
relative pose of the object with respect to the robot is then
estimated using the depth of the matches features in the
RGB-D frame.

In order to evaluate the quality of the matching, we
measure how well the projected object bounding box
approximates the estimated bounding box. The metric is
designed under the mild assumption that the distances from

Projected Box

Estimated Box

Homography

a

d b

c

p

RGB image from Kinect Attentional Object

Fig. 6 Attentional object localization
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the object to the RGB-D sensor and egocentric camera
are very similar, after compensating for differences in
the resolution and focal length of the two sensors (see
Section 3). As shown in Fig. 6, the projected bounding
box is obtained by mapping the object boundaries using the
estimated homography.

5.3 Person-guided Navigation

In this navigation scenario, the user wishes to approach a
specific person in a scene with one or more people. This
can be accomplished as above with the difference that the
target people are known a priori. The motivation behind
this use case is that it is inefficient and uncomfortable
for the robotic wheelchair to locate a person of interest
by searching the environment. The search process would
require primarily rotating the wheelchair in place until
the person of interest is seen by the RGB-D sensor. We
propose to leverage the user’s ability to quickly locate
the person of interest in the egocentric camera, use the
orientation of the egocentric camera relative to the frame
of the robot to rotate to the appropriate direction, and
also leverage the autonomous driving capability of the
robot to relieve the user from having to operate the
wheelchair.

Prior to the deployment of this mode, an enrollment
process is required to register the group of known people
into the face recognition system. During enrollment, we
ask each person to stand in front of the wheelchair and
record a 5 seconds video while the person is looking at the
RGB-D camera. These short videos are associated with that
person and serve as the representation of a person in our
system.

The work-flow starts with selecting a target person in
the user’s field of view. Since the user shares the field of
view with the egocentric camera, as the user searches for the
target person, all faces in front of the camera are detected
and compared to the database. Until the target person is
identified, head motion history is used to provide insight
into the location of the person relative to the wheelchair.
Thus, the wheelchair turns to the correct direction to
approach the target person. Once the RGB-D sensor sees
the target person, the wheelchair autonomously navigates
to the target person. While navigating, the user is free to
look around. We consider this a great example of combining
the strengths, and fields of view, of the user, the egocentric
camera and the stationary RGB-D camera mounted on the
wheelchair to achieve high efficiency in a useful task.

For face detection, recognition and tracking, we use
the Cascade Convolutional Neural Network based face
detector [60], the Probabilistic Elastic Part based model face
recognition system [61], and the Consensus-basedMatching
(CMT) face tracker [62], respectively.

5.4 People-following

In this navigation scenario, the wheelchair follows a person
without requiring pre-registration of people in the system or
any information about them. The system detects the nearest
person, regardless of their orientation relative to the RGB-
D camera or whether they are standing or walking. In this
mode, the wheelchair aims to move close to the detected
person up to a pre-specified distance.

For input, the system relies exclusively on the RGB-D
sensor, utilizing a depth-based upper-body detector and an
RGB-D tracker. Given the location of the detected person,
appropriate motion commands based on the distance and
angle to the person are issued and executed. The Spencer-
project person detector [63, 64], specifically the depth-
based upper-body detector [65], is used for people detection
and the multi-object tracker of Ess et al. [66] for tracking.

6 Learning to Navigate

In this section, we present an approach for learning the
user’s path selection preferences by observing choices users
make when navigating the wheelchair and in simulation.
We accomplish this by training a Support Vector Machine
(SVM) to rank paths according to the observed choices. This
formulation is more effective than a set of rules for assigning
appropriate weights to speed, distance, comfort etc. This
work was initially presented in [13].

6.1 PlanningMultiple Paths

To learn users’ preferences through their selections of
paths, we need a path planner that generates multiple
paths, instead of just one as typical path planners do
[67]. In this subsection, we present two planners for
finding multiple paths: one generates homotopically distinct
paths using the Generalized Voronoi Diagram (GVD) [68],
while the other generates multiple paths, that are not
necessarily homotopically distinct, by applying a modified
A* algorithm iteratively.

The inputs here comprise a map in 2D occupancy grid
format, which can be acquired with the RGB-D sensor, the
current position, and the destination. Path planners typically
generate one path according to their objectives. But in our
case, we need to generate several paths for a given scenario.
Here, we use two planning methods, separately, to generate
a diverse set of paths. The goal is to generate at least one
path that matches the user’s preferences. A way to determine
whether two paths are different is based on the notion
homotopy [68–70]. Homotopically distinct paths are paths
that have at least one obstacle separating them, preventing
a continuous transformation from one path to another. This,
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Fig. 7 2D occupancy grids of a
room containing: (a)
homotopically distinct paths,
and (b) distinct paths in the
same homotopy class

however, is not the only criterion. For instance, in example
(a) in Fig. 7, the table placed in the middle of the room
separates the space and creates two homotopy-classes of
paths, one on each side of the table. When the table is
removed in Fig. 7(b), all paths are homotopically the same
and cannot be distinguished based on homotopy. However,
wheelchair users have different preferences: some may
prefer driving close to a wall and leave space for people to
walk for example, while others may prefer to stay as far
from obstacles as possible.

6.1.1 Generating Homotopically Distinct Paths Using the
GVD Planner

We use the Generalized Voronoi Diagram (GVD) to
generate homotopically distinct paths, as in the approach
of Kuderer et al. [68]. This yields a graph in which
all paths are homotopically distinct. As a result, the
k-shortest paths connecting two vertices on the graph
correspond to the k-shortest homotopically distinct paths
between the vertices on the map. Finding shortest paths
on a graph is a well-studied problem in computer
science [71].

Figure 8 illustrates the four-step process of finding
homotopically distinct paths.

(a) Construction of the GVD starts with a map of the
environment, provided in the form of an occupancy
grid. We require a generalized Voronoi diagram
because the obstacles in the map are not restricted
to points. The boundaries of the polygonal cells of
the GVD are free locations in the map that are
equidistant to the two (or more) nearest obstacles [72].
To estimate distances from all locations in free space
to the obstacles efficiently we compute the Euclidean
distance transform [73] and use it to identify the edges
of the GVD. The output is a binary map identifying
whether cells belong to the edges of the GVD or not.

(b) Then, the start and end point are connected to their
closest point in the GVD with straight lines.

(c) The GVD graph representation G = (V , E) is
then extracted from the GVD binary occupancy grid.
Vertices V are detected as cells of the occupancy grid
with more than two incoming edges. The start and end
points are considered special vertices (the only ones
with exactly one edge). The weight of each edge is
set equal to the distance between the two vertices it
connects.

(d) The K-shortest paths in this graph are found using
Dijkstra’s algorithm. By construction, each path is
homotopically distinct.

Fig. 8 Overview of the use of
GVD for finding homotopically
distinct paths in a map.
(a) Construction of the GVD.
(b) The start and end point are
connected to their closest points
in the GVD. (c) Graph
representation of the GVD.
(d) K-shortest paths in the graph
(K = 2)
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Fig. 9 Overview of the Iterative
A* Algorithm. (a) Apply A*
algorithm to find the shortest
path. (b) Block the detected
shortest path with a virtual
obstacle. (c) Repeat steps
(a) and (b) until there are no
more paths. (d) Collect all paths

6.1.2 Path Planning using the Iterative A* Algorithm

The above approach is inapplicable for generating multiple
paths in wide spaces without obstacles that can be
circumnavigated. We would still like to capture user
preferences, such as driving down the middle of a wide
hallway, or keeping to the right, or staying away from
people. To handle situations where we would like to
differentiate between paths in the same homotopy class, we
developed a variant of the A* algorithm.

The Iterative A* Algorithm, shown in Fig. 9, works as
follows:

(a) Use the A* algorithm to find the shortest path in the
occupancy grid. Exit to step (d) if no path can be found.

(b) Block the most recently found shortest path with a
virtual obstacle. (This is implemented by relabeling the
occupancy grid cells as occupied in a rectangle of fixed
size around the midpoint of the path. The area around
the start and end of the path are left unchanged to avoid
blocking additional acceptable paths.

(c) Go back to step (a) using the modified map from step
(b).

(d) Return all paths that have been detected.

6.2 Learning User Preferences

To be able to collect data to train and test our approach,
we have designed two user interfaces (UIs): one on a
simulated wheelchair and the other on the actual robotic
wheelchair. Regardless of the UI, users are offered multiple
paths and asked to choose their preferred one. Given these
path selections, our approach learns to rank paths according

to the preferences of the user. We formulate the problem
as pairwise selection and train an SVM to perform ordinal
regression [74].

First, we collect a dataset comprising selections made by
the same user, from which we obtain ranking constraints.
For each scenario, we obtain pairwise constraints between
the selected path and those that were not selected, but no
constraints among paths that were not selected.

We use the term scenario to refer to a tuple of the
robot’s initial location and goal on a given map. Our system
plans multiple paths for every scenario and asks the user
to pick one of them. On the simulator, this is implemented
as a single click on the path, while on the actual robot it
is implemented as a voice command. Data collection and
annotation effort in the simulator is less time consuming
compared to the same task on the actual robot. However,
since path selection on the simulator is not equivalent to
collecting actual data, we evaluate the effectiveness of both
types of data in Sections 7.1.3 and 7.1.4.

In order to train the path ranking system, we define a set
of features to represent each path. Those features convey
information that affects user selections in both static and
dynamic environments, where people must be considered by
the planner.

6.2.1 Features for Paths in Static Environments

Users differ in their path selection criteria. In a static
environment, for a path X consisting of a sequence of poses
x, the feature vector f (X) has the following five elements:

(a) Path length: users prefer the shortest path among
equivalent options. We calculate the length of the
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path by summing the straight-line distances between
consecutive poses in the path.

lp =
n∑

i=1

l(xi, xi+1) (1)

(b) Narrow passage length: we define as a “narrow
passage” a segment of the path that is near obstacles
on both sides. Such segments may be undesirable to
certain users due to the increased chance of collision.
We define a narrow passage segment as a set of
consecutive poses Xn among all poses X such that
d(xi) < dn and d(xi+1) < dn where dn is a constant,
set as dn = 0.5m here.

ln =
∑

l(xi, xi+1), {xi, xi+1} ∈ Xn (2)

(c) Average distance to obstacles: the distance between
every pose to the nearest obstacle. This feature
is an indication of comfort and safety, similar to
corresponding features in the literature [21, 41, 46].

d̄ =
∑ ||d(xi)||

N
(3)

(d) Minimum distance to obstacle: the minimum among
all distances from any pose to the respective nearest
obstacle.

dmin = min(||d(xi))|| (4)

(e) Sum of turning angles: is an indication of user comfort
[35, 41, 75], since the angles between consecutive
poses are related to angular velocity and acceleration
of the wheelchair. Angular velocity and acceleration
may cause discomfort if they are large.

δsum =
∑

‖δ(xi+1) − δ(xi)‖ (5)

6.2.2 Features for Paths in Environments with People

Our approach also takes people in the scene into
consideration. People move, and, more importantly,
affect the wheelchair in different ways than static
obstacles [12, 45–47, 49]. Our path planner only
considers instantaneous observations and re-planning
is needed as people move in the environment. To
facilitate path ranking in the presence of people, we
define two additional features.To acquire data for these
two features, which are defined below, we use the
SPENCER person detector [63, 64].

(f) Average distance to people: this feature is analogous
to the average distance to obstacles, but the average is
taken over distances to people.

d̄p =
∑ ||dp(xi)||

N
(6)

(g) Minimum distance to people: this feature is analogous
to the minimum distance to obstacles.

dp min = min(dp(xi)) (7)

6.2.3 Support Vector Pairwise Ranking

So far, we have presented ways to generate multiple paths
and to encode each of them in a feature vector. The next step
is to predict the most preferable path to the user, which is a
ranking, not a classification, task. In each training scenario,
the user selects one path and rejects all other options. Thus,
what we can learn from the training data is that the user
preferred a given path every other available path. However,
no knowledge is available about the relative ranks of the
paths that were not chosen. Taking this into account, the
problem is formulated as an ordinal regression task and
solved according to the approach of Herbrich et al. [74]
which relies on an SVM subject to pairwise constraints.

We use the same formulation for both static and dynamic
environments. We begin by normalizing the features to
have mean equal to zero and variance equal to one, thus,
obtaining normalized feature vectors denoted by f̂ (X). The
training set is generated by forming pairs comprising a
preferred and a not-preferred path from the same scenario.
Then, an element-wise vector subtraction is preformed
on the feature vectors of the paired paths resulting in a
vector we refer to as the preference vector. Half of these
subtractions are performed by subtracting the feature vector
of the preferred path from that of the not-preferred path,
while the other half are carried out in the opposite direction.
The resulting preference vectors are labeled as follows:

y(pij ) =
{

+1 if user prefers path Xi to Xj

−1 if user prefers path Xj to Xi .
(8)

A Linear SVM is trained to predict the label of an input
preference vector, which is equivalent to predicting the most
preferable path. Because the SVM is linear, we can multiply
its weight vector w with the feature vectors f̂ (X) before
the subtraction. The resulting product is the score of a path;
paths with higher scores are preferred over alternatives with
lower scores.

S(X) = wT f̂ (X) (9)

For fully autonomous navigation, the path with the
maximum score is selected. But in cases where the top
two ranked paths have scores within a predefined margin,
we engage the user to break the tie. Whenever the user
is involved in the selection, additional training data are
generated.
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Fig. 10 Mapping user paths to
those generated by the planner.
Solid curves marked with a u

correspond to paths traced by
the user, while dashed curves
correspond to paths generated
by the GVD planner. The path
followed by the user is mapped
to the automatically generated
path in the same homotopy
class, which must have been
generated by the planner. (Not
all homotopically distinct paths
are shown to reduce clutter)

6.3 Learning fromDemonstration

Every time we record a path driven by the user, we assume
that the user has selected that path over a number of
alternatives. To obtain all possible paths we use the GVD
planner described in Section 6.1.1 and shown in Fig. 8. The
set of paths must contain a path that is homotopically similar
to the recorded path, as shown in Fig. 10. Therefore, we
can map any path, complete or partial, the user has followed
to its homotopically equivalent path. This is done using
the vector of winding angles as the descriptor of a path,
according to Kuderer et al. [68]. We then attach features to
the paths, as described in Section 6.2.1, and use the classifier
to compare two or more paths using the user choice to
generate labels, as described in Section 6.2.3.

7 Experiments

In this section, we present experiments on learning user
preferences in path selection, attention-driven navigation,
person-guided navigation and people following.

7.1 Learning User Preferences in Path Selection

In this section, we present an experiment on our approach
for learning personalized user preferences. We attempt to
learn navigation models for two subjects based on a set of
144 scenarios for each subject. A scenario is defined as a
navigation between specific start and goal positions in a
specific environment.. Specifically, for each subject there
were 36 scenarios for each planner in static scenes and 36
more for each planner in dynamic scenes, that is in the
presence of people. Both real and simulated platforms are
used for this experiment.

7.1.1 Experimental Setup

An experiment has been designed to evaluate the path
ranking approach on the simulated and actual robotic
wheelchair. The goal is to learn the preferences and create
a customized path planner for each user, rather than the
“average” preference of the crowd [76]. Two users with
different preferences performed both the simulated and
physical experiments.

A ROS-based simulator that uses our path planners has
been developed to collect the users’ path selections for
training. The trained planner was then deployed in both
simulated and physical environments for testing.

7.1.2 Data Collection in the Simulator

Data were collected in four virtual maps of similar
complexity to the space used for experiments (see Fig. 11
for examples). Each map has a different layout and contains
furniture, such as a bed, a desk, a dining table, a sofa, etc.
We intentionally designed maps to have one, two or more
homotopically distinct paths. We generated scenarios by
asking the subjects to pick the start and end points. Then,
the system generates a set of possible paths using one of the
planners and the subject selects among them.

An additional dataset was collected in the same four
maps after adding people to the scene to mimic dynamic
environments to measure the effects of the presence of
people on navigation choices. In total, each of the static and
dynamic datasets contains 36 scenarios per planner per user.

7.1.3 Results in Simulated Maps

The subjects were offered a set of paths to select from,
as shown in Fig. 11. For maps that have only one
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Fig. 11 Path selection examples in the simulator. Solid red curves represent the preferred path and dotted blue ones the paths that were not chosen.
The selections of subject 1 are shown at the top and of subject 2 at the bottom. Note: subject preferences are different when people are present in
the environment

homotopically distinct path, the GVD planner was not used,
since it cannot generate multiple options in them. Figure 11
also shows the selected paths by both subjects in two of the
maps.

For each planner and each environment category, we split
each subject’s training data into two thirds for training and
one third for testing. This split results in 8 pairs of training
and testing datasets, and 8 corresponding SVMs trained as
detailed in Section 6.2.3.

To limit the number of times the system asks for
user involvement, we define a confidence calculated by
subtracting the scores of the top two ranked paths. We can
control how often the system decides autonomously, the
system decision rate, by thresholding this confidence. The
ROC curves of system accuracy over system decision rate
as the threshold varies is shown in Fig. 12. Accuracy is 85-
90% when the system is in full autonomous mode and never
involves the user. As the system starts involving the user
when confidence is low, the accuracy increases. In the rest
of the section, the confidence threshold is set to 0.2.

Average results after randomly splitting each dataset 20
times are shown in Table 1. System accuracy in selecting
the preferred path is always above 76%, at most 14.4% of
system choices are incorrect, while 2-12% of the decisions
are deferred to the user.

It should be noted that for some subjects who are
consistent in path selection such as subject 2, who said
“I always pick the path that was away from the person,
especially for open spaces,” the system accuracy increases
using the iterative A* planner.

7.1.4 Results on Robotic Wheelchair

After training our approach in simulation, we tested it in
a real scene: a studio shown in Fig. 13. The studio has a
bed, a dining table and areas labeled study area and kitchen.
The dining table at the center produces two homotopically
distinct paths in most scenarios. In some cases, the two
available paths have similar feature vectors, such as the
paths between the kitchen and bed. In other cases, such as
between the bed and the study area, the paths have very
different feature vectors making the choice more obvious.

Our physical experiments test the ability to train the
system in simulation and deploy the learned ranking model
in real environments. Preliminary results are encouraging.
The observed differences in users’ preferences persist across
the simulator and the physical wheelchair, especially in
dynamic environments. Pictures and video from the physical
experiments are shown in Fig. 14 and in the supplemental
material, respectively.

Fig. 12 Plot of accuracy vs.
system decision rate for static
(left) and dynamic (right)
scenes, averaged over 72
scenarios per user (36 scenarios
per planner)
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Table 1 Results in the simulator for both users in static (top) and dynamic (bottom) scenes averaged over 36 scenarios in each category

GVD Path Planner Iterative A* Path Planner

Preferred Not Preferred Asked user Preferred Not Preferred Asked user

Path was Chosen Path was Chosen to decide Path was Chosen Path was Chosen to decide

User 1 91.8% 2.4% 5.6% 76.3% 12.0% 11.5%

User 2 79.6% 10.7% 9.6% 81.8% 11.1% 7.0%

User 1 93.9% 2.1% 3.9% 79.9% 14.4% 5.6%

User 2 84.9% 6.7% 8.3% 97.3% 0.5% 2.0%

Fig. 13 Learning user
preferences in an actual scene.
(a) Studio for navigation,
(b) paths between kitchen and
study, (c) map of studio,
(d) paths displayed on tablet

Fig. 14 Pictures from an experiment with the second subject. A static and a dynamic scene are shown at the top and bottom row respectively. The
presence of people affect the subject’s choice of paths, even though the people were not blocking any path
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(a) the user starts the attention-driven navigation by voice commands (b) the user looks at the target object

(c) the object is shown on the frontal display; the robotic wheelchair confirms

with the user

(d) the robotic wheelchair moves towards the target object

(e) the user starts another attention-driven navigation while the wheelchair is en

route to the target

(f) the user looks at the second target object

(g) the robotic wheelchair turns towards the direction the user looked at to local-

ize the object

(h) the robotic wheelchair moves towards the new target

Fig. 15 Attention-driven navigation: the egocentric view is shown in the bottom right corner

7.2 Attention-driven Navigation

In this previously unpublished experiment, we demon-
strate attention-driven navigation. The user initiates

attention-driven navigation to the poster on the whiteboard
by staring at it. While the robotic wheelchair moves towards
the whiteboard, the user initiates another attention-driven
navigation to a different poster. The robotic wheelchair
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Target

Fig. 16 An example of person-guided navigation. The user detects
the person of interest to the left, which informs the wheelchair of the
correct direction to turn. The face recognition task is then handed over
from the egocentric camera to the RGB-D sensor

then changes the navigation target to the second poster.
Prior knowledge about the posters is not required. We show
images from one run in Fig. 15. Please see the supplemental
material for a video of the full experiment here.

7.3 Person-guided Navigation

Person-guided navigation leverages the user’s ability to
locate objects or people in the scene to speed up and
improve autonomous navigation. For example, the user
wants to navigate to a person in a room and this person is
not visible to the wheelchair from its current position. The
user can indicate to the wheelchair the correct direction to
rotate until the person enters the field of view of the RGB-D
camera. The workflow for this example is as follow:

(a) the user searches for the target person in the room;

(b) the face detection and recognition system detects
and recognizes the person from the video stream of
egocentric camera;

(c) the relative pose of the wearable camera with respect
to the wheelchair is used to determine the wheelchair’s
rotation direction;

(d) the wheelchair starts turning towards the person;
(e) when the person is detected and recognized in the

video stream coming from the RGB-D camera, the
wheelchair navigates to the person.

An example is shown in Fig. 16 and in the supplemental
videos. In the experiment, as shown in Fig. 16, three people
other than the wheelchair user are present in the scene, two
of which are registered in the face detection and recognition
system. The target person is not initially visible to the
wheelchair RGB-D camera. The wheelchair user locates the
target person with the egocentric wearable camera. Then,
the wheelchair start turning leftward in-place until it is
facing the target person. See Section 5.3 for more details.

7.4 People Following

In this experiment, a person is in front of the wheelchair.
Once people following mode is activated, the wheelchair
detects, tracks and follows the person in the scene. More
details can be found in Section 5.4, while an example is
shown in Fig. 17 and in the supplemental video.

8 Conclusion

We have presented a novel approach for wheelchair
navigation using a wearable egocentric camera based on

Fig. 17 An example of people
following
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computer vision technology. It allows hands-free operation
of the wheelchair and gives the user the ability to control
direction and speed in a continuous way. Multiple levels
of autonomy are supported. The user can operate the
wheelchair at a low level with direction and velocity
commands, or can initiate complex maneuvers with single
instructions. The viability and practicality of the system and
its capabilities have been shown experimentally.

In addition, we have presented an approach for integrat-
ing user preferences in path planning, learning from the
user’s interaction with the system. These interactions occur
either when users select paths in autonomous mode or drive
the wheelchair manually. We designed and conducted exper-
iments on both real and simulated platforms. Results in both
cases demonstrate the system’s ability to learn from rel-
atively small amounts of user inputs. Encouraged by the
success of learning in the simulator, we investigated whether
we can train using simulated data only. In a separate effort
[77], we showed promising results in a setting where we
no longer train personalized navigation models for shared
autonomy, but a global model for fully autonomous nav-
igation. One promising direction for future work is better
modelling of people in the simulator, since there is some
discrepancy between their influence and that of real people
on the robot.

The next step for this technology is broader testing. The
contributions described in this paper were evaluated in user
studies with healthy subjects. The results of these trials
indicate that clinical tests of the proposed technology should
be considered.
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