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Aural Pattern Recognition Experiments and the

Subregular Hierarchy

James Rogers1 and Geoffrey K. Pullum2

1 Dept. of Computer Science, Earlham College
2 Linguistics & English Language, University of Edinburgh

Abstract. We explore the formal foundations of recent studies com-
parining aural pattern recognition capabilities of populations of human
and non-human animals. To date, these experiments have focused on
the boundary between the Regular and Context-Free stringsets. We ar-
gue that experiments directed at distinguishing capabilities with re-
spect to the Subregular Hierarchy, which subdivides the class of Regular
stringsets, are likely to provide better evidence about the distinctions
between the cognitive mechanisms of humans and those of other species.
Moreover, the classes of the Subregular Hierarchy have the advantage of
fully abstract descriptive (model-theoretic) characterizations in addition
to characterizations in more familiar grammar- and automata-theoretic
terms. Because the descriptive characterizations make no assumptions
about implementation, they provide a sound basis for drawing conclu-
sions about potential cognitive mechanisms from the experimental re-
sults.
We review the Subregular Hierarchy and provide a concrete set of prin-
ciples for the design and interpretation of these experiments.

1 Introduction

The last several years have seen a number of intriguing experiments aimed at
differentiating the aural pattern recognition capabilities of various species [1–4].
Aside from the evidence these provide about potentially unique characteristics
of human languages, when they contrast human capabilities with those of our
evolutionary cousins they provide indirect evidence about those cognitive facul-
ties of our common ancestors which may have provided the foundation for the
evolution of human language.

The connection between the experimental data and the hypothesized cogni-
tive mechanisms is provided by formal language theory (FLT). Characterizations
of the structure of language classes (such a Nerode-style characterizations and
pumping lemmas) have motivated the choice of stimulus patterns the experi-
ments employ, and characterizations of those classes in terms of abstract com-
putational mechanisms (such as grammars and automata) have provided the
basis for inferences about the properties of the cognitive mechanisms in play.

Nearly all of the FLT employed in this work is based in the Chomsky Hier-
archy (CH), but there are a number of reasons for questioning whether this is



really the right place to be looking. To begin with, viewed as an instrument in the
context of these experiments, the CH seems to lack resolution. What is typically
taken as emblematic of Context-Free Languages (CFLs) is far too hard for hu-
mans (processing {peoplen leftn | n ≥ 1} rapidly outstrips any human being’s
aural pattern recognition abilities), while what is taken as representative of reg-
ular languages is far too easy (being able to recognize {(ding dong)n | n ≥ 1}
should hardly count as evidence of ability to handle arbitrary regular languages).
Beyond that, grammar and automata theoretic classes seem to presuppose spe-
cific types of structure or specific classes of recognition mechanisms, raising ques-
tions about whether these are necessarily relevant to the cognitive mechanisms
under study.

There is, in fact, a rich hierarchy of classes of stringsets which subdivides the
class of Regular (Finite-State) stringsets. In addition to providing finer resolving
power in the range of capabilities that seem to be relevant to these studies,
this subregular hierarchy includes some of the most well-developed examples of
descriptive characterizations of language-theoretic complexity classes [5–9].

Descriptive (model-theoretic) characterizations focus on the nature of the
information about the properties of a string (or structure) that is needed in
order to distinguish those which exhibit a pattern from those which do not.
Consequently, they are independent of specific mechanisms for specifying or rec-
ognizing the patterns. Any mechanism which can handle only patterns which
can be described within the means of a particular descriptive class will have no
need to be sensitive to anything other than the kind of information that charac-
terizes that class. Conversely, any mechanism which is is sensitive to that kind
of information will be capable, in principle, of handling the range of patterns
which fall within the descriptive class.

The descriptive characterizations, however, do not stand alone. These classes
are also characterized by a range of abstract mechanisms including grammars,
automata and, in some cases, artificial neural networks. These characterizations
in more traditional FLT terms provide a means of reasoning about the structural
properties both of the individual stringsets that satisfy a pattern and about the
class of stringsets that can be described within the means of the class.

Note that the grammar and automata theoretic characterizations do not
determine the actual form of a cognitive mechanism for recognizing patterns
within the class. The fact that there are many equivalent characterizations of
each class implies that no conclusions can be drawn about the specific details
of the mechanism. What one can conclude, on the other hand, is that whatever
the actual mechanism is it must be sensitive to the kind of information that
characterizes the descriptive class and that the class of patterns that it can
recognize will exhibit those properties that are characteristic of the class.

Thus classes that can be characterized both descriptively and automata or
grammar theoretically, while not presupposing any concrete details of the mech-
anism, serve both ends of these aural pattern recognition studies. By providing
characterizations of the structure of the stringsets that satisfy particular classes
of patterns, they provide a means of designing experimental protocols that can



resolve contrasts between the cognitive capabilities of the subjects. By providing
highly abstract characterizations of the mechanisms which can process particular
classes of patterns they provide a means of drawing conclusions about the differ-
ences in the capabilities of cognitive mechanisms that can account for observed
differences in recognition abilities.

In this paper we revisit the subregular hierarchy paying particular attention
three aspects: the broad generality of the descriptive characterizations of the
classes, the consequences their structural characteristics have for the design of
pattern recognition experiments and the nature of the conclusions about the
cognitive mechanisms involved that these experiments can support.

While most of the FLT results are either already well established or could
probably be best attributed to folklore, we offer two substantiative method-
ological contributions. The first is specific to the current experiments in aural
pattern recognition. There is good reason to suspect that distinctions between
human capabilities in this realm and the capabilities of our evolutionary cousins
may occur within this range of complexities. Heinz [10], for example, has shown
that a wide range of stress patterns in human languages fall strictly within the
Regular stringsets. We believe that experiments directed at distinguishing ca-
pabilities with respect to the subregular hierarchy may provide a great deal of
evidence about the distinctions between the cognitive mechanisms of humans
and those of other species. We provide a concrete set of principles for the design
and interpretation of these experiments.

Our second methodological contribution is more general. We believe that our
allocation of roles between the descriptive and mechanism-oriented characteriza-
tions, in which conclusions about potential cognitive mechanisms are based only
on the more abstract descriptive characterizations and the mechanism-oriented
characterizations are reserved for providing structural information about the
definable sets, provides a clear foundation on which to interpret experimental
results that is applicable to a wide range of pattern-based experiments. As the
papers we cite above demonstrate, there has often been considerable variation in
the conclusions that have been drawn from similar evidence and this appears to
spring from variation in assumptions about the necessary properties of mecha-
nisms capable of distinguishing a given class of stringsets. As we will show, many
of these assumptions are unwarranted.

2 The Subregular Hierarchy

We refer to the ‘subregular hierarchy’ for brevity, but each of the classes in the
hierarchy is actually the closure of an infinite hierarchy of subclasses, some of
which can be further refined into sub-hierarchies. We concentrate on the four
main classes.

2.1 Strictly Local Stringsets

The base of the hierarchy is the class of Strictly Local (SL) stringsets, those
that can be distinguished simply on the basis of which symbols occur adjacently.



A Strictly k-Local description is a set of k-factors (or k-grams), length k se-
quences of symbols drawn from the alphabet augmented with start and end
symbols. The stringset such a description defines is the set of strings which in-
clude only k-factors from the set. Formally, given a string w and a length k, the
set of k-factors of w is:

Definition 1 (k-factors).

Fk(w)
def
=

{

{y | w = x · y · z, x, y, z ∈ Σ∗, |y| = k} if |w| > k,

{w} otherwise.

The set of k-factors of a stringset L is the set of k-factors of the strings that it
contains:

Fk(L)
def
=

⋃

w∈L

[Fk(w)].

A strictly k-local description is an arbitrary set of k-factors drawn from the
alphabet Σ, possibly starting with o and/or ending with n where o and n are
endmarkers not occurring in Σ:

Definition 2 (Strictly k-Local Descriptions). G is a strictly k-local de-

scription iff
G ⊆ Fk({o} · Σ∗ · {n})

A string w satisfies such a description iff the augmented string o ·w ·n includes
only k-factors given in the description. L(G) is the stringset defined by G, the
set of finite strings which satisfy it:

L(G)
def
= {w | Fk(o · w · n) ⊆ G, w finite}.

A stringset is Strictly k-Local ( SLk) iff it can be defined by a Strictly k-Local
description. It is Strictly Local ( SL) iff it is SLk for some k.

The set {(ding dong)n | n ≥ 1} is SL2, as witnessed by the set of 2-factors:

{o ding, dingdong, dongding, dongn}. (1)

Computationally, Strictly k-Local stringsets are those that can be recognized
by scanners, automata that simply scan a k-symbol window across the input
failing if, at any point, the window contains a factor that is not in the permitted
set. A grammar-theoretic characterization can be obtained by taking the k-
factors to be productions permitting the extension of a string with the kth symbol
of the factor if the string currently ends with the first k − 1 symbols.

The Strictly k-Local stringsets form a proper hierarchy in k, with the class of
Strictly Local stringsets, in general, (SL) being the union of the Strictly k-Local
stringsets for all finite k. Every finite stringset is SLk for k no greater than the
length of the longest string plus one. Hence, the finite stringsets are a (proper)
sub-class of SL. Conversely, there is no k such that SLk includes all the finite
languages.



From a cognitive perspective, this is the class of stringsets that can recognized
while only remembering the previously encountered block of symbols for blocks
of some fixed finitely bounded size or, more generally, that can be distinguished
solely on the basis of whether particular finitely bounded blocks of symbols occur
independently of the content of the rest of the string. Any cognitive mechanism
that is sensitive only to the individual length k blocks of events, in isolation, in
the presentation of a string will be able to recognize only SLk stringsets. For any
fixed k, all the SLk stringsets are learnable in the sense of being identifiable in
the limit (Gold [11]), but the closure class SL is not.

The characteristic property of SL stringsets is that if there are two strings
in the set in which the same sequence of k − 1 symbols occurs, then the result
of substituting the suffix starting at that sequence in one of them for the suffix
starting at that sequence in the other must also be in the stringset. We refer to
this property as Suffix Substitution Closure.

Theorem 1 (Suffix Substitution Closure). A stringset L is SL iff there is
some k such that whenever there is a string x of length k− 1 and strings u1, v1,
u2, and v2, such that u1xv1 ∈ L and u2xv2 ∈ L then u1xv2 ∈ L as well.

In fact, if L ∈ SLk then GL
def
= ∪w∈L[Fk(own)] is the minimal SLk description

of L. Note that this is a characterization: a stringset can be recognized while
remembering only the preceding k − 1 symbols if and only if it is closed under
this type of substitution of suffixes.

One of the consequences of this characterization is that SL specifications
cannot require some particular sequence of symbols to occur in every string
unless the k-factors that may precede it are distinct from those that may follow
it. For example, the set of strings of As and Bs in which at least one B occurs is
not SL (for any k). We will refer to this set as “Some-B”:

Some-B
def
= {w ∈ {A, B}

∗
| |w|B ≥ 1}. (2)

That this is non-SL follows straightforwardly from suffix substitution closure. If
Some-B were SL then it would be SLk for some specific k. But then the string
A

k
BA

k witnesses the failure of k-suffix substitution closure:

ε · A
k−1 · BA

k−1 ∈ Some-B,

A
k−1

B · A
k−1 · ε ∈ Some-B, but

ε · A
k−1 · ε 6∈ Some-B.

(3)

An animal that used a strategy to recognize strings that was based only on
remembering the most recently encountered fixed-length sequence of symbols
could potentially recognize strings of the form (AB)∗, distinguishing them from
those, for instance, of the same form in which one or more of the Bs was replaced
with an A or vice versa. But having learned to recognize strings of the form
A
∗
BA

∗, an animal using a Strictly Local strategy would not be able to distinguish
these from those consisting of only A

∗.



The failure of an animal to recognize a particular SL stringset, however,
does not imply that they do not employ this strategy. Their ability to apply the
strategy may be limited in ways that exclude that set. Similarly, while success in
recognizing an SL stringset establishes that the subject employs a strategy that is
at least as powerful as scanning k-factors, it does not imply that they are capable
of recognizing every SL stringset. So we can establish lower bounds experimen-
tally (individuals of this species can recognize at least some SL stringsets) but
experiments of this sort will provide firm evidence only of possible upper bounds
(these individuals fail to recognize at least some SL stringsets). The strength of
the evidence depends on the preponderance of negative results and the breadth
of variation in the experimental setting.

2.2 Locally Testable Stringsets

While SL descriptions cannot require some factor to occur, they can forbid it. So
Some-B is in co-SL. Since the class of Strictly Local stringsets is closed under
intersection, if we close SLk under complement as well we get closure under
all Boolean operations. Descriptions of stringsets in this class can be taken to
be formulae in a propositional language in which the propositional variables are
k-factors which are taken to be true for a string iff they occur in that string.

Definition 3 (k-Expressions over Strings). The language of k-expressions
(over strings) is the smallest set including:

– Atomic formulae: f ∈ Fk({o} · Σ∗ · {n}) is a k-expression.
– Disjunction: If ϕ1 and ϕ2 are k-expressions then (ϕ1 ∨ϕ2) is a k-expression
– Negation: If ϕ1 is a k-expression then (¬ϕ1) is a k-expression.

If w is a string and ϕ a k-expression, then

w |= ϕ
def
⇐⇒







ϕ = f ∈ Fk({o} · Σ∗ · {n}) and f ∈ Fk(o · w · n),
ϕ = (ϕ1 ∨ ϕ2) and w |= ϕ1 or w |= ϕ2,

ϕ = (¬ϕ1) (i.e., otherwise) and w 6|= ϕ.

Stringsets definable in this way are called Locally k-Testable (LTk).
Any pattern that can be described in terms of Boolean combinations of per-

missible and non-permissible k-factors for some k defines a Locally Testable
stringset. Some-B, for example, is LT2:

Some-B = {w ∈ {A, B}
∗
| w |= o B ∨ AB} (4)

Again, these classes form a proper hierarchy in k with the class LT being the
closure of the hierarchy under union. For each k, the class SLk is a proper subset
of LTk, but SLk+1 is not a subset of LTk nor is LTk a subset of SLk+1. In fact,
LT2 includes stringsets that are not SL for any k (as witnessed by Some-B).

Automata for recognizing LTk stringsets can be obtained by extending scan-
ners to keep track of which k-factors occur, feeding the result into an arbitrary



Boolean network. Since there are but finitely many k-factors over a fixed alpha-
bet this is a finite-state recognition strategy.

As with SL, the LTk stringsets are learnable in the limit if k is fixed but the
closure class LT is not learnable in the limit.

The characteristic of Locally k-Testable sets is that strings that include ex-
actly the same set of k-factors cannot be distinguished—they either both must
be included in the set or they must both be excluded.

Theorem 2 (Local Test Invariance). A stringset L is Locally Testable iff
there is some k such that, for all strings x and y: if Fk(o · x ·n) = Fk(o · y ·n)
then x ∈ L ⇔ y ∈ L.

Again, this is a characterization. If we say that two strings are k-equivalent if
and only if they have the same set of k-factors, then a stringset is LTk iff it is
the union of some subset of the (finitely many) equivalence classes of Σ∗ with
respect to k-equivalence.

One of the consequences of this is that, while Some-B is Locally Testable,
the set of strings of As and Bs in which exactly one B occurs:

One-B
def
= {w ∈ {A, B}

∗
| |w|B = 1}, (5)

is not Locally Testable (for any k). To see this, note that the strings A
k
BA

k and
A

k
BA

k
BA

k include exactly the same sets of k-factors, but the first is in One-B
while the second is not.

So an animal that used a strategy based on keeping track of exactly which
subset of the set of all k-factors over the relevant alphabet occurs in a string
or which was otherwise sensitive to only this information could potentially dis-
tinguish strings of As and Bs in which some B occurs from those in which no
B occurs, but would not be able to distinguish strings in which exactly one B

occurs from those in which more than one occurs.

2.3 Locally Threshold Testable

A stronger strategy would be to keep track not just of which k-factors occur but
how many times each occurs. If one limits this to counting up to a finite threshold
(not distinguishing different numbers of occurrences if they both exceed the
threshold) then this will still be finite-state. This would allow recognition of “n-
B” for any value of n less than the threshold. Stringsets that can be distinguished
in this way are called Locally Threshold Testable (LTT) and there are proper
hierarchies in both k and t, the size of the threshold.

Strikingly, this turns out to be exactly the class of stringsets one can define
using First-Order logic to reason about positions in strings using a monadic
predicate for each symbol (picking out the set of positions in which it occurs)
and a binary predicate relating positions to their immediate successor.

Definition 4 (FO(+1)). An /-model of a string w is a structure

〈D, /, Pσ〉σ∈Σ



where the domain D
def
= {i ∈ N | 0 ≤ i < |w|} is the set of positions in w, / is the

successor relation on these positions (x / y
def
⇐⇒ y = x+ 1) and, for each σ ∈ Σ,

the predicate Pσ picks out the set of positions at which σ occurs in w.
FO(+1) is the class of stringsets definable in First-Order logic as /-models.

Any pattern that can be defined with a finite set of FO formulae over this
signature is an LTT stringset.

Theorem 3 (Thomas [6]). A set of strings is First-order definable relative
to the class of finite 〈D, /, Pσ〉σ∈Σ models (in FO(/)) iff it is Locally Threshold
Testable.

One-B, for example, is the set of strings over {A, B} which satisfy the description:

(∃x)[B(x) ∧ (∀y)[B(y) → x ≈ y] ]. (6)

LTTk,t is, again, learnable in the limit if both k and t are fixed, but is
not learnable otherwise. Consequently, the sets of strings definable in FO with
successor is not learnable in the limit.

The characteristic of LTT stringsets is analogous to that of LT stringsets.
We say that two strings are (k, t)-equivalent whenever, for each k-factor, they
include either the same number of occurrences of that k-factor or they both
include at least t occurrences. A stringset is LTT if and only if there is some
k and t for which it does not distinguish (k, t)-equivalent strings: every pair of
equivalent strings are either both included in the set or both excluded. Hence, a
stringset is LTTk,t iff it is the union of a subset of the finitely many equivalence
classes of Σ∗ with respect to (k, t)-equivalence.

One could probe the limits of LTT by exploring a range of values of k and t,
but it is doubtful that a sufficiently large range could be covered in a practical
set of experiments. A better approach would be to explore the ability of animals
to recognize the set we will call “B-before-C”.

B-before-C
def
= {w ∈ {A, B, C}∗ | at least one B precedes any C}. (7)

To see that this is not LTT for any k or t, it suffices to note that the strings
A

k
BA

k
CA

k and A
k
CA

k
BA

k have exactly the same number of occurrences of every
k-factor and therefore are (k, t)-equivalent for all t.

An animal that used a strategy of counting k-factors up to some threshold or
which was otherwise sensitive to only this information, then, could potentially
distinguish strings in which exactly one B occurs from those in which more than
one B occur but would be unable to distinguish strings of the form A

∗
B(A|B|C)∗

(where — denotes alternation) from those of the form A
∗
C(A|B|C)∗.

2.4 Star-Free Stringsets

The next step is to extend the FO signature with a predicate for the transi-
tive closure of the successor relation (“precedes” or “less-than”). The class of



stringsets FO-definable over this signature is called FO(<). McNaughton and
Papert [5] showed that this class coincides with the Star-Free sets (SF), the
stringsets definable by regular expressions which may employ complement but
not Kleene-closure. Any pattern that can be described by a finite set of FO for-
mulae over this signature defines a Star-Free language. B-before-C, for example,
is the set of strings over {A, B, C} which satisfy:

(∀x)[C(x) → (∃y)[B(y) ∧ y < x] ]. (8)

In abstract language-theoretic terms, SF turns out to be the closure of LT un-
der concatenation and Boolean operations. This class is called Locally Testable
with Order (LTO). Like SL, LT and LTT, it is the closure of an infinite hier-
archy of language classes, LTOk, each of which is closure of LTk under concate-
nation and Boolean operations.

The cognitive analog of the SF class would be employing a fixed sequence of
threshold-counting strategies—or equivalently, allowing the threshold counters
to be reset up to a fixed, finite number of times—and keeping track of which
succeed and which fail. LTO, since it extends LT, is not learnable in the limit.

Automata-theoretically, SF is the class of stringsets recognized by Counter-
Free automata, automata for which the syntactic monoid is aperiodic. This is
the case iff there is some n > 0 such that, for all strings u, v, w over Σ, if uvnw

occurs in L then uvn+iw, for all i ≥ 1, occurs in L as well.

Theorem 4 (McNaughton and Papert [5]). A stringset L is Star-Free iff
it is non-counting, that is, iff there exists some n > 0 such that, for all strings
u, v, w over Σ, if uvnw occurs in L then uvn+iw, for all i ≥ 1, occurs in L as
well.

Corollary 1. A set of strings is First-Order definable relative to the class of
finite 〈D, /, <, Pσ〉σ∈Σ models (in FO(<)) iff it is non-counting.

One key consequence of this is that the automata cannot do modular count-
ing. Membership in SF stringsets cannot depend on the number of times some
factor occurs modulo some fixed value. (In other words, the threshold coun-
ters cannot be reset arbitrarily many times.) One simple stringset that requires
modular counting is the set of strings of As and Bs in which the number of Bs
is even:

Even-B
def
= {w ∈ {A, B}

∗
| |w|B mod 2 = 0}. (9)

So while an animal using a sequence of LT strategies could potentially recognize
B-before-C, it would be unable to distinguish strings of the form (A∗

BA
∗)2n from

those of the form (A∗
BA

∗)2n+1.

2.5 Regular Stringsets

Finally, if we move to a Monadic Second-Order language, allowing quantifi-
cation over subsets of positions rather than just individual positions (quantifica-
tion over finite subsets, wMSO, actually suffices), using either signature (since



transitive closure is MSO definable), we obtain the Regular stringsets. This char-
acterization of Regular stringsets dates back to the late 1950s, due to Büchi [11],
Elgot [12] and Medvedev [13]. Automata theoretically, the Regular stringsets are
the ones accepted by Finite-State automata. In cognitive terms, any mechanism
for which there is a finite bound on the amount of information that is retained
while processing a string recognizes, at most, a regular stringset.

It should be emphasized that the fact that there is a finite bound on the
cognitive resources available to an animal (as there presumably is for all of us)
does not imply that they are limited to mechanisms that implement a recognition
strategy which requires only finitely bounded resources. They may well employ
a strategy for which, in principle, there is no fixed finite bound on the amount
of information retained while processing a string which simply fails on strings
beyond a particular length or degree of complexity (or perhaps, would fail if it
ever encountered such strings.)

2.6 Beyond Regular Stringsets

What CFLs introduce is a need, in principle, to retain an amount of informa-
tion that depends on the length of the string and is, hence, not limited by a
fixed finite bound. This can be captured in a descriptive setting by reasoning
about additional structure beyond the linear ordering of symbols in the string.
The grammar-theoretic characterization that gives the class its name generates
strings, in effect, by tracing out one sort of additional structure; the class of
derivation trees of CFLs is almost exactly the class that is definable by strictly
2-local definitions over trees.3 This is nearly immediate if one takes the set of
productions of a CFG to be a set of local trees, trees of height 1.

This is not the only way to organize the additional structure, though. The
CFLs can also be characterized by texts, strings augmented with an additional
partial ordering, in which the additional ordering is a matching [14]. This cor-
responds, in strong way, to the characterization of CFLs as the homomorphic
image of the intersection of a Dyck Language and a Regular stringset [15].

The additional structure can be captured in automata-theoretic terms, of
course, by augmenting finite-state automata with a stack, or some other store
with a size that is not finitely bounded. For many CFLs, including A

n
B

n, a
proper stack is not necessary. These can be recognized by Counter Machines,
FSA augmented with a counter which can be incremented, decremented and
tested for zero. This corresponds to a Pushdown Automaton (PDA) with
just a single stack symbol other than the bottom-of-stack marker. Note that the
single bracket-type Dyck language D1 (strings of well-nested parentheses) also
requires only a single counter of this type. To get beyond counter machines to

3 The differences come about because local definitions are not restricted to having a
single symbol labeling the root of the trees (in other words, they admit multiple start
symbols) and they are not required to label interior nodes and leaves with distinct
symbol sets (in other words, they may permit symbols which may be terminal to
also possibly be expanded).



PDAs with more than a single stack symbol one needs to move to D2 in which
there are two types of brackets that are well-nested both individually and with
respect to each other.4

3 Pattern Recognition Experiments

Both familiarization/discrimination experiments (as in Fitch and Hauser [2])
and training experiments (as in Gentner, et al., [3]) require the subjects to
generalize from a set of positive examples, testing the nature of the generalization
by testing their ability to discriminate strings within the intended stringset from
those not within it. The idea is that no subject will (or even can) generalize to
an intended set that is formally more complex than can be recognized by the
cognitive faculties they can bring to bear, and that subjects will not consistently
fail to generalize to intended sets which are within the recognizing power of those
faculties.

Any stringset that is a superset of the training (or familiarization) set is a
consistent generalization. Consequently, it is not sufficient to simply test the
subject on strings from a pair of stringsets that span a complexity boundary.
Rather, one has to consider all possible sets that the subject may generalize to
and test them on pairs of strings which can distinguish these. These consistent
sets will always include both proper supersets of the intended set (e.g., the set of
all strings over the relevant alphabet) as well as proper subsets (e.g., the finite
training set, itself).

The set A
n
B

n, which has often been used as the exemplar of CFLs, has a
variety of features that might be generalized by a subject: all of the As precede
all of the Bs (A∗

B
∗), the strings are all of even length ({Ai

B
j | i + j mod 2 = 0}),

the number of As is equal to the number of Bs (|w|A = |w|B), etc. In addition,
since the training set is finite it is not inconsistent to infer a finite bound on the
number of As and Bs. In order to resolve these, one must test the subject on
pairs of strings that fall in the symmetric difference between these sets and the
intended set.

Consider the situation in which the subject has been exposed to just the
string AAABBB. Testing this against AABBBB, for example, can distinguish
whether the subject has generalized to A

n
B

n or {Ai
B

j | i + j mod 2 = 0}, which
would provide evidence about whether or not they can recognize non-Finite-
State stringsets. Pairing it with AABBB, in contrast, can separate subjects that
have generalized to A

∗
B
∗ (which will not find it novel) but will not provide any

evidence about the Finite-State boundary: it will be novel both to subjects that
have generalized to A

n
B

n and to {Ai
B

j | i + j mod 2 = 0}. As A
∗
B
∗ is SL2 this

pair actually spans the entire Subregular Hierarchy.
While it will never be possible to completely rule out the possibility that

a subject has generalized to some finite superset of the training set which is
also a subset of the intended set, one can be reasonably sure that this is not

4 These can be recognized by FSA with two counters, but two counters actually suffice
to recognize all r.e. stringsets.



the case by including strings that are longer than any string in the training set
and which will, therefore, be unlikely to be included in any finite generalization.
Thus pairing AAABBB with AAAABBBB can provide evidence about whether
the subject has generalized to a finite set.

Finally, strings such as ABABAB will appear novel to subjects that have
generalized to A

∗
B
∗, requiring only the ability to recognize SL2 stringsets, but

would not appear novel to a subject who had overgeneralized to |w|A = |w|B,
even though this is a CF stringset. Thus, the pair of stringsets that has been
most widely used in these experiments actually fails to provide any evidence
about the Finite-State boundary whatsoever.

4 Interpreting the Empirical Evidence

In addition to the difficulty of obtaining empirical evidence which resolves the
boundaries of complexity classes, there have been substantial differences in in-
terpretation of what such evidence indicates about the nature of the cognitive
mechanisms involved. Fitch and Hauser [2] associate the ability to recognize CF
stringsets such as A

n
B

n with the need for an “open-ended memory”, but they
identify this class with the ability to process Phrase-Structure Grammars and,
in particular, the ability to embed strings within other strings (of the same con-
stituent type). The ability to recognize long-distance dependencies is taken to
be a consequence of this ability.

In Hauser, Chomsky and Fitch [1] the role of this self-embedding is taken
a step further, underlying a hypothesis that a “computational mechanism of
recursion” accounts for the difference between human and non-human capabili-
ties in this realm. Gentner, et al., [3] echo this, identifying their experiments as
establishing “recursive syntactic pattern learning” while Perruchet and Rey [4]
focus their experiments on “center-embedding”.

As we have seen, though, neither A
n
B

n nor D1 (sets of properly nested
parentheses) require center-embedding or even Phrase-Structure analysis at all.
Moreover, long-distance dependencies actually show up at the LT2 level. LT2

includes, for example, the set of strings involving interaction of wh-extraction
and number agreement of which Bresnan [16] wrongly claimed that they exhibit
a “distant type of agreement” that “cannot be adequately described even by
context-sensitive phrase structure rules”, namely:

Which problem did your professor say (she thought)∗ was unsolvable?
Which problems did your professor say (she thought)∗ were unsolvable?

The problem for experimenters is that distinctions between mechanisms for
recognizing non-Finite-State stringsets depend on the way in which the addi-
tional structure, beyond the string itself, is organized; these are issues that show
up in the analysis of the string, not in its form as a sequence of events. While the
mechanism-internal structure is occasionally explicitly marked in the string—see
Huybregts [17] and Shieber [18], for example—it will usually depend on distinc-
tions based on the meaning of the strings. Consequently, it is it is likely to be



very difficult to separate human capabilities from those of other animals within
the non-Finite-State realm with pattern recognition experiments.

5 Conclusion

Formal language theory provides useful tools for exploring pattern recognition
capabilities in general and, in particular, for designing and interpreting exper-
iments for distinguishing differential capabilities of this sort across species. Para-
doxically, the machine-oriented aspects—the theory of grammars and automata—
have little to say about the cognitive mechanisms involved.

Descriptive or model-theoretic characterizations such as the ones we have
considered here, in contrast, because they focus on the kind of information
that distinguishes structures in a class, can provide clues about the cognitive
mechanisms under study that are independent of a priori assumptions about
the details of the physical implementation of those mechanisms.

What the characterizations in terms of grammars and automata do provide
is highly specific information about the nature of the stringsets that can or
cannot be recognized by these means, providing clear criteria on which to choose
sets of stimuli to test the boundaries of the class. Together, these provide a
sound foundation for studying classes of stringsets that might be relevant to the
experimental study of prerequisites to language.

The subregular hierarchy encompasses a range of extremely general ways of
defining classes of patterns which are well understood from both descriptive and
machine-oriented perspectives. The prevailing focus on the boundary between
the finite-state and the context-free seems to have been taken over from the work
of Chomsky in 1956. But he was concerned with the capacities of human beings,
who we already knew spoke complex languages. With tamarins and starlings we
are fairly sure that no developed language capability is in place. What we seek is
a glimpse of any cognitive capacity for syntactic pattern recognition they might
have that could serve as an evolutionary building block for linguistic capacities.

As yet we do not even know whether an animal could recognize a pattern that
is LT but not SL. The range of complexity classes that make up the subregular
hierarchy spans a great deal of the territory that is likely to be relevant to
distinguishing human aural pattern recognition capabilities from those of other
species and may, in fact, span the full range of complexity classes which can be
probed with experiments of this type. We hope that this paper will serve as a
foundation for the design and analysis of further experiments in this realm.
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