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Abstract In this paper, we introduce Speedith which is an interactive dia-
grammatic theorem prover for the well-known language of spider diagrams.
Speedith provides a way to input spider diagrams, transform them via the
diagrammatic inference rules, and prove diagrammatic theorems. Speedith’s
inference rules are sound and complete, extending previous research by in-
cluding all the classical logic connectives. In addition to being a stand-alone
proof system, Speedith is also designed as a program that plugs into exist-
ing general purpose theorem provers. This allows for other systems to access
diagrammatic reasoning via Speedith, as well as a formal verification of dia-
grammatic proof steps within standard sentential proof assistants. We describe
the general structure of Speedith, the diagrammatic language, the automatic
mechanism that draws the diagrams when inference rules are applied on them,
and how formal diagrammatic proofs are constructed.

Keywords Interactive Theorem Proving · Diagrammatic Reasoning ·
Knowledge Representation · Automated Reasoning

1 Introduction

Diagrams are often employed as illustrations in pen-and-paper reasoning. In
fact, since ancient times they frequently formed essential parts of proofs.1
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1 The use of diagrams as evidence, or as a tool for constructing proofs, predates modern
efforts of formalisation of logic. An early example of the use of diagrams in proofs is Eu-
clid’s Elements. In the past, diagrams were used in the context of geometry, or geometrical
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One can argue that diagrams often provide compelling and intuitive solutions
to problems. Despite this, and with the advent of proof theory, the role of
diagrams became that of an informal visual aid – diagrams have rarely been
formalised in proof tools to be used for reasoning. In this paper, we do just that:
we present a new, formal diagrammatic theorem prover Speedith.2 Speedith’s
domain is the language of spider diagrams. It allows us to apply diagrammatic
inference rules on conjectures about spider diagrams, and thus construct a
proof. The entire proof construction process is carried out visually. The derived
proof is certified to be (logically) correct. The hypotheses that we aim to
confirm in our work are:

– It is possible to design and implement a complete formal diagrammatic
reasoner in the general domain of monadic first-order logic with equality
(or MFOLE for short), expressed using the language of spider diagrams.

– The derived diagrammatic proofs can be guaranteed to be formally correct.
– A diagrammatic reasoner for spider diagrams can be standalone, yet also

pluggable into external proof tools – thus providing alternative problem
representations and proof construction methods for these tools.

The intuitive nature of diagrams recently motivated the design of some for-
mal diagrammatic reasoning systems. Some examples include Diamond [13],
Dr.Doodle [36], and Cinderella [17], but they target different, more restricted
domains (e.g., a small subset of natural number arithmetic, a subset of real
arithmetic), and are hence able to prove only a limited class and number of
theorems. They do not provide a provably sound and complete set of inference
rules. They are also not designed to be readily integrated into external proof
tools.

There are theorem provers that were developed for spider diagrams, but
they worked only for fragments of the logic in this paper: they did not include
any logical connectives, or only a limited number of them [25]. In Speedith we
formalise the whole spider diagram logic (Section 2), which includes the full
range of classical logical connectives and is expressively equivalent to MFOLE.
We also develop a set of sound and complete inference rules (Section 3), rep-
resenting an extension of the system in [12].3 Moreover, we argue that these
inference rules allow the user to construct more intuitive proof steps.

Speedith is an interactive proof assistant for the language of spider dia-
grams that allows its users to interactively apply diagrammatic (visual) infer-
ence rules on spider-diagrammatic statements. It checks whether the inference
rules are used correctly and verifies that a spider-diagrammatic statement ex-
presses a true fact – it is a theorem. Thus, Speedith’s diagrammatic proofs are

representations of concepts from algebra, number theory, analysis, topology and category
theory.

2 We first introduced Speedith in [33]. This paper gives a comprehensive account of Speed-
ith, its design and theoretical properties, and also its further developments regarding the
selection of inference rules, hand-drawing interface and pluggable infrastructure.

3 The system in [12] is a proper fragment of that implemented in Speedith and was proved
complete in the absence of −→, ←→ and ¬. We enlarge the set of inference rules to obtain
completeness in this syntactically richer logic.
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Fig. 1 A proof of a spider-diagrammatic statement. The proof establishes that given sets
A and B, if there are two elements s1 and s2 and one is in both of A and B and the other is
either in only A or only B, then we can deduce that one element is in A and the other is in
B. In this proof, we applied the split spider on s1, add feet, one to each of the four spiders,
and idempotency inference rules. The rules are proved to be sound and their application in
this proof is verified by Speedith to be correct. Hence, the proof is certified to be correct.

entirely formal and certified to be correct. Fig. 1 shows an example of Speed-
ith’s purely diagrammatic proof. Here, d1 is a spider diagram which conveys
some information about the relationships between two elements and two sets
and proves that d6 follows logically. In Section 4 we present the architecture
of Speedith in detail, including a reasoning kernel that manages the state of
the proofs, controls how inference steps are applied, and manages the commu-
nication with external general purpose theorem provers.

Speedith provides a graphical user interface through which all the diagram-
matic proofs are constructed – we describe this in detail in Section 4.4. The user
can input the theorem via hand-drawn diagrams or via a textual abstract rep-
resentation of diagrams. Speedith visually displays spider-diagrammatic state-
ments; allows the user to specify which inference rules should be applied on
what parts of the spider diagram; and displays the result of this visually. Fig. 2
shows a screenshot of the proof presented above in Fig. 1 as it is constructed
in Speedith.

Whilst Speedith is a standalone diagrammatic proof assistant, it is also
designed to easily plug into external proof tools. This has the advantage that
spider-diagrammatic proofs can be reconstructed in traditional logic, and thus
certified with, for example, LCF-style general purpose theorem provers [8].

We evaluate Speedith in Section 5 by comparing it to other related work,
assessing its generality and extensibility, and pointing out its limitations that
indicate future directions. Finally, in Section 6 we conclude with some general
observations.
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Fig. 2 A screenshot of the proof from Fig. 1 constructed in Speedith - due to scrolling there
are two screens.
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2 Spider diagrams

Spider diagrams have a formally defined syntax and semantics. The language
of spider diagrams resembles Venn and Euler diagrams. It uses closed curves to
denote sets, shading of areas to denote upper bounds on the cardinality of sets,
and dots connected with lines to denote existentially quantified elements. The
syntax and semantics of this language have been formally defined by Howse
et al. [12]. The language of spider diagrams is also accompanied by inference
rules, which results in the logic of spider diagrams. This logic is expressively
equivalent to monadic first-order logic with equality (MFOLE) [23]. We also
developed a new set of sound inference rules, which represent an extensions of
the system in [12] and prove them to be complete – for details, see Section 3.

We firstly introduce the language and logic of spider diagrams, that is, its
syntax and semantics (Section 2), and inference rules (Section 3). After, we
introduce Speedith itself (Section 4).

2.1 Syntax

Sentences in the language of spider diagrams are capable of expressing as-
sertions about sets and their elements. Fig. 3 contains an example spider-
diagrammatic sentence, which is also a theorem.

∃ s1, s2, s3. (distinct [s1, s2, s3] ∧ s3 ∈ (A \ C) ∪ (A ∩B) ∧ s1 ∈ B \ (A ∪ C) ∧
∧ s2 ∈ B \ (A ∪ C) ∧B \ (A ∪ C) ⊆ {s1, s2}) −→
∃ t1, t2, t3. (distinct [t1, t2, t3] ∧ t1 ∈ B ∧ t2 ∈ B)

Fig. 3 Top: An assertion in the language of spider diagrams. Bottom: an equivalent
assertion as a sentential formula in MFOLE.

Spider diagrams use labelled closed curves to represent named sets. These
curves are called contours. Their spatial and topological arrangement is used
to assert relationships between the sets they represent. For instance, the en-
closure of one contour by another corresponds to a subset (and consequently
a superset) relationship between the represented sets. Contours are annotated
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with labels (in Fig. 3, the contour labels are A, B and C). The set of contour
labels used in a diagram d is denoted by L(d) (this set may also be empty).

All spider diagrams contain at least one zone. A zone is a region that is
inside some or none of the contours. Formally, a zone is a pair of finite, disjoint
sets of contour labels, (in, out). Intuitively, (in, out) is inside every contour
of in, and outside every contour of out. So, in a diagram, the set of possible
zones is formed by its contour labels. For example, in d1 of Fig. 3, the zones
are (∅, {A,B,C}), ({A},{B,C}), ({B}, {A,C}), ({C}, {A,B}), ({A,B}, {C}),
({A,C}, {B}), ({B,C}, {A}), ({A,B,C}, ∅). We denote the set of zones in a
diagram d by Z(d). Any collection of zones is called a region.

Spiders denote the existence of elements within a region. Spiders are con-
nected acyclic graphs with at least one node. Each node of a spider, called
a spider foot , resides in a distinct and unique zone. The nodes are visually
connected with lines, called spider legs. The collection of zones, that is, the
region in which all of a spider’s nodes reside is called the spider’s habitat .4

In summary, a spider asserts that there exists an element in the set denoted
by its habitat. Furthermore, spiders represent distinct elements. Consequently
spiders place a lower bound on the cardinality of the set represented by the
spider’s habitat. The upper bound on the cardinality of a set is expressed with
shaded zones. The set of shaded zones is denoted with ShZ (d). The set of
shaded zones is a subset of the set Z(d). In a shaded zone, all elements are
represented by spiders.

The set of spiders in a diagram d is denoted by S(d). A spider’s habitat is
returned by the following function:

ηd : S(d)→ P(Z(d)) \ {∅}.

The range of the above function excludes the empty set – this reflects the
fact that spiders cannot have empty habitats.5 For example, Fig. 3 contains 6
spiders (denoted with indexed letters s and t). The spider s3 has three feet and
two legs. It’s habitat consists of three zones: ({A}, {B, C}), ({A, B}, {C})
and ({A, C, B}, ∅).

A diagram consisting of only the above elements is called a unitary spider
diagram (we typically use the symbol du to denote them). Unitary spider
diagrams are atomic expressions in the language of spider diagrams.

Definition 1 A unitary spider diagram is an atomic element of the language
of spider diagrams. It is defined as a tuple of the following form:

du = (L, Z, ShZ , S, η), (1)

4 Note that we use labels on spider feet in order to be able to refer to specific spiders.
However, as can be observed from the definition of spiders above, these labels do not form
part of the syntax of spider diagrams. They are a convenience, and can be arbitrarily and
freshly chosen every time an inference rule is applied on a diagram. This means that, for
example, two drawn spider diagrams that are identical apart from the spider labels have the
same syntax.

5 A spider with an empty habitat is a contradiction, as it would imply that there exists
an element that does not belong to any set.



Speedith 7

where L is the set of contour labels, Z is the set of zones in the diagram,6

ShZ is the set of shaded zones (a subset of Z), S is the set of spiders and
η : S(du) → P(Z(du)) \ {∅} is a function that returns the habitat of each
spider.

Given a unitary spider diagram, du, we will write L(du), Z(du), ShZ(du),
S(du) and ηdu for L, Z, ShZ, S and η where necessary (e.g., when talking
about more than one unitary spider diagram). A sentence in the language
of spider diagrams may be a unitary spider diagram or a compound spider
diagram. Compound spider diagrams connect multiple unitary spider diagrams
through logical connectives.

Definition 2 A sentence d in the language of spider diagrams may be either
a compound spider diagram or a unitary spider diagram. We define a general
spider diagram as a compound diagrams with recursive nesting of unitary or
other compound spider diagrams:

d =::



d←→ d Logical equivalence

d −→ d Implication

d ∨ d Disjunction

d ∧ d Conjunction

¬d Negation

du Unitary spider diagram

(2)

Note that the connectives←→, −→, and ¬ were excluded from the sound and
complete spider diagram logic studied by Stapleton et al. [23].

In Fig. 3, there are two unitary diagrams d1 and d2 which are connected
with the implication operator −→ into a compound spider diagram.

2.2 Semantics

We define the semantics of spider diagrams by interpretations and the inter-
pretation tuple:

I = (U,Φ), (3)

where U is the universal set (containing all elements of a particular interpre-
tation), and Φ is the function that maps contour labels to subsets of U :

Definition 3 Let C be a contour with label l in a spider diagram d (i.e., there
exists a unitary spider diagram du within d such that l ∈ L(du)). Then, for a
specific interpretation tuple (U,Φ), the function Φ maps the contour label l to
a subset of U :

Φ(l) ⊆ U. (4)

6 So, each zone (in, out) in Z ensures that in ∪ out = L.
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In addition to the interpretation tuple we also define a spider map function
Σ. This function is analogous to the valuation function in Alfred Tarski’s
definition of formal semantic for first-order logic [30].

Definition 4 The spider map function Σdu,U maps spiders from a unitary
spider diagram into the universal set U . Let s ∈ S(du) be a spider living
in the unitary spider diagram du, and U the universal set of a particular
interpretation, then Σdu,U is defined by:

Σdu,U (s) = x; where x ∈ U, (5)

for which we use the shorthand Σ(s), where the universal set U and the unitary
spider diagram du are implicitly given and understood from the context. Note
that Σ is parametrised by both du and U , therefore Σdu,U may differ for
different du and U .

2.2.1 Truth in spider diagrams

A sentence in the language of spider diagrams is an assertion which may or
may not hold under a particular interpretation I and a particular spider map
function Σ.

In order to formally define truth in the language of spider diagrams we
firstly define the interpretation functions for zones and spider habitats. These
are required to define the truth of a unitary spider diagram, which in turn is
required in the definition of the truth of a compound sentence in the language
of spider diagrams.

Definition 5 Let z = (in, out) be a zone in the unitary spider diagram du,
that is, z ∈ Z(du), and let I = (U,Φ) be a particular interpretation. The set
represented by the zone z is then defined as follows:

ζI(z)
def
=

[ ⋂
l∈in

Φ(l)

]
∩

[ ⋂
l∈out

U \ Φ(l)

]
. (6)

The interpretation of a region, or a spider’s habitat, is the union of all
zones within the region:

Definition 6 Let h = ηdu(s), where h ⊆ P (Z(du)), be the habitat of the
spider s in the unitary spider diagram du, and let I = (U,Φ) be a particular
interpretation. Then the set represented by the habitat h is defined as follows:

χI(h)
def
=

⋃
z∈h

ζI(z). (7)

Unlike zones and regions, unitary spider diagrams represent assertions of
truth. Therefore, the interpretation function of unitary spider diagrams maps
to either the truth or falsehood:
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Definition 7 We use the notation �I,Σ du to denote that a unitary spider
diagram du = (L, Z, ShZ , S, η) is true under the interpretation I = (U,Φ)
and spider mapping Σ. Furthermore, let S = {s1, s2, . . . , sn} be the set of all
spiders in du.

We say that �I,Σ du holds if xi = Σ(si), for all i ∈ {1, . . . , n}, such that:

– distinct spiders map to distinct elements: j 6= k −→ xj 6= xk,
– spiders live in their respective habitats: xi ∈ χI(η (si)),
– the shaded zones form a subset of the spider elements:

⋃
z∈ShZ ζI(z) ⊆

{x1, . . . , xn}, and
– the missing zones denote empty sets: ∀z ∈ MZ (du).ζI(z) = ∅,

where missing zones MZ (du) are the ones that are not in Z(du) but may still
be expressed with the labels in L(du). In particular, the set of MZ is defined
as follows:

MZ (du) = {z | z = (in, L(du) \ in) ∧ in ⊆ L(du) ∧ z 6∈ Z(du)} .

Fig. 4 shows a unitary spider diagram with one missing zone. Intuitively, the
disjoint spatial positioning of contours A and B indicates that the intersection
of sets A and B is empty. Missing zones thus denote empty sets and are the
result of spatially disjoint positioning of contours.

Fig. 4 A unitary spider diagram with the missing zone ({A,B}, ∅).

Finally, the definition of truth for all sentences of the language of spider
diagrams is given:

Definition 8 We use the notation �I d to denote that the spider-diagrammatic
sentence is true under the interpretation I. We define �I d recursively by cases
of the spider diagrammatic syntax (as defined in Definition 2):

– �I d1 ←→ d2 is true iff �I d1 and �I d2 both are true or both are false.
– �I d1 −→ d2 is true iff �I d1 is false or �I d2 is true.
– �I d1 ∨ d2 is true iff �I d1 or �I d2 are true.
– �I d1 ∧ d2 is true iff �I d1 and �I d2 are true.
– �I ¬d1 is true iff �I d1 is false.
– �I du is true iff there exists a spider map Σ such that �I,Σ du is true (as

per Definition 7).
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So far, we defined the truth of spider-diagrammatic sentences under a spe-
cific interpretation I = (U,Φ) and the existence (or otherwise) of appropri-
ate spider mapping functions. Next, we define what it means for a spider-
diagrammatic sentence to be a theorem:

Definition 9 A spider diagram d is a theorem if �I d is true under all inter-
pretations I. We use the following notation to denote that the spider diagram
d is a theorem:

� d (8)

Definition 10 We say that diagram d′ logically entails diagram d, if and only
if the following holds:

� d′ −→ d. (9)

To denote this, we use shorthand notation:

d′ � d. (10)

Similarly, we say that d′ and d are equivalent if they entail each other:

Definition 11 We say that diagram d is logically equivalent to diagram d′, if
and only if both d � d′ and d′ � d hold. To denote this, we use shorthand:

d′ ≡ d. (11)

3 Inference rules

Similarly to other traditional logical systems, spider diagrams are also equipped
with inference rules. The central role of inference rules is to enable stepwise
verification of the validity of a spider-diagrammatic sentence, that is, to de-
termine whether a spider diagram is a theorem.

The inference rules in spider diagrams are of three basic types:

1. inference rules for logical connectives: this category contains infer-
ence rules of propositional logic (which act purely on logical connectives of
compound spider diagrams),

2. purely diagrammatic inference rules: rules of this type transform uni-
tary spider diagrams into logically entailed spider diagrams,

3. compound inference rules: these rules act both on unitary spider dia-
grams and compound spider diagrams. Compound inference rules act on
both the purely diagrammatic aspects of spider diagrams as well as the
symbolic logical connectives that bind them.

The inference rules we present here extend those in [12] in three ways, mo-
tivated by the desire for completeness and for more intuitive, elegant proofs.
With regard to completeness, all of the inference rules implemented in Speed-
ith for the logical connectives −→,←→ and ¬ are new, as Howse et al. [12] did
not include these connectives. We also introduce a further diagrammatic rule
that is necessary for completeness: NegationElimination. This rule allows
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negation to be entirely eliminated from diagrams. With regard to intuitive and
elegant proofs, we introduce new diagrammatic rules that allow shorter and
more natural proofs to be constructed. These new rules are called CopyCon-
tours, CopyShading and CopySpider, and are introduced below. Each
operates on two unitary diagrams joined by ∧, copying information from one
diagram into the other. Previously, in [12], information typically had to be
copied to reduce the diagrams into a particular normal form, followed by ap-
plying the Combining rule (see below). The normal form would then need to
be transformed back into the conjunction of the two modified initial diagrams.
Clearly, this is a long, unnecessary and indirect process that reduces clarity of
a proof – which is the reason that we introduced our new inference rules.

3.1 Inference rules for logical connectives

Rules for logical connectives in compound spider diagrams are based on the
typical inference rules for propositional logic:

1. double negation elimination and introduction,
2. conjunction elimination and introduction,
3. disjunction elimination and introduction,
4. biconditional introduction and elimination,
5. modus ponens,
6. modus tollens,
7. tautologies and simplification rules, for example, d −→ d ' >, d∨¬d ' >,
d ∧ ¬d ' ⊥, and d ∧ ⊥ ' ⊥; and

8. idempotency rules like d ∨ d ' d and d ∧ d ' d.

3.2 Purely diagrammatic inference rules

Purely diagrammatic inference rules transform unitary spider diagrams exclu-
sively. We outline them here and provide some instances of their application
on concrete spider diagrams. For more detail and their formal definitions, see
Howse et al [12].

Add spider feet: Let d = (L, Z, ShZ , S, η) be a unitary spider diagram,
s ∈ S be a spider with the habitat η(s), and h be a region such that h ⊆
{z | z ∈ Z ∧ z 6∈ η(s)}. Then the AddFeet rule is applicable on d and produces
a new unitary spider diagram d′ such that d � d′ and d′ = (L, Z, ShZ , S, η′)
where:

η′(x) =

{
η(x) x 6= s,

η(x) ∪ h x = s.

This inference rule is not information-preserving (it may not be applied in the
other direction). Fig. 5 shows an example application of the AddFeet inference
rule.
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Fig. 5 An example application of the AddFeet inference rule. Two feet are added to the
spider s3. The new feet are inserted into the zones ({A, B} , {C}) and ({A, B, C} , ∅).

Introduce a contour label: adds an additional contour (with a fresh label)
to a unitary spider diagram d resulting in a new diagram d′. This rule intro-
duces new zones, shaded zones and spider feet into d′. In particular, each zone
(shaded or otherwise) is split into two (one is outside of the new contour and
the other is within). Additionally, every spider is extended with new feet in
the new zones that are the result of split zones within the spiders’ original
habitat. This inference rule may be applied in both directions, as both d � d′

as well as d′ � d hold. Fig. 6 shows an example application of IntroContour

inference rule.7

Fig. 6 An example application of the IntroContour inference rule. The contour C is
introduced to the unitary spider diagram on the left-hand side.

Erasure of a spider: Let d = (L, Z, ShZ , S, η) be a unitary spider diagram.
A spider s ∈ S with a habitat consisting of exclusively non-shaded zones (i.e.,
η(s) ⊆ Z \ ShZ ) may be completely removed from the unitary spider diagram
d. The result is a new unitary spider diagram d′ which is an exact copy of the
diagram d except that d′ is missing the spider s and η′ is undefined for this
spider. The resulting diagram is thus: d′ = (L, Z, ShZ , S \ {s} , η′). Fig. 7 is
an example application of EraseSpider. This inference rule does not preserve
information.

Erasure of a contour label : A contour label l ∈ L may be removed from a
unitary spider diagram d = (L, Z, ShZ , S, η). This results in a new diagram
with modified shading of zones and spider habitats d′ = (L\{l} , Z ′, ShZ ′, S, η′).

7 Introducing a contour in abstract syntax is straightforward. However, drawing an addi-
tional contour may be more complex, for example, it may not be drawable as a single circle.
We use iCircle algorithm for laying out spider diagrams – for details, see 4.4.2.
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Fig. 7 An example application of the EraseSpider inference rule. The spider s1 is removed
from the left-hand unitary spider diagram.

Zones zi = ({l}∪ in, out) and zo = (in, {l}∪ out), where at most one of them
is shaded, collapse into non-shaded zones z = (in, out). Otherwise, shading is
preserved. Additionally, if a spider s has at least one foot in zones that collapse
into one, the spider will have a foot in the collapsed zone in the new diagram.
This rule is not an equivalence rule. Fig. 8 shows an example application of
the EraseContour.

Fig. 8 An example application of the EraseContour inference rule. The contour label C
is removed from the left-hand unitary spider diagram.

Introduce a shaded zone : If a zone z is missing from a unitary spider
diagram d = (L, Z, ShZ , S, η), that is, if z ∈ MZ (d), then d can be replaced
by d′ = (L, Z ∪ {z} , ShZ ∪ {z} , S, η). Diagrams d and d′ are semantically
equivalent, that is, d ≡ d′. This rule can thus be applied in both directions (i.e.,
d can be replaced by d′ and vice versa). Fig. 9 shows an example application
of IntroShadedZone.

Fig. 9 An example application of the IntroShadedZone inference rule. The shaded zone
({B} , {A}) is introduced into the right-hand unitary spider diagram.
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Remove shading : Any region consisting of exclusively shaded zones, say r ⊆
ShZ , in the unitary spider diagram d = (L, Z, ShZ , S, η) may be converted
into a region consisting of exclusively non-shaded zones. This results in a new
unitary spider diagram d′ = (L, Z, ShZ \ r, S, η). This rule is a weakening
rule as it does not preserve information. Fig. 10 illustrates the application of
Remove-shading with a concrete example.

Fig. 10 An example application of the RemoveShading inference rule. Shading in the zone
({B} , {A}) in the unitary spider diagram on the left-hand side is removed.

3.3 Compound inference rules

Compound inference rules transform unitary spider diagrams that are con-
nected through a logical connective in a compound diagram. We enumerate
the following compound inference rules (others can be found in Howse et al.
[12] and Urbas et al. [33]):

Splitting spiders: If a unitary diagram d contains a spider s with multiple
feet, then the SplitSpider rule can be applied to that spider. This rule takes
as an argument a region r, which is a proper subset of the habitat of spider
s: r ⊂ ηd(s) and |r| ≥ 1. The result of the application of this rule is two
disjunctively connected unitary diagrams dl and dr that are identical to d
except that the habitat of the spider s in diagram dl equals ηd(s) \ r and in dr
it equals r. This rule preserves information and is an equivalence rule. Fig. 11
shows an instance of the application of SplitSpider.

Fig. 11 An example application of the SplitSpider inference rule. The SplitSpider rule
is applied to the spider s, which is split in the region marked with a dashed red outline.
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Excluded middle : A unitary spider diagram d containing a non-shaded region
r can be replaced by d1 ∨ d2 where d1 and d2 differ from d only in region r
being shaded in d1 and region r containing an extra spider in d2. The diagram
d and d1 ∨ d2 are semantically equivalent, therefore this rule can be applied in
both directions (i.e., d1 ∨ d2 may also be replaced by d). Fig. 12 illustrates the
application of this rule.

Fig. 12 An example application of the ExcludedMiddle inference rule. The
ExcludedMiddle rule is applied to the region marked with a dashed red outline in the
left-most unitary spider diagram.

Combining : This rule combines conjunctively connected unitary spider di-
agrams into a single unitary diagram. Combining is applicable under complex
assumptions. For example, two conjunctively connected unitary diagrams may
form a contradiction. A contradiction, however, cannot be expressed in a single
unitary spider diagram. Therefore, in order to return a unitary diagram, com-
bining needs to be carried out on two conjunctively connected unitary spider
diagrams that do not contain conflicting information. Otherwise, the rule will
return ⊥.8

More specifically, the Combining rule can be performed on unitary diagrams
that have the same sets of zones (and therefore missing zones) and all their
spiders have single-zone habitats. The diagrams are non-contradictory iff no
shaded zone has fewer spiders than its counterpart in the other diagram. In the
non-contradictory case, Combining creates a new unitary spider diagram with
the same set of zones as the two original unitary spider diagrams, but with
shading in all zones that were shaded in at least one of the original diagrams.
Also, spiders of a particular zone are copied from the zone of the original
unitary diagram which contains the largest number of spiders. Otherwise, we
are in the contradictory case, so there is a shaded zone in one diagram that
contains more spiders in the other diagram and the rule returns ⊥. Fig. 13
shows an example application of this rule in the non-contradictory case.

We now present four new inference rules that were not included in [12]. The
formalisations for all four rules, and their proofs of soundness can be found
in Appendix B. Firstly, we add a rule that allows the elimination of negation
from spider diagrams.

8 In Speedith, ⊥ is equivalently represented by ¬>.
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Fig. 13 An example application of the Combining inference rule.

Negation Elimination : The NegationElimination rule may be applied to a
negated unitary diagram, ¬dn, where dn has no missing zones, contains one
zone, zn, with n spiders placed entirely within zn, no other spiders and if
shading is present then it also occurs only within zn. Such a diagram asserts
that there are at least n elements in the set represented by zn and, should zn
be shaded, that there are no more elements. The rule creates n copies of dn,
giving diagrams d0,..., dn−1, where the zone zn contains exactly i spiders in di
along with shading. If zn is shaded in dn then a further copy of dn is created,
say dn+1, where zn contains n+1 spiders but no shading. The result of the rule
NegationElimination is a disjunction9 of unitary diagrams, d0 ∨ d1 ∨ ... ∨ dn−1
when zn is not shaded in dn, otherwise d0 ∨ d1 ∨ ...∨ dn−1 ∨ dn+1. This rule is
a logical equivalence. Fig. 14 illustrates it with an example application.

Fig. 14 An example application of the NegationElimination inference rule. In this exam-
ple, ¬d2 asserts that there are not exactly two elements in ({A}, {B}). This is equivalent
to asserting that there are exactly 0, exactly 1 or at least three elements in ({A}, {B}), as
seen in d0 ∨ d1 ∨ d3.

Copy contours:10 The CopyContours rule may be applied to a compound
diagram of two conjunctively connected unitary diagrams d1∧d2 with differing
sets of contour labels. A contour label l that is present in only one unitary
diagram, say d1, may be added into the other, say d2.

The result of this inference rule is a new compound diagram of two con-
junctively connected unitary diagrams, d1 ∧ d′2. The unitary diagram d′2 is a
modified version of d2 with the additional label l, new zones and extended
spider habitats. Fig. 15 illustrates this rule with an example application.

9 Note that we assume an empty disjunction is ⊥.
10 This rule has been added in [33] and is not part of the original specification of spider

diagrams in [12].
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Fig. 15 An example application of the CopyContours inference rule. In this example,
the contour D is being copied from the unitary diagram d2 into the unitary diagram d1 to
produce d3.

Copy shading:10 The rule CopyShading may be applied to compound spider
diagrams of the form d1∧d2, where d1 and d2 are unitary diagrams. The unitary
diagrams must contain regions r1 and r2 respectively, which must represent
the same set.11 One of the regions, say r1, must be entirely shaded while the
other must contain at least one non-shaded zone. In addition, diagrams d1 and
d2 must share the same spiders in these two regions, all of which must have
habitats that represent the same set.

The result of the application of the CopyShading rule on d1 ∧ d2 is the
logically equivalent d1 ∧ d′2, where d′2 is an exact copy of d2 except its region
r2 is entirely shaded. Fig. 16 contains an example application of this inference
rule.

Fig. 16 An example application of the CopyShading inference rule. The shading in the
region A is copied from d2 to d1 to produce d3.

Copy a spider:10 The rule CopySpider may be applied to d1∧d2 if the unitary
diagrams d1 and d2 respectively contain regions r1 and r2 representing the
same set, however, r1 contains no shaded zones. In addition, all spiders that
have a foot in region r1 must also be present in d2 with habitats that represent
the same set. Let there be a spider s which lives in r2, but is not present in
d1. Then, d′1 ∧ d2 is the result of the application of this rule on d1 ∧ d2 where

11 Regions in two unitary spider diagrams that represent the same set are called corre-
sponding regions. Corresponding regions can be identified syntactically and are therefore
suitable as a proof-theoretic tool for defining inference rules. This was first seen in Howse
et al. [11], where that work is generalized in Appendix A so that corresponding regions can
be used for the formalization of inference rules.
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d′1 now contains the new spider s in the region r1. The compound diagram
d′1 ∧ d2 is logically equivalent to d1 ∧ d2. Fig. 17 illustrates the application of
CopySpider on a concrete example.

Fig. 17 An example application of the CopySpider inference rule where spider s is copied
from d2 to d1 to produce d3.

The above inference rules are used in spider-diagrammatic proofs such as
the two examples in Fig. 1 on page 3 and Fig. 18. These two proofs demonstrate
the use of all three different types of inference rules within a single proof: dia-
grammatic inference rules (AddFeet and RemoveContour), compound inference
rules (SplitSpider, CopyContours, CopySpider and CopyShading), and inference
rules for logical connectives (Idempotency and ConjunctionElimination).

Fig. 18 A spider-diagrammatic proof employing inference rules that copy information from
the unitary spider diagram to the right of the conjunction to the unitary spider diagram to
the left of the conjunction. First, contour D is copied, followed by copying spider s1. Next
the shading in region ({C}, {D}) is copied over. This makes the right conjunct redundant,
so it can be eliminated. Finally, obsolete contours A and C can be erased.

3.4 Properties

We now establish two desirable properties of the spider diagram logic. First,
all our inference rules are sound:
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Theorem 1 The spider diagram logic is sound.

Proof The proof relies on the individual inference rules being sound. Ap-
pendix B contains soundness proofs for the individual rules. Since proofs are
constructed by repeated application of the inference rules, the logic is sound.

Second, we can establish that the spider diagram logic which we have
extended to include −→, ←→ and ¬ is complete:

Theorem 2 The spider diagram logic is complete.

Proof The proof is given in Appendix C.

4 Architecture and implementation

Speedith is our stand-alone interactive diagrammatic theorem prover for the
logic of spider diagrams [33]. Moreover, it was also designed to be easily plug-
gable into other proof-assisting software. For example, statements and proofs in
the language of spider diagrams can be exported to sentential first-order logic
formulae which, in turn, may be imported into sentential theorem provers.
It is also possible to import sentential formulae into Speedith by translating
them into spider diagrams. This pluggable feature of Speedith was exploited
via the MixR framework [32] where Speedith was integrated with a sentential
theorem prover Isabelle to result in the Diabelli [31] heterogeneous reasoning
system (i.e., a mixture of diagrammatic and sentential inference steps make
the statements and the proof of a theorem) – for more information, see [32].

We now present the implementation of Speedith through the design of its
architecture, the representations for spider diagrams that it uses, its reason-
ing engine and how it enables the construction of proofs, and finally its user
interface.

4.1 Architecture

Speedith consists of four main components:

1. abstract representation of spider diagrams (Speedith’s internal representa-
tion of spider-diagrammatic statements);

2. reasoning kernel that provides Speedith with its proof infrastructure (it
contains a collection of spider-diagrammatic inference rules, handles the
application of inference rules, and manages proofs);

3. external communication system which includes input and output mech-
anisms for spider-diagrammatic and sentential formulae – this system
enables external verification through existing general-purpose theorem
provers; and
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4. graphical user interface, which includes spider diagram visualisation (us-
ing iCircles visualisation algorithm for unitary spider diagrams and Spi-
derDrawer for pen input of hand drawn spider diagrams), user interaction
with spider-diagrammatic elements, graphical user interface panels for in-
teractive proof management and interactive application of inference rules.

We separated these four components into four libraries: Speedith Core, iCir-
cles, SpiderDrawer and Speedith GUI. Speedith Core contains the first three
components (the abstract representation, the reasoning kernel, and the ex-
ternal communication system). The iCircles library12 contains only unitary
(but not compound) spider diagram visualisation. Therefore, we added sup-
port for compound spider diagrams in Speedith (on top of iCircles, rather
than extending iCircles). Note that Speedith Core and iCircles may be used
independently of each other. This enables the use of Speedith as a reasoning
kernel without the user interface. The Speedith GUI library depends on both
Speedith Core and iCircles. The SpiderDrawer library enables the user to in-
put spider diagrams via a pen input interface. These four libraries together
make up Speedith. Fig. 19 shows an outline of Speedith’s architecture.

Speedith

SpeedithDCore
abstractDrepresentation
reasoningDkernelD(proofDmanagement)
externalDcommunication

iCircles
visualisationDofDunitary
spiderDdiagrams

SpeedithDGUI
userDinteraction,DvisualisationDofDcompound
spiderDdiagrams,DproofDmanagement,Dand
interactiveDinferenceDstepDapplication

SpiderDrawer
Hand-drawnDpenDinputDof
compoundDspiderDdiagrams

Fig. 19 Speedith consists of four libraries: Speedith Core, iCircles, SpiderDrawer and Speed-
ith GUI. Speedith Core consists of three components: the abstract representation of spider
diagrams, the reasoning kernel and external communication. Visualisation of unitary spider
diagrams is performed with iCircles. Visualisation of compound spider diagrams and user
interaction is provided by Speedith GUI. Spider diagrams can be input by hand via a pen
interface SpiderDrawer.

12 iCircles was originally created by Stapleton et al. [22] to draw Euler diagrams (spider
diagrams without any spiders in them). Flower then extended iCircles to include the visu-
alisation of spiders, so iCircles supports the visualisation of unitary spider diagrams only,
but not compound spider diagrams.
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NullSpiderDiagram UnitarySpiderDiagram

S - spiders
η - habitats
SMZ - shaded + missing zones
VEZ - visible empty zones

getContours()

CompoundSpiderDiagram

operator : String
operands : SpiderDiagram

SpiderDiagram operands

1

1..*

Fig. 20 The structure of the abstract representation for all spider diagrams in Speedith.

4.2 Abstract representation

Speedith uses an abstract representation, called SAR, to store and manipulate
spider-diagrammatic sentences. The representation is of the form of an expres-
sion tree whose nodes are spider diagrams, which can be of the following three
types (see Fig. 20):

1. Unitary spider diagram node : contains a full description of a unitary
spider diagram (as defined in Definition 1).

2. Compound spider diagram node : connects one or two spider diagram
nodes with a logical connective.

3. Null spider diagram node : which denotes tautology and is also a short-
hand for an empty unitary spider diagram.13

In Speedith, unitary spider diagrams are captured in a different, but equiv-
alent, way to their presentation in Definition 1. In particular, Speedith modifies
or omits some of the sets present in the unitary spider diagram tuple. Specifi-
cally, Speedith does not store the sets L and Z (the sets of all contour labels
and the set of present zones). In addition, Speedith merges the sets ShZ and
MZ (from Definition 7) into SMZ . The set SMZ thus contains zones that are
either shaded or are missing in the unitary spider diagram. Finally, Speedith
also uses the set VEZ which contains zones that are shaded and are not part
of any spider’s habitat (contain no spiders) – called empty zones – but are still
visible in the unitary spider diagram. Speedith uses this structure in order to
match the semantics of spider diagrams more closely. In fact, zones that con-
vey no semantic information are not stored (i.e., zones with no spider feet or
shading). This also removes data redundancy, optimises memory consumption,
and lowers the complexity of spider diagram maintenance and manipulation
as it removes the possibility of a spider having a foot in a missing zone.

Note that all sets from the tuple du = (L, Z, ShZ , S, η) (see Definition 1)
may still be obtained from Speedith’s representation. The set of all contour

13 An empty unitary spider diagram is the tuple d = (∅, {(∅, ∅)} , ∅, ∅, ∅).
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labels L is obtained via the getContours() method (which takes an arbitrary
zone (in, out) and returns the union in ∪ out, which equals L). The set MZ
equals SMZ \ (VEZ ∪ habitats), where habitats is the set of all zone where
any spider has a foot. Lastly, the set of all zones Z equals:

{(in, L− in) | in ⊆ L } \MZ .

The structure for compound spider diagrams in Speedith is an implemen-
tation of the compound spider diagram syntax as specified in Definition 2.
Speedith provides support for compounding spider diagrams with all connec-
tives, that is, logical equivalence, implication, disjunction, conjunction and
negation of spider diagrams.

When creating unitary, compound, or null spider diagrams, Speedith will
ensure that there is always only one instance of that diagram available (without
duplicates). For example, the compound spider diagram da ∨ da connects the
same instance of the spider diagram da through the logical connective ∨. In
fact, Speedith makes it impossible that there are two distinct syntactically
equal spider diagrams used anywhere in a spider-diagrammatic statement.

Definition 12 We say that two spider diagrams, say d1 and d2, are syntacti-
cally equal if they fall under one of the following:

1. Both d1 and d2 are null spider diagrams.
2. Both d1 and d2 are unitary spider diagrams and their sets S, SMZ , and

VEZ are equal and so is their map of habitats η.
3. Both d1 and d2 are compound spider diagrams of the forms d1 = dl

⊗
dr

and d2 = d′l
⊕
d′r where

⊗
and

⊕
are the same logical connective, dl

syntactically equals d′l, and dr syntactically equals d′r.

To denote syntactical equality between two diagrams d1 and d2, we use the
equality sign d1 = d2.

This method is used to preserve memory (by not creating multiple in-
stances of any spider diagram) and, more importantly, for faster syntactical
equality comparison. We ensure no two syntactically equal diagrams are stored
by maintaining a pool of currently instantiated spider diagrams. Whenever a
new spider diagram is created, it is checked whether the same spider diagram
already exists. If one already exists the new one is deleted and the old one is
returned.

An advantage of Speedith’s abstract representation is the ease of trans-
formation of spider diagrams into sentential first-order logic (for more infor-
mation, see [32]). This representation is also designed with the aim for quick
manipulations of spider diagrams through the application of inference rules
(to make reasoning as efficient as possible).
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4.2.1 Text format

Speedith specifies a textual format of the abstract representation of spider
diagrams. This textual representation is called SDT (short for spider diagrams
text), and is capable of expressing any valid spider diagram.

Speedith contains a parser capable of reading spider diagrams in the SDT
format and producing the corresponding abstract representation. Fig. 21 shows
an example spider diagram in the SDT format.

BinarySD {
operator = ”op −−>”,
arg1 = PrimarySD {

s p i d e r s = [ ” s1 ” , ” s2 ” ] ,
hab i t a t s = [

(” s1 ” , [ ( [ ”A” ] , [ ”B” ] ) , ( [ ”B” ] , [ ”A” ] ) ] ) ,
(” s2 ” , [ ( [ ”A” , ”B” ] , [ ] ) ] )

] ,
sh zones = [ ]

} ,
arg2 = PrimarySD {

s p i d e r s = [ ” s1 ” , ” s2 ” ] ,
hab i t a t s = [

(” s1 ” , [ ( [ ”A” ] , [ ”B” ] ) , ( [ ”A” , ”B” ] , [ ] ) ] ) ,
(” s2 ” , [ ( [ ”A” , ”B” ] , [ ] ) , ( [ ”B” ] , [ ”A” ] ) ] )

] ,
sh zones = [ ]

}
}

Fig. 21 A spider diagram expressed in the SDT format. This SDT example expresses the
spider diagram d1 −→ d6 from Fig. 1 on page 3.

4.3 The reasoning kernel

Internally, reasoning in Speedith is performed via the reasoning kernel. The
reasoning kernel checks whether the inference rules are used correctly. In case
the user chooses an inference rule which is not applicable to the current spider
diagram, the reasoning kernel will report this mistake and abort the applica-
tion. Speedith applies only valid inference rules. Speedith thus produces proofs
whose correctness relies on the soundness and completeness of spider diagrams,
proved by Howse et. al. [12], and the correctness of our implementation.

4.3.1 Proofs in Speedith

The reasoning kernel manages the entire proof of a spider-diagrammatic theo-
rem. Speedith’s proof management infrastructure consists of the Proof, Goals,
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and InferenceRule data structures. Fig. 22 shows a class diagram of the proof-
management infrastructure within Speedith. Fig. 22 uses the Unified Modelling

Goals

Spider diagrams [1..n]

Proof

Initial goals
Applied inference rules [0..n]
sub-goals [0..n]

InferenceRule

applyOn(spider diagram) : Goals

11

10..*
1 0..*

Fig. 22 A simplified class diagram of the Speedith’s proof management infrastructure.

Language (UML) class diagram notation. For example, the line connecting
Proof and InferenceRule indicates that a single Proof contains zero or more
InferenceRule components. The Goals data structure contains a list of spi-
der diagrams in their abstract representations. These are, for example, the
spider-diagrammatic statements we set out to prove. A single goal is simply
a spider diagram. The InferenceRule component identifies a Speedith’s in-
ference rule. It is responsible for performing the actual transformation on a
spider-diagrammatic goal. Speedith contains a number of specific implementa-
tions of the InferenceRule component, each of which represents an inference
rule outlined in Section 3. Finally, the Proof data structure stores the entire
proof. It contains the initial goals (i.e., the statement that we set out to prove),
a list of inference rules that were successfully applied to the initial goals and
the resulting list of sub-goals. Proofs in Speedith are thus sequences of goals
and inference rule applications. A proof starts with initial goals, here denoted
with ∆, which is a set of spider diagrams that we want to prove are theorems.
The proof then proceeds by applying an inference rule to a spider diagram D,
where D ∈ ∆. The result of the inference rule application is a spider diagram
D′, where D′ logically entails D (i.e., D′ � D).

An application of an inference rule is called an inference step. We use the
following notation to denoted an inference step where the inference rule Rule

is applied to the set of goals ∆:

∆′ Rule,
∆

(12)

where ∆′ = (∆ \ {D}) ∪ {D′}. A proof may consist of an arbitrary number
of inference steps. Formula 13 outlines the structure of all Speedith’s proofs
(using the traditional inference step bar notation, where the proof is performed
starting from the bottom and progressing upwards):

>
Rulen

...
Rule2

∆′
Rule1

∆

(13)
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The proof is finished once only null spider diagrams are left in the set of
goals (in Formula 13, this is denoted by the symbol >).

Speedith supports application of both forward-style and backward-style
inference steps. Forward rules take a spider diagram d and produce a new
spider diagram d′ such that d � d′. In Speedith forward rules are applied to
goals of the following form: d1 −→ d2. Particularly, forward inference rules
transform the left-hand side of the implication, here denoted with d1. Thus, a
forward inference step in Speedith takes the following form:

d′1 −→ d2, ∆
ForwardRule.

d1 −→ d2, ∆
(14)

On the other hand, backward inference steps in Speedith are performed di-
rectly with inference rules that take a diagram d and produce a new diagram
d′ such that d′ � d. In this case no implication is needed in a goal. Thus, a
backward inference rule takes the following form:

d′, ∆
BackwardRule.

d,∆
(15)

4.3.2 Targeting and transformation of spider diagrams

Every spider diagram in Speedith is a tree, called an abstract syntax tree.
Every sub-tree in the abstract syntax tree is again a spider diagram. Uni-
tary and null spider diagrams are leaves of the tree, while compound spider
diagrams are inner nodes with one or two child-nodes. Speedith’s inference
rules perform transformations on these abstract syntax trees. For example,
the Combining rule (see Fig. 13 on page 16) replaces a compound spider dia-
gram node with a unitary spider diagram node. Speedith’s inference rules are
therefore tree-transformers, implemented with the visitor pattern. The visitor
pattern traverses every node of the tree in a particular order until the target
of the inference rule application is reached. Once the inference rule has visited
the target node, it performs the transformation of the node. The transforma-
tion produces a new tree, that is, a new spider diagram, instead of applying
the change on the visited tree directly.

Users can select highly specific elements of a spider diagram as the targets
of the inference rules. This is performed via a graphical point-and-click mech-
anism (see Fig. 28 on page 30). For example, the SplitSpider rule (see Fig. 11
on page 14) acts on a sub-habitat of a specific spider that lives within a par-
ticular unitary spider diagram. This differs from inference rules in sentential
theorem provers, where inferences are typically applied to the outermost con-
nective or the inference automatically selects the first suitable target of the
transformation. Therefore, Speedith requires an exact addressing mechanism.

Speedith defines an addressing mechanism at the level of the abstract
syntax tree. It numbers the nodes in an abstract syntax tree with a left-to-
right pre-order traversal. Fig. 23 shows a numbering example of a hypothetical
spider-diagram abstract representation. The numbering starts with 0 at the
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Fig. 23 Node numbering of a compound spider diagram.

root node and continues recursively, starting with the left sub-node and then
the right sub-node. As a result, every sub-diagram has an associated number,
called its sub-diagram index . This index is used to uniquely identify the sub-
diagram on which an inference rule should be applied. However, this does not
fully satisfy the targeting requirements of spider-diagrammatic inference rules.
Speedith also allows to target arbitrary elements of a unitary spider diagram:
sets of zones, sets of spiders, spider feet, and sets of contour labels. Thus, sub-
diagram indices and the ability to target particular elements of unitary spider
diagrams allow for exact targeting of any element within any unitary spider
diagram, regardless of where it is nested within a surrounding compound spi-
der diagram. Interactive selection of the target for a specific inference rule is
covered in more detail next.

4.4 User interface

Speedith’s user interface allows users to enter spider diagrams and perform
spider-diagrammatic proofs interactively. For example, users can choose arbi-
trary elements of a spider diagram directly from Speedith’s visualisation of a
spider diagram. At start-up, Speedith’s window contains a blank surface that
is used to display and manage spider-diagrammatic proofs. Fig. 24 shows the
initial state of the user interface.

4.4.1 Diagrams input

Speedith supports two modes of input of spider diagrams: the SDT textual
input and the hand drawn spider diagrams via SpiderDrawer.

SDT textual input: The textual input method allows entry of any valid spider
diagram: Fig. 25 shows an example. The dialogue in Fig. 25 can be activated
with the key combination Ctrl+T.

The user-entered SDT is loaded into the Speedith’s parser. The parser
converts the SDT representation into an abstract syntax tree. Finally, the
abstract syntax tree becomes the initial goal of the current proof, which is
immediately visualised in the proof panel.
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Fig. 24 Speedith’s initial state. The complete set of inference rules is shown in the list on
the right. The large grey area on the left is the proof management panel, which currently
contains no goals.

Fig. 25 The dialogue for entering spider diagrams in the textual form.

SpiderDrawer pen input: Instead of typing the SDT representation of spider
diagrams, the user can alternatively quickly and easily draw spider diagrams
via a pen input interface SpiderDrawer [2]. Speedith accesses SpiderDrawer via
an input canvas window where the user draws the diagrams by hand with a
stylus. SpiderDrawer is implemented in Java and is platform independent.14 It

14 Hand-drawn input support for spider diagrams similar to SpiderDrawer is currently
being developed by Wang et al. [34] within the SketchSet tool. But unlike SpiderDrawer and
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uses the RATA [3] library for shape recognition, and the Tesseract [21] library
for text and connectives recognition.15

RATA is a shape recognition program that uses data mining analysis to
recognise single stroke drawings. It is used to recognise 5 out of 7 shapes
that make up spider diagrams. In particular, circles, rectangles, spider feet,
spider legs, and shading are recognised. RATA first collects data (from a set
of training examples) and then uses machine learning techniques to classify
the shapes. The other two shapes, labels and logical connectives, are handled
separately by Tesseract which is an open source optical character recognition
program.

SpiderDrawer automatically coverts the recognised shapes, text and con-
nectives from hand-drawn free-form and redraws them to precise formal draw-
ings. SpiderDrawer recognises the relations between all the elements and checks
them against the valid spider diagram representation. If the drawing is not a
valid spider diagram, SpiderDrawer will not allow the user to proceed to the
next, reasoning stage of the proof. If the drawing is a valid spider diagram,
then SpiderDrawer allows the user to proceed with the proof and passes the
drawn spider diagram’s abstract representation to Speedith. Fig. 26 shows the
final SpiderDrawer’s pen drawing of the same spider diagram as in Fig. 25.

Fig. 26 The SpiderDrawer window for hand-drawing spider diagrams using a stylus. Each
part of the free-form hand-drawn diagram is snapped into precise formal drawing for con-
sistency and ease of reading.

Speedith, SketchSet is platform dependent and requires proprietary Windows libraries. Since
this would seriously limit Speedith’s reach to users, we instead developed SpiderDrawer.
15 https://code.google.com/p/tessaract-ocr/
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Fig. 27 The visualisation of the spider diagram as input via the text input dialogue in
Fig. 25 or input via the SpiderDrawer pen input interface in Fig. 26. This is also Speedith’s
visualisation of the diagram in Fig. 3.

Speedith then makes this the initial goal of the current proof, which is
immediately visualised16 in the proof panel. Fig. 27 shows Speedith’s proof
panel with an initial goal. It shows the spider diagram from Fig. 25 and Fig. 26.

Now, the user may apply inference rules (enumerated in a list located to
the right side of the proof panel). Double-clicking on an inference rule opens a
window for selecting the target of the application: Fig. 28 shows an example.
In this particular example the user has to select a set of spider feet for the
SplitSpider inference rule. The proof is finished after all proof goals are reduced
to null spider diagrams. Fig. 2 on page 4 shows an instance of a finished proof
in Speedith.

4.4.2 Diagrams display

Speedith uses iCircles [22] library and algorithm for drawing unitary spider di-
agrams, and extends it with compound spider diagrams visualisation. Speedith
also provides user interaction on top of the iCircles drawing surface. This al-
lows the user to highlight and select specific parts of compound and unitary
spider diagrams. Speedith uses this extended algorithm to display all spider-
diagrammatic statements. Figs. 2, 27, 28, and 29 show Speedith’s visualisations
of compound spider diagrams. Fig. 28 also captures user interaction with the
spider diagram. In this particular figure a spider’s foot and leg are highlighted
to indicate that the user may click on them and thereby select the foot as the
target of an inference rule.

16 Embedding SpiderDrawer’s canvas directly within Speedith’s proof panel (rather than
using it as a separate pop-up window) is work that we plan for the future.
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Fig. 28 Speedith’s window for interactively selecting the exact target for any inference
rule. Speedith guides the user stepwise during the target selection. The label in the lower-
left corner (above the “Finish” button) displays the instruction for every target selection
step. This label also displays errors in the case when the user tries to select an invalid
combination of targets.

Fig. 29 The visualisation of the diagram that was proved in Fig. 18. This example demon-
strates Speedith’s and iCircles’ capability of drawing diagrams with missing zones.

Algorithm Outline Here is the iCircles algorithm [22], extended by Flower, for
visualising unitary spider diagrams:

1. The first step takes a set of visible zones and draws them by placing labelled
contour circles onto the drawing panel. Note that iCircle only uses circles
for contours. In complex diagrams with numerous contours and relations,
it may not be possible to draw a contour using a single circle, so multiple
circles are used. The algorithm then stores the concrete zones in an enu-
merable collection. The result of the first step is an Euler diagram. The
diagram at this stage already contains shading, but it does not yet contain
spiders. The algorithm will try to use missing zones wherever possible. If a
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missing zone cannot be used to denote empty sets, then the algorithm will
use shaded zones instead.

2. Shading is applied to the set of shaded zones. The algorithm finds the
corresponding concrete zone (using the collection constructed in the first
step) and fills it with grey colour.

3. In the last step, spider feet and legs are drawn. This step expects as input
a set of spiders S with their habitats

{h | h = η(s) ∧ s ∈ S } .

For each spider and each zone z in its habitat a point p is found in the
zone z. These points are locations near which the spider’s feet will be
drawn. The legs connect the points p by giving priority to points that are
located within adjacent zones. The algorithm checks if any of the legs pass
through any of the other spiders’ feet. If so, the offending feet are nudged.
Nudging is applied repeatedly in eight principal directions until a suitable
position is found. Note that during the nudging step the legs are adjusted
accordingly. As a consequence, all spider diagrams needed in any proof can
be automatically displayed.

To visualise compound spider diagrams Speedith extends this algorithm in the
standard way by drawing connectives and nested unitary spider diagrams.

5 Discussion

We evaluate our work in terms of how it compares to similar existing work;
and also in terms of expressiveness, extensibility, and usability; finally we point
out a few limitations of Speedith. Speedith is implemented in Java. Its sources
are available from https://github.com/urbas/speedith.

5.1 Related work

Here we concentrate on relating aspects of Speedith to other diagrammatic
reasoning systems, to similar diagrammatic logics, and to other sketching in-
terfaces.

Diagrammatic systems Other diagrammatic theorem provers most related
to Speedith are the prover by Flower et al. [7], Edith [25], Diamond [13], and
Cinderella [17].

The system developed by Flower et al. [7] works, unlike Speedith, with
unitary spider diagrams only, and is fully automated. Edith is an interactive
diagrammatic theorem prover for Euler diagrams that finds the shortest and
readable proof for only a subset of the spider diagrammatic language we are
targeting. Whilst Edith is the closest to Speedith in terms of the domain
it targets, it does not support spiders nor compound diagrams with logical
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connectives, and thus provides fewer inference rules and proves a much smaller
class of theorems. These theorems only include diagrams that express subset
and disjointness relationships with no information on set cardinality, except
for when sets are empty.

Speedith differs from both, Flower et al.’s system and Edith, in that it
works with the complete spider-diagrammatic language as defined in Section 2.
Moreover, unlike these two systems, Speedith provides fully interactive proofs.
Also, Speedith’s proofs are guaranteed to be sound and correct. In addition,
they can be verified with another external symbolic theorem prover, Isabelle,
via a MixR heterogeneous reasoning framework – for details, see [32].

Diamond, on the other hand, supports external verification, but the class
of problems it tackles is inductive theorems of natural numbers. By contrast,
Speedith targets theorems about set constraints. Thus these two diagrammatic
systems target different domains.

Cinderella targets the domain of geometry and uses a different approach to
its diagrammatic proofs. The user gradually constructs the geometric model
of the theorem, while in the background an automated theorem prover verifies
that each construction step results in a valid geometric diagram. Thus, the
steps in Cinderella are not guaranteed to be sound, and the proof process does
not follow the standard inference rule application pattern.

Finally, Speedith was designed with language extensions in mind. Spider di-
agrams could be extended with non-monadic relations, functions, and universal
quantification of elements. Designing meaningful and complete diagrammatic
inference rules for such extended language is hard and remains work for the
future.

Diagrammatic logics There is a variety of diagrammatic logics that are
similar to spider diagrams. Of particular interest is the Euler diagram fragment
of spider diagrams. Hammer was perhaps the first to devise a formal logic
for unitary Euler diagrams [9]. This has since been extended to include the
classical logical connectives ∧, ∨ and ¬ for which soundness and completeness
have been established [24]; it is a trivial matter to extend the inference rules in
order to obtain completeness when the connectives −→ and ←→ are added to
the syntax of this Euler diagram logic. Thus, Speedith automatically provides
theorem proving support for these systems – since they are fragments of the
spider diagram system – and can be easily extended to include inference rules
developed specifically for those logics.

There exist different formalisations of Euler diagram logics, such as [24,29],
and Shin’s seminal work on Venn-I and Venn-II [20] extends Venn diagrams to
include syntax to assert the non-emptiness of sets. Since Speedith allows for
ready implementation of new rules, it would be possible to tailor Speedith to
these other logics. Also related to spider diagrams are Swoboda and Allwein’s
Euler/Venn diagrams [28]. Euler/Venn diagrams incorporate constants to rep-
resent specific individuals, as opposed to the existence of elements in spider
diagrams. Thus, Speedith also provides a basis for theorem proving technology
implemented for Euler/Venn diagrams.
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Sketching Interface Speedith builds on results on user interaction work
that focuses on converting sketches into beautified diagrams. Numerous sketch
tools have been proposed for visual languages including concept maps [14],
graphs [18], UML class diagrams [4,10] and Euler diagrams [35]. Of particu-
lar relevance to Speedith is SketchSet which provides sketch recognition and
conversion of some components of unitary spider diagrams [26]; SketchSet ex-
tends SketchNode which was developed for graphs in isolation [19]. Similarly
to SketchSet, Speedith can recognise closed cures, their labels, and spiders.
Moreover, Speedith takes drawn spider diagram recognition much further than
SketchSet in that it can recognise shading, rectangles that form the bound-
aries of unitary diagrams, and the logical connectives, ∧, ∨, −→ and ←→.
Thus, unlike any other sketch tool, Speedith is capable of recognising all of
the syntax of spider diagrams.

5.2 Properties

Expressiveness In terms of the theorems that can be proved using Speedith,
spider diagrams have the expressiveness of MFOLE [27]. This means that spi-
der diagrams can express theorems about set constraints [1]. These constraints
include subset and disjointness relationships as well as both upper and lower
(finite) bounds on cardinality. Since the logic is sound and complete, Speedith
can also, therefore, prove all theorems about set constraints. That is, Speedith
is able to prove all theorems of MFOLE, expressed using spider diagrams –
this is a significant range and depth of theorems. The fact that spider dia-
grammatic logic is monadic means that with Speedith we cannot prove more
complex theorems involving arbitrary n-ary relations, where n > 1.

Extensibility Extending Speedith with new inference rules is straightforward
and only requires the addition of a single class. Implementation source code of
inference rules is short and typically consist of about 100 lines of Java code (or
70 lines of Scala code). A significant part of that code is used for the preamble
containing the name of the inference rule, its description, and instructions on
how to use it. The remainder of the code is the actual logic of the inference
rule. For example, the Combining rule and NegationElimination rule consist of
40 lines and 20 lines of logic code respectively. Speedith is also equipped with
helpful libraries (e.g., the habitat builder, the region builder, set manipulation
and spider manipulation libraries) that further simplify the implementation
of the logic of new inference rules. Moreover, these libraries can also be used
to write automated unit tests with which the implementer can improve the
correctness of the implementation of the new inference rule. Clearly, soundness
and completeness of the now new extended set of inference rules need to be
proved again.

Usability One of Speedith’s main contributions is its representation of formu-
lae and proof steps. This differentiates it from interactive sentential theorem
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provers (such as Isabelle) in that it provides a domain-specific, visual, and
thus perhaps more intuitive approach to proofs in MFOLE. Speedith’s infer-
ence rules, which perform simple visual transformations of the diagrammatic
statement are succinct and ‘natural’ – they capture the notion of truthfulness
that humans find easy to understand. In contrast, proofs of the same the-
orems in sentential theorem provers consist of lower-level, more fine-grained
proof steps which make them longer and arguably harder to “see” the intuition
behind the proof.

Fig. 30 shows Isabelle’s sentential proof of the same theorem that is proved
diagrammatically in Fig. 1 on page 3 (the screenshot of its proof in Speedith is
in Fig. 2). We suggest that it is perhaps clearer in the diagrammatic proof why
the theorem holds and how the proof is constructed. However, psychological
validity tests would have to be carried out on users to confirm this.

Fig. 30 The same theorem as the one proved diagrammatically in Fig. 1 on page 3 (the
screenshot of its proof in Speedith is in Fig. 2) is proved here sententially with Isabelle.
Which one is easier to understand?
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5.3 Speedith’s limitations and future directions

The layout and drawing mechanism of Speedith currently draws the diagrams
of each step of the proof (after each inference step was applied) independently
of the previous steps. For example, a proof step in Speedith may change relative
positions of contours and zones. A proof step may also relocate spider labels,
feet and legs without consideration for any other diagrams in the proof. Thus,
diagrams in consecutive proof steps can look radically different from each
other. For future work, we aim to improve layout heuristics to take entire
sequences of diagrammatic statements into account.

In addition, Speedith and iCircles do not provide a way for the user to man-
ually specify positions of contours or spider feet. The complete spider diagram
(compound or unitary) is laid out entirely automatically, whether input using
the abstract sentential representation or drawn via SpiderDrawer. Although
the iCircles algorithm contains heuristics to improve diagram readability it
does not always succeed. Therefore, a future direction of research is to provide
a way for users to manually influence and manipulate the diagram layout, and
develop better heuristics to improve the automated layout.

SpiderDrawer is currently used only as a hand-drawn diagram input mech-
anism. Inference steps are selected from the list in the side menu, rather than
with pen interaction on the diagrams. The entire pen-input SpiderDrawer can-
vas needs to be integrated as Speedith’s primary interaction input and display
canvas.

Lastly, Speedith is an interactive proof assistant. In particular, it does not
provide reasoning automation. Extending Speedith to include automated proof
search techniques is part of our future tasks.

6 Conclusion

By developing Speedith, we demonstrated the feasibility of diagrammatic rea-
soning systems that utilise a rule-based deductive proof approach. This is
similar to the approach employed by general purpose proof assistants like Is-
abelle.

We also showed how to utilise existing state-of-the-art theorem provers to
verify diagrammatic inference steps. Whilst we focused on spider diagrams,
the approach can be used for other diagrammatic logics, such as existential
graphs [5] or constraint diagrams [15].

Part of our future directions for Speedith includes extending the abstract
representation to better control how diagrams are drawn. Moreover, we also
envision extensions to the language of spider diagrams, proof search automa-
tion, use of Speedith in practical settings [16,6], and a study of scalability of
proofs and their visualisation in Speedith.

Speedith may be used on its own as a stand-alone spider-diagrammatic
theorem prover. It is, as of yet, the only interactive theorem prover for the
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language of spider diagrams with our extensions (such as the new logical op-
erators of implication and negation in compound diagrams, and new inference
rules). We believe Speedith can contribute to the development of the language
and logic of spider diagrams. A possible future direction of research could be
to use Speedith in order to extend the language of spider diagrams with new
language features or to implement related diagrammatic logics.

Acknowledgements We thank Jean Flower for her help with iCircles extension, and Char-
lie Bashford-Chuchla for his implementation of SpiderDrawer as part of his MPhil project
in the University of Cambridge Computer Laboratory.

A Corresponding regions

This section sets out the theory required to compare syntactically different regions at a
semantic level. So-called corresponding regions are not necessarily syntactically identical, but
they do represent the same set under any interpretation. Similar notions of corresponding
sub-regions and super-regions will also be defined in this section. To identify corresponding
regions, we need access to the missing zones and the empty zones in a unitary diagram, d.
To simplify notation, we generalise the notion of an empty zone from earlier in the paper
(recall, the set VEZ contains the zones which are shaded in d yet contain no spider feet).
We define the set of empty zones to be MZ(d) together with VEZ:

Definition 13 Let d be a unitary diagram. The empty zones of d are elements of the set

EZ (d) = MZ (d) ∪ {(in, out) ∈ ShZ (d) : ∀s ∈ S(d) (in, out) 6∈ ηd(s)}.

Lemma 1 Let d be a unitary diagram and let I = (U,Φ) be a model for d. Then the empty
zones represent the empty set, that is

∀z ∈ EZ (d) ζI(z) = ∅.

Fig. 31 Using empty zones to make deductions.

We use the concept of empty zones when defining inference rules: if we have two unitary
diagrams taken in conjunction, and a zone, z, is empty in one of them, then we can use that
information to determine how we apply inference rules on the other diagram, for example.
To illustrate, in Fig. 31, in d2 the zone ({B}, {A,C}) is empty so we can add shading to this
zone in d1, as shown in d′1.

The notion of corresponding regions was introduced in [11] for Euler diagrams, where
a syntactic definition was provided that established when two regions represented the same
set. Here, we give a definition of corresponding regions that is effective for unitary spider
diagrams taken in conjunction: we prove that our definition captures when two regions, one
from d1 and the other from d2, necessarily represent the same set in all models for d1 ∧ d2.
We also define the notion of a corresponding sub-region and a corresponding super-region,
relating to subset and superset respectively.
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Fig. 32 Corresponding regions.

To illustrate, r1 = {({A,D}, {B}), ({A}, {B,D})} and r2 = {({A,C}, {B}), ({A},
{B,C})} both represent the same set and are corresponding; informally, they both rep-
resent the set A\B. In this example, we can be confident that r1 and r2 represent the same
set in any interpretation:

χI(r1) = ζI(({A,D}, {B})) ∪ ζI(({A}, {B,D}))
= ζI({A,D,C}, {B})) ∪ ζI(({A,C}, {B,D})) ∪ ζI(({A,D}, {B,C})) ∪
ζI(({A}, {B,D,C}))

= ζI(({A,C}, {B})) ∪ ζI(({A}, {B,C}))
= χI(r2).

Given d1 and d2 as in Fig. 32, the region

r3 = {({A,D}, {B}), ({A}, {B,D}), ({B}, {A,D})}

also represents the same set as r2 (and r1) in any model for d1 ∧ d2, since the zone
({B}, {A,D}) represents the empty set:

χI(r3) = ζI(({A,D}, {B})) ∪ ζI(({A}, {B,D})) ∪ ζI(({B}, {A,D}))
= ζI(({A,D}, {B})) ∪ ζI(({A}, {B,D}))
= χI(r2).

The region r3 corresponds to r2. In order to syntactically identify whether two regions, r
and r′, are corresponding, we need to transform them, altering the zones by adding labels.
The transformation is based on the observation that given any zone, (in, out), and a label,
l, not used in the zone,

ζI((in, out)) = ζI((in ∪ {l}, out)) ∪ ζI((in, out ∪ {l})).

The zone (in, out) can, thus, be transformed into the two zones (in ∪{l}, out) and (in, out ∪
{l}). We use this insight to define the notion of an expansion of a region, which given some
set of labels iteratively ‘splits’ zones in this manner. In what follows, we denote the set of
labels used in a region, r, by L(r), so

L(r) =
⋃

(in,out)∈r
(in ∪ out).

Definition 14 Let r be a region such that all of the zones, (in, out), in r ensure that
in ∪ out = L(r). Let L′ be a finite set of labels such that L(r) ⊆ L′. An expansion of r
given L′, denoted exp(r, L′), is the region defined as follows:

1. If L′ = L(r) then exp(r, L′) = r.
2. If |L′ \ L(r)| = 1 then

exp(r, L′) = {(in ∪ (L′ \ L(r)), out) : (in, out) ∈ r} ∪
{(in, out ∪ (L′ \ L(r))) : (in, out) ∈ r}.
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3. If |L′ \ L(r)| > 1 then

exp(r, L′) = exp(r′, L′)

where

r′ = exp(r, L′′)

and L′′ = L(r) ∪ {λ} for some label λ ∈ L′ \ L(r).

For example, given r = {({A}, {B}), ({B}, {A})} and L′ = {A,B,C,D}, we have

exp(r, L′) = exp(exp(r, {A,B,C}), L′)
= exp({({A,C}, {B}), ({A}, {B,C}), ({B,C}, {A}), ({B}, {A,C})}, L′)
= {({A,C,D}, {B}), ({A,C}, {B,D}), ({A,D}, {B,C}), ({A}, {B,C,D}),

({B,C,D}, {A}), ({B,C}, {A,D}), ({B,D}, {A,C}), ({B}, {A,C,D})}.

The order in which the labels are introduced during the expansion does not matter. More-
over, we do not change the represented set:

Lemma 2 Let r be a region such that all of the zones, (in, out), in r ensure that in∪out =
L(r). Let L′ be a set of labels such that L(r) ⊆ L′. In any interpretation, I = (U,Φ),

χI(r) = χI(exp(r, L′)).

Proof (Sketch) The proof proceeds by induction on the cardinality of L′ \ L(r).

Definition 15 Let d1 and d2 be unitary diagrams. Let r1 and r2 be regions in Z(d1) ∪
MZ(d1) and Z(d2) ∪MZ(d2) respectively. Then r1 and r2 are corresponding, denoted
r1 ≡c r2, provided that

exp(r1, L) ∪ exp(EZ (d1), L) ∪ exp(EZ (d2), L)

=

exp(r2, L) ∪ exp(EZ (d1), L) ∪ exp(EZ (d2), L)

where L = L(d1) ∪L(d2). Furthermore, r1 is a corresponding sub-region of r2, denoted
r1 ⊆c r2, provided that

exp(r1, L) ∪ exp(EZ (d1), L) ∪ exp(EZ (d2), L)

⊆
exp(r2, L) ∪ exp(EZ (d1), L) ∪ exp(EZ (d2), L).

If r1 is a corresponding sub-region of r2 then r2 is a corresponding super-region of r1,
denoted r2 ⊇c r1.

In Fig. 32, we have r4 ⊆c r5 where r4 = {({A}, {B,D})} and r5 = {({A}, {B,C}),
({A,C}, {B}), ({A,B,C}, ∅)}. Intuitively, r4 represents the set A \ (B ∪ D) and r5 rep-
resents A, and we see that in any model, I = (U,Φ), for d1 ∧ d2 that χI(r4) ⊆ χI(r5).
The following theorem establishes that our syntactic correspondence relations respect the
semantics as intended:

Theorem 3 Let d1 and d2 be unitary diagrams and let r1 and r2 be regions in Z(d1) ∪
MZ(d1) and Z(d2) ∪MZ(d2) respectively.

1. If r1 ≡c r2 then for all models I = (U,Φ) for d1 ∧ d2, χI(r1) = χI(r2).
2. If r1 ⊆c r2 then for all models I = (U,Φ) for d1 ∧ d2, χI(r1) ⊆ χI(r2).
3. If r1 ⊇c r2 then for all models I = (U,Φ) for d1 ∧ d2, χI(r1) ⊇ χI(r2).
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Proof Suppose that r1 ≡c r2. Then, by definition,

exp(r1, L) ∪ exp(EZ (d1), L) ∪ exp(EZ (d2), L)

=

exp(r2, L) ∪ exp(EZ (d1), L) ∪ exp(EZ (d2), L)

where L = L(d1)∪L(d2). By Lemma 2, given any interpretation, I = (U,Φ), we know that:

1. χI(ri) = χI(exp(ri, L)), and
2. χI(EZ(di)) = χI(exp(EZ (di), L))

for each i ∈ {1, 2}. Therefore, in any model for di, χI(exp(EZ (di), L)) = ∅ since
χI(EZ(di)) = ∅ by Lemma 1. Thus, in any model for d1 ∧ d2,

χI(r1) = χI(exp(r1, L))

= χI(exp(r1, L)) ∪ χI(exp(EZ (d1), L)) ∪ χI(exp(EZ (d2), L))

= χI(exp(r1, L) ∪ exp(EZ (d1), L) ∪ exp(EZ (d2), L))

= χI(exp(r2, L) ∪ exp(EZ (d1), L) ∪ exp(EZ (d2), L)) (*)

= χI(r2)

as required. The remainder of the proof is similar, noting that the line (∗) is, instead, a
subset (superset) relation in the case of ⊆c (resp. ⊇c).

B Formalised inference rules and proofs of soundness

First, we observe that all of the rules inherited from [12] and, trivially, all of the rules for
logical connectives are sound.

Theorem 4 The inference rules for the logical connectives are all sound, as are AddFeet,
IntroContour, EraseSpider, EraseContour, IntroShadedZone, RemoveShading,
SplitSpider, EcludedMiddle, and Combining.

Here we include formalisations and soundness proofs for the diagrammatic inference
rules that are new (i.e., those not included in [12]): NegationElimination, CopyContours,
CopyShading and CopySpider. These rules are all equivalences, so we must show that their
application preserves semantics. In what follows, we need to use the function Σd,U that maps
spiders to elements. Given an interpretation, I = (U,Φ), and a unitary diagram d, Σd,U

maps the spiders of d to the elements of U . Frequently, we will be considering a single inter-
pretation and the spiders of more than one diagram. As such, rather than writing Σd,U , we
more simply write Σd. We now formalise and prove the soundness of NegationElimination.

Negation Elimination Let dn be a unitary diagram with exactly n spiders, no missing
zones (so dn is in Venn-form) where all spiders have single feet, and there is at most one
zone, zn, that contains spiders or shading. Let di, for 0 ≤ i < n, be the unitary diagram
where zn contains exactly i spiders and shading. More precisely, di has components that are
defined as follows:

1. the contour labels are L(di) = L(dn),
2. the zones are Z(di) = Z(dn),
3. the shaded zones are ShZ(di) = {zn},
4. the spiders are S(di) = {sj : 1 ≤ j ≤ i}, and
5. the habitat of each spider, sj ∈ S(di), is ηdi (sj) = {zn}.

Let dn+1 be a unitary diagram where zn contains n+ 1 spiders and no shading, that is:

1. the contour labels are L(dn+1) = L(dn),
2. the zones are Z(dn+1) = Z(dn),
3. the shaded zones are ShZ(dn+1) = {zn},
4. the spiders are S(dn+1) = {sj : 1 ≤ j ≤ n+ 1}, and
5. the habitat of each spider, sj ∈ S(dn+1), is ηdn+1

(sj) = {zn}.
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The NegationElimination rule can be applied in the following way to ¬d1:

1. if no zone in dn contains spiders or shading then ¬dn is logically equivalent to ⊥,
2. if zn contains spiders but no shading in dn then ¬dn is logically equivalent to

∨
1≤i<n

di,

3. otherwise zn contains spiders and shading in dn and we have that ¬dn is logically
equivalent to

∨
1≤i<n

di ∨ dn+1.

Theorem 5 NegationElimination is sound.

Proof Given dn as in the formalisation of the NegationElimination inference rule, we must
show that

1. if no zone in dn contains spiders or shading then ¬dn is logically equivalent to ⊥,
2. if zn contains spiders but no shading in dn then ¬dn is logically equivalent to

∨
1≤i<n

di,

3. otherwise zn contains spiders and shading in dn and we have that ¬dn is logically
equivalent to

∨
1≤i<n

di ∨ dn+1.

Let I = (U,Φ) be an interpretation. We consider the three cases in turn.

1. Case 1: if no zone in dn contains spiders or shading then ¬dn is logically equivalent
to ⊥. We first show that dn is modelled by I. Trivially, as dn has no missing zones,
χI(Z(dn)) = U . As there are no spiders, we also see that there exists a function,
Σdn : S(dn)→ U , such that

(a) ∀s ∈ S(dn)
(
Σdn (s) ∈ χI(ηdn (s))

)
, and

(b) ∀z ∈ ShZ (dn)
(
ζI(z) ⊆ im(Σdn )

)
,

where im(Σdn ) is the image of the function Σdn (i.e., the set of elements in U to which
Σdn maps spiders). As there are no shaded zones in dn, it is trivial that for all shaded
zones in dn, ζI(z) ⊆ im(Σdn ). Hence I models dn. As I was arbitrary, it follows that
every interpretation models dn. Therefore, ¬dn has no models and is logically equivalent
to ⊥, as required.

2. Case 2: if zn contains spiders but no shading in dn then ¬dn is logically equivalent
to

∨
1≤i<n

di. Suppose that I models ¬dn. We show I models
∨

1≤i<n

di. Now, given I

models ¬dn, I does not model dn. The only way I can fail to model dn, since there is no
shading and there are no missing zones, is if there are insufficient elements in ζI(zn) to
which the spiders can map injectively. From this it follows that |ζI(zn)| < n. Therefore,
|ζI(zn)| = i for some i < n.
We show I models di. Since di has no missing zones, again we see that χI(Z(dn)) =
U . Choose the i elements in U that are in ζI(zn), say u1, ..., ui, and further define
Σdi (sj) = uj . Then, by construction, Σdi is injective and maps spiders to elements in
their habitat (recall, there are no other spiders in di). Furthermore, there is only one
shaded zone, namely zn, in di and we know ζI(zn) = {u1, ..., ui}. Therefore,

ζI(zn) ⊆ {u1, ..., ui},

as required. Hence, I models di and, consequently, I models
∨

1≤i<n

di.

For the converse, suppose that I models
∨

1≤i<n

di. Then I models one of the disjuncts,

say dj . We show that I does not model dn. Since I models dj , there is a spider map,
Σdj , which ensures that ζI(zn) ⊆ {u1, ..., uj}, where u1, ..., uj are the elements mapped

to by the j spiders in zn in dj . From this, it follows that ζI(zn) < n, since j < n.
Therefore, as there are n spiders in zn in dn, there cannot exist an injective mapping of
spiders in dn, namely Σdn , which ensures that all spiders represents elements in ζI(zn).
Hence I cannot model dn. Therefore I models ¬dn. Thus, we see that ¬dn is logically
equivalent to

∨
1≤i<n

di, as required.
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3. Case 3: zn contains spiders and shading in dn and we have that ¬dn is logically equivalent
to

∨
1≤i<n

di ∨ dn+1.

Suppose that I models ¬dn. We show I models
∨

1≤i<n

di ∨ dn+1. Now, given I models

¬dn, I does not model dn. The only way I can fail to be a model for dn is if there are
not exactly n elements in ζI(zn). From this it follows that |ζI(zn)| < n or |ζI(zn)| > n.
Therefore, |ζI(zn)| = i for some i < n or i > n. In the former case, we have I models
di for some i < n, as in Case 2. When i > n, choose n + 1 elements, say u1, ..., un+1,
in ζI(zn), define Σdn+1

by Σ(sj) = uj and one can readily proceed to show I models
dn+1 in much the same way, noting the details are more straightforward since zn is not
shaded in dn+1. Therefore I models

∨
1≤i<n

di ∨ dn+1.

For the converse, suppose I models
∨

1≤i<n

di∨dn+1. Then I models di for some 1 ≤ i < n

or I models dn+1. If I models such a di then to show I models ¬dn the proof proceeds
similarly to case 2. If I models dn+1 then it can readily be shown that there are at
least n+1 elements, say u1, ..., un, un+1, in ζI(zn). But then I does not model dn, since
dn requires |ζI(zn)| = n,. Therefore, I models ¬dn. Thus, we see that ¬dn is logically
equivalent to

∨
1≤i<n

di ∨ dn+1, as required.

Hence NegationElimination is sound.

Recall that the CopyContours inference rule applies to d1 ∧ d2, copying a contour l2
from d2 into d1, yielding d′1 ∧ d2. In order to formalise CopyContours, we need to specify
syntactically how the addition of the new contour, l2, impacts on the existing zones in
d1. Zones can either be completely inside, completely outside or split by the new contour,
for which we require three parameters. These parameters will be defined using Zi(l2, d2),
Zo(l2, d2), and Zs(l2, d2) which we will shortly define. Zones that are in Zi(l2, d2) will
necessarily represent subsets of Φ(l2) in models for d1 ∧ d2; these zones will be inside l2 in
d′1. Similarly, zones that are in Zo(l2, d2) will necessarily represent sets disjoint from Φ(l2)
and will be outside l2. If zones are neither necessarily subsets of nor disjoint from Φ(l2) then
they will be split into two new zones by l2, one inside and the other outside l2.

To give further insight into the definition below, we observe that in any model for d2,
the following hold:

1. Φ(l2) = χI({(in2, out2) ∈ Z(d2) : l2 ∈ in2}), and
2. Φ(l2) ∩ χI({(in2, out2) ∈ Z(d2) : l2 ∈ out2}) = ∅.

Definition 16 Let d1 and d2 be unitary diagrams and let l2 be in L(d2)\L(d1). We define
three subsets of Z(d1) \ EZ(d1), namely Zi (l2, d2), Zo(l2, d2), and Zs(l2, d2), according to
the following rules: let (in1, out1) ∈ Z(d1) \ EZ(d1) such that {(in1, out1)} 6⊆c EZ(d2),
then
1. (in1, out1) ∈ Zi(l2, d2) provided

{(in1, out1)} ⊆c {(in2, out2) ∈ Z(d2) : l2 ∈ in2},

2. (in1, out1) ∈ Zo(l2, d2) provided

{(in1, out1)} ⊆c {(in2, out2) ∈ Z(d2) : l2 ∈ out2},

3. (in1, out1) ∈ Zs(l2, d2) provided

(in1, out1) 6∈ Zi ∪ Zo.

We now establish some properties of the sets Zi (l2, d2), Zo(l2, d2), and Zs(l2, d2).

Lemma 3 Let d1 and d2 be unitary diagrams and let l2 be in L(d2) \ L(d1). Then

1. Zi (l2, d2), Zo(l2, d2), and Zs(l2, d2) are pairwise disjoint, and
2. Z(d1) \ (Zi (l2, d2) ∪ Zo(l2, d2) ∪ Zs(l2, d2) ∪ EZ (d1)) ≡c EZ (d2).
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Proof First we show that Zi (l2, d2), Zo(l2, d2), and Zs(l2, d2) are pairwise disjoint. Triv-
ially, Zs(l2, d2) is disjoint from both Zi (l2, d2) and Zo(l2, d2). Let (in1, out1) be a zone in
Zi (l2, d2). We must show that (in1, out1) is not in Zo(l2, d2). Since (in1, out1) is a zone in
Zi (l2, d2) we know that

{(in1, out1)} ⊆c {(in2, out2) ∈ Z(d2) : l2 ∈ in2}.

By the definition of ⊆c,

exp({(in1, out1), L}) ∪ exp(EZ (d1), L) ∪ exp(EZ (d2), L) ⊆
exp({(in2, out2) ∈ Z(d2) : l2 ∈ in2}, L) ∪ exp(EZ (d1), L) ∪ exp(EZ (d2), L) (1)

where L = L(d1) ∪ L(d2). If (in1, out1) was in Zo(l2, d2) then we would also have

exp({(in1, out1), L}) ∪ exp(EZ (d1), L) ∪ exp(EZ (d2), L) ⊆
exp({(in2, out2) ∈ Z(d2) : l2 ∈ out2}, L) ∪ exp(EZ (d1), L) ∪ exp(EZ (d2), L) (2)

We show that there is a zone in the LHS of (1) and (2), namely

exp({(in1, out1), L}) ∪ exp(EZ (d1), L) ∪ exp(EZ (d2), L)

that is not in the RHS of (2), namely

exp({(in2, out2) ∈ Z(d2) : l2 ∈ out2}, L) ∪ exp(EZ (d1), L) ∪ exp(EZ (d2), L)

Since (in1, out1) is in Zi, we know that

(in1, out1) 6⊆c EZ (d2)

This implies, by the definition of ⊆c, that

exp({(in1, out1), L})∪exp(EZ (d1), L)∪exp(EZ (d2), L) 6⊆ exp(EZ (d1), L)∪exp(EZ (d2), L).

Choose a zone, (in, out), such that

(in, out) ∈ exp({(in1, out1), L}) \ (exp(EZ (d1), L) ∪ exp(EZ (d2), L)).

If l2 6∈ out then (in, out) is not in the RHS of (2) but it is in the LHS of (1) and we are
done. Alternatively, l2 ∈ out , in which case l2 6∈ in. But then (in, out) is not in the RHS
of (1) but it is in the LHS of (1), which is a contradiction. Hence, the LHS of (1) is not a
subset of the RHS of (2), as required. Therefore, (in1, out1) is not in Zo(l2, d2). Thus, the
sets Zi (l2, d2) and Zo(l2, d2) are also disjoint, completing the first part of the proof.

For the last part of the proof we need to establish that

Z(d1) \ (Zi (l2, d2) ∪ Zo(l2, d2) ∪ Zs(l2, d2) ∪ EZ (d1)) ≡c EZ (d2).

Let (in1, out1) be a zone such that

(in1, out1) ∈ Z(d1) \ (Zi (l2, d2) ∪ Zo(l2, d2) ∪ Zs(l2, d2) ∪ EZ (d1)).

Trivially, since (in1, out1) is not in any one of Zi (l2, d2), Zo(l2, d2) Zs(l2, d2), we see that

{(in1, out1)} ⊆c EZ (d2).

From this the result immediately follows.

We now formalise the CopyContours inference rule.

Copy contours Let d1 and d2 be unitary diagrams and let l2 be in L(d2)\L(d1). Let ZIN ,
ZOUT and ZSPLIT be a 3-way partition of Z(d1) such that

1. Zi(l2, d2) ⊆ ZIN ,
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2. Zo(l2, d2) ⊆ ZOUT , and
3. Zs(l2, d2) ⊆ ZSPLIT .

Let d′1 be the diagram whose components are defined as follows:

1. the contour labels are L(d′1) = L(d1) ∪ {l2},
2. the zones are

Z(d′1) = {(in ∪ {l2}, out) : (in, out) ∈ ZIN ∪ ZSPLIT } ∪
{(in, out ∪ {l2}) : (in, out) ∈ ZOUT ∪ ZSPLIT },

3. the shaded zones are

Z(d′1) = {(in ∪ {l2}, out) : (in, out) ∈ (ZIN ∪ ZSPLIT ) ∩ ShZ (d1)} ∪
{(in, out ∪ {l2}) : (in, out) ∈ (ZOUT ∪ ZSPLIT ) ∩ ShZ (d1)},

4. the spiders are S(d′1) = S(d1), and
5. the habitat of each spider, s′ ∈ S(d′1), is

ηd′1
(s′) = {(in ∪ {l2}, out) : (in, out) ∈ (ZIN ∪ ZSPLIT ) ∩ ηd1 (s)} ∪

{(in, out ∪ {l2}) : (in, out) ∈ (ZOUT ∪ ZSPLIT ) ∩ ηd1 (s)}.

The CopyContours rule can be applied to show d1 ∧ d2 is logically equivalent to d′1 ∧ d2.

Theorem 6 CopyContours is sound.

Proof Let d1, d2 and d′1 be spider diagrams, let l2 be a contour label and let ZIN , ZOUT

and ZSPLIT be a three way partition of Z(d1) as in the definition of the CopyContours
inference rule. We must show that d1∧d2 ≡ d′1∧d2. Let I = (U,Φ) be an interpretation and
suppose that I models d′1 ∧ d2. Trivially, d′1 � d1, by Theorem 4, since d1 can be obtained
from d′1 by applying the EraseContour inference rule (deleting the contour labelled l2
from d′1). Therefore, d′1 ∧ d2 � d1 ∧ d2.

For the converse, suppose that I models d1∧d2. We must first show that χI(Z(d′1)) = U .
Trivially, χI(Z(d′1)) ⊆ U . Let e ∈ U . We show that there exists a zone, (in ′1, out ′1) ∈ Z(d′1),
such that e ∈ ζI(in ′1, out ′1). We know that

e ∈ ζI((in1, out1))

for some zone (in1, out1) ∈ Z(d1), since χI(Z(d1)) = U . There are three cases to consider,
relating to the three-way partition, ZIN , ZOUT and ZSPLIT , of Z(d1).

1. Case 1: (in1, out1) ∈ ZIN . We show that e ∈ ζI(in1 ∪ {l2}, out1). Since (in1, out1) ∈
ZIN , we know, by Lemma 3, that either (in1, out1) ∈ Zi or (in1, out1) ∈ EZ(d1), or
(in1, out1) ⊆c EZ(d2). In the latter two subcases, ζI(in1, out1) = ∅, by lemma 1 and
so does not contain e. Thus, it can only be that (in1, out1) ∈ Zi. We, therefore, know
that

{(in1, out1)} ⊆c {(in2, out2) ∈ Z(d2) : l2 ∈ in2}
by the definition of Zi. This implies that

e ∈ ζI(in1, out1) ⊆ χI({(in2, out2) ∈ Z(d2) : l2 ∈ in2}) (1)

by Theorem 3. Since all zones, (in ′2, out ′2), in {(in2, out2) ∈ Z(d2) : l2 ∈ in2} have the
property that l2 ∈ in ′2 it follows that

χI({(in2, out2) ∈ Z(d2) : l2 ∈ in2}) ⊆ Φ(l2).

By (1), we deduce that
e ∈ ζI((in1, out1)) ⊆ Φ(l2).

Therefore
e ∈ ζI((in1, out1)) ∩ Φ(l2) ⊆ Φ(l2)
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and we know that

ζI((in1, out1)) ∩ Φ(l2) = ζI((in1 ∪ {l2}, out1)).

Hence
e ∈ ζI((in1 ∪ {l2}, out1)).

By the definition of d′1, the zone (in1 ∪ {l2}, out1) is in Z(d′1).
2. Case 2: (in1, out1) ∈ ZOUT . We show that e ∈ (in1, out1 ∪{l2}). This case is similar to

Case 1, noting that all zones, (in ′2, out ′2), in {(in2, out2) ∈ Z(d2) : l2 ∈ out2} have the
property that l2 ∈ out ′2. From this, it follows that

χI({(in2, out2) ∈ Z(d2) : l2 ∈ out2}) ⊆ U \ Φ(l2).

3. Case 3: (in1, out1) ∈ ZSPILT . Trivially,

e ∈ ζI((in1 ∪ {l2}, out1)) ∪ ζI((in1, out1 ∪ {l2}))

and both the zones (in1 ∪ {l2}, out1) and (in1, out1) ∪ {l2}) are in Z(d′1) and we are
done.

Hence for every element, e, in U there exists a zone, (in ′1, out ′1) in Z(d′1) such that e ∈
ζI((in ′1, out ′1)). Thus χI(Z(d1)) = U , as required. That is, between them the zones of d′1
represent the universal set.

We must now show that the condition for I to model d′1 relating to spiders holds. For
d1 there exists a function, Σd1 : S(d1)→ U , such that

1. ∀s ∈ S(d1)
(
Σd1 (s) ∈ χI(ηd1 (s))

)
, and

2. ∀z ∈ ShZ (d1)
(
ζI(zn) ⊆ im(Σd1 )

)
.

Choose such a Σd1 . We must show that a similar Σd′1
: S(d′1)→ U exists for d′1. We define

Σd′1
= Σd1 .

We now show that Σd′1
ensures that the spiders map to elements in the sets represented

by their habitats. Let s′ be a spider in S(d′1). Then, by the definition of d′1,

ηd′1
(s′) = {(in ∪ {l2}, out) : (in, out) ∈ (ZIN ∪ ZSPLIT ) ∩ ηd1 (s)} ∪

{(in, out ∪ {l2}) : (in, out) ∈ (ZOUT ∪ ZSPLIT ) ∩ ηd1 (s}.

We know that Σd1 (s) ∈ χI(ηd1 (s)). Choose the zone (in1, out1) ∈ ηd1 (s) such that

Σd1 (s) ∈ ζI((in1, out1)).

Then (in1, out1) 6∈ EZ (d1) and (in1, out1) 6⊆c EZ (d2). This implies that either (in1, out1) ∈
Zi, (in1, out1) ∈ Zo, or (in1, out1) ∈ Zs. Similarly to previous parts of the proof, we make
the following three deductions.

1. If (in1, out1) ∈ Zi then

Σd1 (s) ∈ ζI((in1, out1)) = ζI((in1 ∪ {l2}, out1)).

The zone (in1 ∪ {l2}, out1) is in ηd′1
(s) and, since Σd1 (s) = Σd′1

(s), we have

Σd′1
(s) ∈ ζI((in1 ∪ {l2}, out1)).

2. If (in1, out1) ∈ Zo then

Σd1 (s) ∈ ζI((in1, out1)) = ζI((in1, out1 ∪ {l2})).

The zone (in1, out1 ∪ {l2}) is in ηd′1
(s) and, since Σd1 (s) = Σd′1

(s), we have

Σd′1
(s) ∈ ζI((in1, out1 ∪ {l2})).
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3. If (in1, out1) ∈ Zs then

Σd1 (s) ∈ ζI((in1, out1)) = ζI((in1 ∪ {l2}, out1)) ∪ ζI((in1, out1 ∪ {l2})).

The zones (in1∪{l2}, out1) and (in1, out1∪{l2}) are both in ηd′1
(s) and, since Σd1 (s) =

Σd′1
(s), we have

Σd′1
(s) ∈ ζI((in1 ∪ {l2}, out1)) ∪ ζI((in1, out1 ∪ {l2})).

In all three cases, we have shown that Σd′1
(s) ∈ χI(ηd′1

(s)), as required. That is, each spider

in d′1 represents an element in the set represented by its habitat in d′1.
Finally, we consider the shaded zones. Let z be a shaded zone in d′1, in which case

z ∈ {(in ∪ {l2}, out) : (in, out) ∈ (ZIN ∪ ZSPLIT ) ∩ ShZ (d1)} ∪
{(in, out ∪ {l2}) : (in, out) ∈ (ZOUT ∪ ZSPLIT ) ∩ ShZ (d1)}.

Therefore, given that z = (in∪{l2}, out) or (in, out∪{l2}} for some zone (in, out) ∈ ShZ (d1),
we know that

ζI(z) ⊆ im(Σd1 ) = im(Σd′1
)

since
ζI(z) ⊆ ζI((in, out)) ⊆ im(Σd1 ).

Therefore, for all shaded zones, z, in d′1, ζI(z) ⊆ im(Σd′1
) as required. That is, each shaded

zone in d′1 represents a set containing only elements represented by spiders. Hence I is a
model for d′1. Since, by assumption, I models d2 it follows that I models d′1 ∧ d2. Thus,
d1 ∧ d2 � d′1 ∧ d2. Hence d1 ∧ d2 ≡ d′1 ∧ d2, that is, copyContour is sound.

We now formalise CopyShading and prove that it is sound. To formalise the rule, we
need to identify spiders whose habitats have certain properties, given a diagram d1 ∧ d2. In
particular, these spiders are in d1 and have a foot in a particular region, say r1. Moreover,
all zones of the habitat outside of r1 represent empty sets, which can be deduced from d2.

Definition 17 Let d1 and d2 be unitary diagrams. We define

S(r1, d1, d2) = {s ∈ S(d1) : ηd1 (s) ∩ r1 6= ∅ ∧ ηd1 (s) \ r1 ⊆c EZ (d2)}.

Copy Shading Let d1 and d2 be unitary diagrams with regions, r1 and r2 respectively,
such that:

1. r1 ≡c r2,
2. r1 contains at least one non-shaded zone in d1, that is r1 \ ShZ (d1) 6= ∅,
3. r2 is entirely shaded in d2, that is, r2 ⊆ ShZ (d2),
4. in d1, each spider, s, whose habitat includes a zone of r1, that is, ηd1 (s)∩ r1 6= ∅, is also

in S(r1, d1, d2),
5. in d2, each spider, s, whose habitat includes a zone of r2, that is, ηd2 (s)∩ r2 6= ∅, is also

in S(r2, d2, d1), and
6. there is a bijection, σ : S(r1, d1, d2) → S(r2, d2, d1) such that for each spider, s,

ηd1 (s) ≡c ηd2 (σ(s)).

Let d′1 be the diagram whose components are defined as follows:

1. the contour labels are L(d′1) = L(d1),
2. the zones are Z(d′1) = Z(d1),
3. the shaded zones are ShZ (d′1) = ShZ (d1) ∪ r1,
4. the spiders are S(d′1) = S(d1),
5. the habitat of each spider, s, in S(d′1) is ηd′1

(s) = ηd1 (s).

The CopyShading rule can be applied to show d1 ∧ d2 is logically equivalent to d′1 ∧ d2.

Theorem 7 CopyShading is sound.
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Proof Let d1, d2 and d′1 be spider diagrams and let r1 and r2 be regions as in the definition
of the CopyShading inference rule. We must show that d1 ∧ d2 ≡ d′1 ∧ d′2. Let I = (U,Φ)
be an interpretation and suppose that I models d′1 ∧ d2. Trivially, d′1 � d1, by Theorem 4,
since d1 can be obtained from d′1 by applying the RemoveShading inference rule (deleting
the shading from the region r1 \ ShZ (d1)). Therefore, d′1 ∧ d2 � d1 ∧ d2.

For the converse, suppose that I models d1 ∧ d2. First, since Z(d′1) = Z(d1) and since
I models d1, we immediately see that χI(Z(d′1)) = U, because χI(Z(d1)) = U , as required.
That is, between them the zones of d′1 represent the universal set.

We must now show that the condition for I to model d′1 relating to spiders holds. For
d1 there exists a function, Σd1 : S(d1)→ U , such that

1. ∀s ∈ S(d1)
(
Σd1 (s) ∈ χI(ηd1 (s))

)
, and

2. ∀z ∈ ShZ (d1)
(
ζI(z) ⊆ im(Σd1 )

)
.

Choose such a Σd1 . Similarly, choose such a Σd2 for d2. We must show that a similar
Σd′1

: S(d′1)→ U exists for d′1. We define Σd1 : S(d′1)→ U by

Σd′1
(s) =

{
Σd1 (s) if s ∈ S(d1) \ S(r1, d1, d2)
Σd2 (σ(s)) otherwise.

Our first obligation is to show that Σd′1
is injective. Clearly, Σd′1

|S(d1)\S(r1,d1,d2) and

Σd′1
|S(r1,d1,d2) are both injective, since Σd1 and Σd2 , respectively, are injective. Let s1 ∈

S(d1) \ S(r1, d1, d2) and let s2 ∈ S(r1, d1, d2) and suppose that Σd′1
(s1) = Σd′1

(s2). Since

Σd′1
(s1) = Σd1 (s1) ∈ χI(ηd1 (s1)) = χI(ηd′1

(s1)) (because ηd1 (s1) = ηd′1
(s1))

and

Σd′1
(s2) = Σd2 (σ(s2))) ∈ χI(ηd2 (σ(s2))) = χI(ηd′1

(s2)) (because ηd2 (σ(s2)) ≡c ηd′1
(s2)),

we know that
χI(ηd′1

(s1)) ∩ χI(ηd′1
(s2)) 6= ∅.

Since distinct zones in any unitary diagram represent disjoint sets, it follows that

ηd′1
(s1)) ∩ ηd′1 (s2) 6= ∅,

that is, the spiders s1 and s2 have a common zone, z say, in their habitats in d′1. Moreover,
s2 ∈ S(r1, d1, d2) implies χI(ηd1 (s2) \ r1) = ∅, by Lemma 2 which, in turn, implies that
z ∈ r1. Therefore, since z ∈ ηd′1

(s1) = ηd1 (s1), we see that s1 is a spider in d1 whose

habitat includes a zone r1. Hence s1 ∈ S(r1, d1, d2), contradicting our assumption that
s1 ∈ S(d1) \ S(r1, d1, d2). Hence Σd′1

(s1) 6= Σd′1
(s2), so Σd′1

is injective.

We now show that Σd′1
ensures that the spiders map to elements in the sets represented

by their habitats. Let s be a spider in S(d′1). Then, by the definition of d′1, ηd′1
(s) = ηd(s).

If s ∈ S(d1) \ S(r1, d1, d2) then Σd′1
(s) = Σd1 (s) ∈ χI(ηd(s)) = χI(ηd′1

(s)), as required.

Otherwise, s ∈ S(r1, d1, d2). In this case,

Σd′1
(s) = Σd2 (σ(s)) ∈ χI(ηd2 (σ(s))).

Since ηd2 (σ(s)) ≡c ηd1 (s) = ηd′1
(s), by Theorem 3 we deduce

χI(ηd2 (σ(s))) = χI(ηd1 (s)) = χI(ηd′1
(s)).

Hence
Σd′1

(s) ∈ χI(ηd′1
(s)),

as required. That is, each spider in d′1 represents an element in the set represented by its
habitat in d′1.
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Finally, we consider the shaded zones. Let z be a shaded zone in d′1. There are two cases:
z ∈ ShZ (d′1) \ r1 and z ∈ ShZ (d′1) ∩ r1. If z ∈ ShZ (d′1) \ r1 then z ∈ ShZ (d1), so

ζI(z) ⊆ im(Σd1 ) (1)

Let e ∈ ζI(z). We show that e is represented by a spider in S(d1) that is not in S(r1, d1, d2).
Choose the spider, s, in S(d1) such that Σd1 (s) = e (such a spider exists by (1)). Then
Σd1 (s) ∈ χI(ηd1 (s)) which implies that z ∈ ηd1 (s). Since z 6∈ r1, there is a zone in the
habitat of s that is not in r1. This implies that s 6∈ S(r1, d1, d2) because all of the spiders
whose habitats includes a zone of r1 represent elements in χI(r1) (from the fact that for
all s′ ∈ S(r1, d1, d2), χI(ηd1 (s) \ r1) = ∅ in models for d1 ∧ d2). Since e was an arbitrary
element in ζI(z) it follows that

ζI(z) ⊆ im(Σd1 ) \ {Σd1 (s1) : s1 ∈ S(r1, d1, d2)} ⊆ im(Σd′1
)

as required.
For the second case, z ∈ ShZ (d′1) ∩ r1. We show that ζI(z) ⊆ im(Σd′1

) ∩ im(Σd2 ). Let

e ∈ ζI(z). We show that e is represented by a spider in S(d2) that is also in S(r2, d2, d1).
Choose the spider, s, in S(d2) such that Σd2 (s) = e; such a spider exists because ζI(z) ⊆
χI(r1) = χI(r2) ⊆ im(Σd2 ), by Theorem 3, since r1 ≡c r2. In particular, we see that

Σd2 (s) ∈ χI(r2).

Furthermore, we know that
Σd2 (s) ∈ χI(ηd2 (s))

implying that χI(r2) ∩ χI(ηd2 (s)) 6= ∅. Since distinct zones in a unitary diagram represent
disjoint sets, we deduce that r2 ∩ ηd2 (s) 6= ∅. That is, the habitat of s in d2 includes a zone
of r2. Therefore, s ∈ S(r2, d2, d1), as required. From this, since e was an arbitrary element
in ζI(z), it follows that

ζI(z) ⊆ {Σd2 (s2)) : s2 ∈ S(r2, d2, d1)} (2)

Since σ : S(r1, d2, d1) → S(r2, d2, d1) is a bijection and, for all spiders, s ∈ S(r1, d2, d1),
Σd′1

(s) = Σd2 (σ(s)) we then see that

{Σd2 (s2) : s2 ∈ S(r2, d2, d1)} = im(Σd′1
) ∩ im(Σd2 ).

Hence, by (2), ζI(z) ⊆ im(Σd′1
). Therefore, for all shaded zones, z, in d′1, ζI(z) ⊆ im(Σd′1

)

as required. That is, each shaded zone in d′1 represents a set containing only elements
represented by spiders. Hence I is a model for d′1. Since, by assumption, I models d2 it
follows that I models d′1 ∧ d2. Thus, d1 ∧ d2 � d′1 ∧ d2. Hence d1 ∧ d2 ≡ d′1 ∧ d2, that is,
CopyShading is sound.

Lastly, we formalise the CopySpider inference rule and establish its soundness.

Copy a spider Let d1 and d2 be unitary diagrams with regions r1 and r2 respectively, such
that:

1. r1 ≡c r2,
2. r1 contains no shaded zones in d1, that is, r1 ∩ ShZ (d1) = ∅,
3. in d1, each spider, s, whose habitat includes a zone of r1, that is, ηd1 (s)∩ r1 6= ∅, is also

in S(r1, d1, d2),
4. there exists an injective, but not surjective, function σ : S(r1, d1, d2) → S(r2, d2, d1)

such that
(a) for each spider s, ηd1 (s) ≡c ηd2 (σ(s)), and
(b) there exists a spider, s2, that is in S(r2, d2, d1) but is not mapped to by σ, such

that ηd2 (s2) ⊆c r1.

Let s1 be a fresh spider. Let d′1 be the diagram whose components are defined as follows:
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1. the contour labels are L(d′1) = L(d1),
2. the zones are Z(d′1) = Z(d1),
3. the shaded zones are ShZ (d′1) = ShZ (d1),
4. the spiders are S(d′1) = S(d1) ∪ {s1},
5. the habitat of each spider, s′, in S(d′1) is

ηd′1
(s′) =

{
ηd1 (s′) if s′ ∈ S(d1)
r1 otherwise.

The CopySpider rule can be applied to show d1 ∧ d2 is logically equivalent to d′1 ∧ d2.

Theorem 8 CopySpider is sound.

Proof Let d1, d2 and d′1 be spider diagrams, and let r1 and r2 be regions, and let s1 be a
spider as in the definition of the CopySpider inference rule. We must show that d1 ∧ d2 ≡
d′1 ∧ d′2. Let I = (U,Φ) be an interpretation and suppose that I models d′1 ∧ d2. Trivially,
d′1 � d1, by Theorem 4, since d1 can be obtained from d′1 by applying the EraseSpider
inference rule (deleting the spider s1, since its habitat is r1 and this region contains no
shaded zones). Therefore, d′1 ∧ d2 � d1 ∧ d2.

For the converse, suppose that I models d1 ∧ d2. First, since Z(d′1) = Z(d1) and since
I models d1, we immediately see that χI(Z(d′1)) = U, because χI(Z(d1)) = U , as required.
That is, between them the zones of d′1 represent the universal set.

We must now show that the condition for I to model d′1 relating to spiders holds. For
d1 there exists a function, Σd1 : S(d1)→ U , such that

1. ∀s ∈ S(d1)
(
Σd1 (s) ∈ χI(ηd1 (s))

)
, and

2. ∀z ∈ ShZ (d1)
(
ζI(z) ⊆ im(Σd1 )

)
.

Choose such a Σd1 . Similarly, choose such a Σd2 for d2. We must show that a similar
Σd′1

: S(d′1)→ U exists for d′1. Now, since σ : S(r1, d1, d2)→ S(r2, d2, d1) ensures that there

exists a spider, s2, that is in S(r2, d2, d1) but is not mapped to by σ where ηd2 (s2) ⊆c

r1, we extend σ to σ : S(r1, d′1, d2) → S(r2, d2, d′1) by defining σ(s1) = s2 (noting that
S(r1, d′1, d2) = S(r1, d′1, d2) ∪ {s1}). We define Σd′1

: S(d′1)→ U by

Σd′1
(s) =

{
Σd1 (s) if s ∈ S(d1) \ S(r1, d1, d2)
Σd2 (σ(s)) otherwise.

Our first obligation is to show that Σd′1
is injective. Clearly, Σd′1

|S(d1)\S(r1,d1,d2) and

Σd′1
|S(r1,d1,d2)∪{s1} are both injective, since Σd1 and Σd2 , respectively, are injective. Let

s′1 ∈ S(d1) \ S(r1, d1, d2) and let s′2 ∈ S(r1, d1, d1) ∪ {s1} = S(r1, d′1, d2) and suppose that
Σd′1

(s′1) = Σd′1
(s′2). Since

Σd′1
(s′1) ∈ χI(ηd1 (s′1)) = χI(ηd′1

(s′1)) (because ηd1 (s′1) = ηd′1
(s′1))

and

Σd′1
(s′2) = Σd2 (s′2) ∈ χI(ηd2 (σ(s′2))) ⊆ χI(ηd′1

(s′2)) (because ηd2 (σ(s′2)) ⊆c ηd′1
(s′2))

we know that
χI(ηd′1

(s′1)) ∩ χI(ηd′1
(s′2)) 6= ∅.

Since distinct zones in any unitary diagram represent disjoint sets, it follows that

ηd′1
(s′1)) ∩ ηd′1 (s′2) 6= ∅,

that is, the spiders s′1 and s′2 have a common zone, z say, in their habitats in d′1 that
represents a non-empty set. By definition, the only zones of ηd′1

(s′2) that represent non-

empty sets are in r1. But then s′1 would be a spider in d1 that includes a zone, z, of r1 but
is not in S(r1, d2), which is a contradiction. Hence Σd′1

(s′1) 6= Σd′1
(s′2), so Σd′1

is injective.
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We now show that Σd′1
ensures that the spiders map to elements in the sets represented

by their habitats. Let s′ be a spider in S(d′1). Then, by the definition of d′1, ηd′1
(s′) = ηd(s′)

or, when s′ = s1, ηd′1
(s′) = r1 (in this latter case, s′ ∈ S(r1, d′1, d2)). If s′ ∈ S(d1) \

S(r1, d1, d2) then Σd′1
(s′) = Σd1 (s′) ∈ χI(ηd1 (s′)) = χI(ηd′1

(s′)), as required. Otherwise,

s′ ∈ S(r1, d1, d2) ∪ {s1} = S(r1, d′1, d2). In this case,

Σd′1
(s′) = Σd2 (s′) ∈ χI(ηd2 (σ(s′))).

Since, when s′ 6= s1, ηd2 (σ(s′)) ≡c ηd1 (s′) = ηd′1
(s′) and, when s′ = s1, ηd2 (σ(s′)) ⊆c

r1 = ηd′1
(s′), by Theorem 3 we deduce

χI(ηd2 (σ(s′))) ⊆ χI(ηd′1
(s′)).

Hence
Σd′1

(s′) ∈ χI(ηd′1
(s)),

as required. That is, each spider in d′1 represents an element in the set represented by its
habitat in d′1.

Finally, we consider the shaded zones. Let z be a shaded zone in d′1, in which case z
is shaded in d1. Let e ∈ ζI(z). We show that there is a spider, s, in d′1 that maps to e.
Now, since z is shaded, z 6∈ r1, by the definition of the inference rule. Then no spider in d1
whose habitat includes a zone of r1 maps to e. This is because any spider, s′, whose habitat
includes a zone of r1, is in S(r1, d1, d2) and, thus, all zones in ηd1 (s) \ r1 represent empty
sets. Therefore, any spider that maps to e cannot include zones of r1 in its habitat. Since
z is shaded, there exists a spider s that maps to e. Therefore, s is not in S(r1, d1, d2), so
Σd′1

(s) = Σd1 (s). Since e is an arbitrary element in ζI(z) we deduce that ζI(z) ⊆ im(Σd′1
).

That is, each shaded zone in d′1 represents a set containing only elements represented by
spiders. Hence I is a model for d′1. Since, by assumption, I models d2 it follows that I models
d′1 ∧ d2. Thus, d1 ∧ d2 � d′1 ∧ d2. Hence d1 ∧ d2 ≡ d′1 ∧ d2, so CopySpider is sound.

C Proof of completeness

We now establish that the spider diagram logic, extended to include implication, bi-
implication and negation, is complete. To achieve completeness, we added new logical rules
for these connectives along with NegationElimination; the other new rules we introduced
for constructing more readable proofs and whose soundness we just proved in Appendix B
are not necessary for completeness. To prove completeness, we extend the proof given for
spider diagrams in [12], which relies on the absence of −→, ←→ and ¬. If we can establish
that every spider diagram is syntactically equivalent to a diagram with no occurrences of
−→, ←→ and ¬ then we have established completeness for the extended spider diagram
system implemented in Speedith.

It is trivial to eliminate −→ and ←→ using standard logical inference rules. We now
show how to eliminate negation. If we have a negated unitary diagram where all spiders have
single feet then it is possible to eliminate the negation using three rules: IntroShadedZone,
Combining and NegationElimination. The NegationElimination inference rule can only
be applied to diagrams with information about at most one zone. Thus, it is useful to define
this property:

Definition 18 Let d be a unitary diagram where all spiders have a single foot. Then d is in
zone-minimal form if it has no missing zones and all zones except, perhaps a single zone,
do not contain any spiders or shading.

Lemma 4 Let d be a unitary diagram with zone set Z = {z1, ..., zn} such that all spiders
have single feet. Then d is syntactically equivalent to∧

1≤i≤n

di
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where di is zone-minimal and has

1. zone set Z, together with any missing zones,
2. the same number of spiders in zi as in d,
3. shading in zi, provided zi was shaded in d,
4. no other spiders or shading.

Proof We start by adding all missing zones to d, using IntroShadedZone. Noting that the
Combining rule is an equivalence, it can be applied to turn d into

∧
1≤i≤n

di, as follows. First,

turn d into d1 ∧ d′, where d′ is a copy of d except that it contains no spiders or shading
in z1. Repeat this process, iterating through all of the zones, to give

∧
1≤i≤n

di. Thus, d is

syntactically equivalent to
∧

1≤i≤n

di.

Theorem 9 Let d be a spider diagram. Then there exists a syntactically equivalent spider
diagram, d′, where d′ does not contain any of −→, ←→, and ¬.

Proof We begin by using the logical inference rules to eliminate −→, ←→. Next, apply
SplitSpider until all spiders have single feet. Then replace each non-⊥ unitary part of the
resulting diagram with

∧
1≤i≤n

di as in Lemma 4. To eliminate negation, the next step is to

push all negation symbols to the leaves, using standard logical inference rules. Since all non-
⊥ unitary parts are zone-minimal and all spiders have single feet, the NegationElimination
rule can be applied to eliminate all negation symbols. The resulting diagram does not contain
any of −→, ←→, and ¬. Since all rules used are equivalences, this completes the proof.

Since all diagrams can be reduced to syntactically equivalent diagrams without using
any of −→, ←→, and ¬, we can then use the completeness theorem from [12] to establish
completeness for this extended system.

Theorem 10 (Completeness) Let d1 and d2 be spider diagrams such that d1 � d2. Then
d1 ` d2.

Proof Suppose that d1 � d2. By Theorem 9, there exists d′1 and d′2 that are syntactically
equivalent to d1 and d2 respectively, where d′1 and d′2 do not contain any of −→, ←→, and
¬. Since the spider diagram logic in [12] did not include −→, ←→, and ¬ and is complete,
we have established completeness for our extended spider diagram logic.
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