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Abstract
In his 1974 paper “Popper’s qualitative theory of verisimilitude” published in the
British Journal for the Philosophy of ScienceDavidMiller gave his so called ‘Weather
Example’ to argue that the Hamming distance between constituents is flawed as amea-
sure of proximity to truth since the former is not, unlike the latter, translation invariant.
In this present paper we generalise David Miller’s Weather Example in both the unary
and polyadic cases, characterising precisely which permutations of constituents/atoms
can be effected by translations. In turn this suggests a meta-principle of the rational
assignment of subjective probabilities, that rational principles should be preserved
under translations, which we formalise and give a particular characterisation of in the
context of Unary Pure Inductive Logic.

Keywords Miller’s weather example · Verisimilitude for relations · Translation
invariance · Renaming invariance · Pure inductive logic · Uncertain reasoning

1 Introduction

In response to Pavel Tichý’s paper (Tichý 1974) (itself a reaction to Karl Popper’s
formulations of verisimilitude in Popper 1972) David Miller gave, in Miller (1974)
(continued in Miller 2006, Chapter 11), an example to show that the Hamming dis-
tance between constituents/atoms is not a good indicator of closeness to the truth,
verisimilitude.1 Paraphrased Miller’s example runs as follows.

1 Further philosophical discussion of this matter, which is not a concern of this present paper, continued
well beyond Miller’s paper (Miller 1974), see for example (Miller 2006, Chapter 11), (Niiniluoto 1998).
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490 J. B. Paris, A. Vencovská

Jones and Smith are closeted away in prison and try to guess the weather outside.
Jones thinks it is cool and dry and still whilst Smith also thinks it is cool but
otherwise differs in thinking it rainy and windy. They subsequently learn that
actually it is hot, rainy and windy. So Smith is right on two scores (rainy and
windy) while Jones is wrong on all scores. From this we might conclude that
Smith’s guess is closer to the truth than Jones’. But suppose we now replace the
propositions ‘hot’, ‘rainy’ and ‘windy’ by the equally expressive ‘hot’, ‘Min-
nesotan’ (meaning hot and wet or cool and dry) and ‘Arizonan’ (meaning hot
and windy or cool and still). In that case Smith’s guess becomes cool, not Min-
nesotan and not Arizonan, Jones’ becomes cool, Minnesotan and Arizonan. The
actual situation is hot and Minnesotan and Arizonan. So now it is Jones who is
right on two scores and Smith who is right on none!

The primary observation in this present paper is that there is a general result (and
conclusion) behind this example. We will first show this in the case of a unary (i.e.,
monadic) predicate language (where itmaywell have no great novelty) and then extend
our results to a general polyadic (relational) language. On the way we will uncover
a ‘meta-principle’ of probability assignment which we will investigate in the unary
case.

To make precise the context we shall work in let L �P be a predicate language2 with
unary relation (i.e., predicate) symbols P1, P2, . . . , Pq and, for later applications,
constant symbols a1, a2, a3, . . .. Note that by treating P1(a1), P2(a1), . . . , Pq(a1) as
propositional variables our set-up can be considered to extend the propositional cal-
culus in which Miller’s example is formalised.

Let L−
�P be the language L �P without the constants ai . The atoms3 of L �P are the 2q

formulae αε(x) of the form

q∧

i=1

Pε(i)
i (x)

where ε : {1, 2, . . . , q} → {0, 1} and for a formula φ, φ1 = φ, φ0 = ¬φ. For
shorthand let � �P denote the set of maps from {1, 2, . . . , q} to {0, 1}.

An atom then is specified by a map ε and the Hamming distance between atoms
is defined to be the Hamming distance between these maps, that is the number of
arguments on which they give different values.

A translation of the predicate symbols P1, P2, . . . , Pq is a family φ1(x), φ2(x),
. . . , φq(x) of quantifier free formulae of L−

�P such that as δ ranges over � �P so the 2q

formulae

2 Miller’s example is set within a propositional language.Workingwithin a predicate languagewill however
allows us to generalize it, in particular to polyadic languages.
3 Note that atoms are not the same thing as what is commonly called atomic formulae of the language.
Carnap refers to them as Q-predicates and Hintikka and Niiniluoto as attributive constituents.
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Translation Invariance and Miller’s Weather Example 491

α
�φ
δ (x) =

q∧

i=1

φ
δ(i)
i (x)

range through all of the 2q atoms.4

So if we imagine that the P1(x), P2(x), . . . , Pq(x) describe certain features of,
say, the weather at location x , then the φ1(x), φ2(x), . . . , φq(x) would, as in Miller’s
example, provide an alternative, and exactly as descriptive,way to describe theweather.

Clearly then a translation φ1(x), φ2(x), . . . , φq(x) determines a permutation of
� �P , which we shall denote τ �φ , given by5

τ �φ(ε) = δ ⇐⇒
q∧

i=1

Pε(i)
i (x) =

q∧

i=1

φ
δ(i)
i (x)

⇐⇒ αε(x) = α
�φ
δ (x). (1)

In this case we say that the permutation τ = τ �φ is supported by the translation �φ.
Conversely, any permutation τ of � �P determines (up to logical equivalence) for-

mulae φi (x), i = 1, . . . , q, such that �φ supports τ since if we define

φ j (x) =
∨

τ(ε)( j)=1

q∧

i=1

Pε(i)
i (x).

then, noting that

¬φ j (x) = φ0
j (x) =

∨

τ(ε)( j)=0

q∧

i=1

Pε(i)
i (x),

for any ε ∈ � �P we have

q∧

i=1

Pε(i)
i (x) |�

q∧

j=1

φ
τ(ε)( j)
j (x)

so since the
∧q

j=1 φ
τ(ε)( j)
j (x) (with ε ∈ � �P and τ fixed) are disjoint and exhaustive,

αε(x) =
q∧

i=1

Pε(i)
i (x) =

q∧

j=1

φ
τ(ε)( j)
j (x) = α

�φ
τ(ε)(x).

4 Up to logical equivalence. Throughout we will usually, for convenience, identify formulae which are
logically equivalent rather than actually syntactically identical.
5 Recall our convention of identifying formulae even if they are formally only logically equivalent.
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492 J. B. Paris, A. Vencovská

We have actually shown here that:

Theorem 1 Let τ be a permutation of � �P . Then there is a translation �φ =
〈φ1(x), φ2(x), . . . , φq(x)〉 that supports τ . Conversely, any translation �φ supports
a permutation of � �P (namely τ �φ).

Putting this another way, and more in line with Miller’s weather example, if we
define new unary predicates Q1(x), Q2(x), . . . , Qq(x) by Q j (x) = φ j (x) then for
each ε, δ ∈ � �P , the atom

αε(x) =
q∧

i=1

Pε(i)
i (x) (2)

of L �P is logically equivalent to the atom

α
�Q

δ (x) =
q∧

i=1

Qδ(i)
i (x) (3)

of L �Q just when τ �φ(ε) = δ.
Thus we can change the Hamming Distance between αε(x) and αδ(x) (for δ 
= ε)

by a translation in any way we want (without making it 0). Indeed provided that it
is consistent (i.e. there is some tuple of atoms with the desired Hamming distances
between them) we can in fact make multiple distance changes simultaneously. In
Miller’s example, writing C, D, S and M, A for ‘cool, dry, still’ and ‘Minnesotan,
Arizonan’ respectively, (meaning the weather outside Jones and Smith’s prison), the
situation may be represented as

Jones C D C Jones C M A
Smith C ¬D ¬S Smith C ¬M ¬A
True ¬C ¬D ¬S True ¬C M A

respectively. We can, for example, also arrange for Jones and Smith each to differ
from the true situation and from each other on two scores although we cannot arrange
that they each differ from the true situation and each other on a single score. The
conclusion we may draw here, in line with Miller, is that Hamming Distance is as
flawed a measure of verisimilitude for constituents (in the propositional context) or
instantiated atoms (in the predicate context) as can be.

Given a permutation τ of� �P and assuming Q1, . . . , Qq stand for unary predicates,
we can treat τ as a renaming of atoms which sends (2) to

α
�Q

τ(ε)(x) =
q∧

i=1

Qτ(ε)(i)
i (x).

Theorem 1 has shown that in the unary context renamings of atoms and translations
are the same thing, and in turn this somewhat broadens Miller’s example. This raises
the question of what happens when we move to polyadic languages (i.e., containing
possibly binary, ternary, etc., relation symbols). We shall consider this in the next
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Translation Invariance and Miller’s Weather Example 493

section after which we will return again to the unary context to investigate a further
issue raised by Theorem 1.

Before progressing further, note that a translation/renaming as above from L �P to
L �Q , that sends the atom αε(x) to the atom

α
�Q

τ �φ(ε)(x),

which is logically equivalent to αε(x) when the Q j are defined by Q j (x) = φ j (x),
extends to all formulae of L−

�P , and hence also to all sentences of L �P . This can be seen
for example by noting that a formula ξ(x1, . . . , xn) of L

−
�P is logically equivalent to a

disjunction of the form
t∨

j=1

⎛

⎝
n∧

k=1

αε j,k (xi ) ∧
∧

ε∈� �P

(∃x αε(x))
h j,ε

⎞

⎠ (4)

where the ε j,k ∈ � �P and h j,ε ∈ {0, 1} and consequently, ξ(x1, . . . , xn) is also logi-
cally equivalent to the formula

t∨

j=1

⎛

⎝
n∧

k=1

α
�Q

τ �φ(ε j,k)
(xi ) ∧

∧

ε∈� �P

(
∃x α

�Q
τ �φ(ε)(x)

)h j,ε

⎞

⎠

of L−
�Q . Note that φ j (x) translates as Q j (x).

In Miller (1978) Miller also considers a related question of invariance under ‘trans-
lations’ of the Hamming distance between constituents of the predicate language L−

�P ,
that is in our notation sentences of L−

�P of the form
∧

ε∈� �P

(∃x αε(x)
)τ(ε) (5)

where τ : � �P → {0, 1} is not constantly zero. Let �� �P be the set of such τ . Clearly,
these distances are preserved under the translations we are considering, that is, gen-
erated by permutations of atoms. However as Miller demonstrates in Miller (1978)
there are ‘translations’—sets of disjoint exhaustive formulae ϕε(x) for ε ∈ � �P of L−

�P
with quantifiers—such that for τ ∈ �� �P

∧

ε∈� �P

(∃x αε(x)
)τ(ε) =

∧

ε∈� �P

(∃x ϕε(x)
)ν(τ)(ε) (6)

where ν : �� �P → �� �P does not preserve Hamming distance, though necessarily, by
considering smallest models, ν must preserve |{ε | τ(ε) = 1}|. In fact this condition
exactly characterises which ν are possible here, as we shall now show.

Let ν : �� �P → �� �P be such that for each τ ∈ �� �P

|τ−1{1}| = |ν(τ)−1{1}|.

For each τ ∈ �� �P let
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494 J. B. Paris, A. Vencovská

ιτ : ν(τ)−1{1} → τ−1{1}

be an injection and for ε ∈ � �P set

ϕε(x) =
∨

ν(τ)(ε)=1

(
αιτ (ε)(x) ∧

∧

δ

(∃y αδ(y)
)τ(δ)

)
. (7)

Then these ϕε(x) are disjoint (since the disjuncts in (7) for ε, ε′ ∈ � �P could only
meet for the same τ but ιτ (ε) 
= ιτ (ε

′) when ε 
= ε′) and, as will follow from (8)
below by taking the disjunction over τ , exhaustive.

From (7) it follows that

∃x ϕε(x) =
∨

ν(τ)(ε)=1

∧

δ

(∃y αδ(y)
)τ(δ)

and in turn, as required, that for each τ

∧

ε

(∃x ϕε(x)
)ν(τ)(ε) =

∧

δ

(∃x αδ(x)
)τ(δ)

. (8)

2 The General Polyadic Case

As a simple motivating example, consider Jones and Smith again. Speculating about
weather and police behaviour, Jones thinks it is hot in London but not in Belfast and
that there are London-trained police dogs being deployed in Belfast but not conversely.
Smith thinks that it is not hot in London but hot in Belfast and that there are Belfast-
trained police dogs being deployed in London but not conversely. In truth, it is hot
both in London and Belfast and there are London-trained police dogs being deployed
in Belfast but not conversely. Let H , D, and B stand for, respectively,

H(x) . . . It is hot in x .

D(x, y) . . . There are x-trained police dogs being deployed in y.

B(x, y) . . . It is not both hot in x and hot in y, and there are x-trained police
dogs being deployed in y; or it is both hot in x and hot in y, and
there are y-trained police dogs being deployed in x .

This means that in terms of H and D, with l and b standing for the cities, the
respective positions are

Jones H(l) ¬H(b) D(l, b) ¬D(b, l)
Smith ¬H(l) H(b) ¬D(l, b) D(b, l)
True H(l) H(b) D(l, b) ¬D(b, l)
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Translation Invariance and Miller’s Weather Example 495

so Jones is ‘closer to the truth’,6 but in terms of H and B they are

Jones H(l) ¬H(b) B(l, b) ¬B(b, l)
Smith ¬H(l) H(b) ¬B(l, b) B(b, l)
True H(l) H(b) ¬B(l, b) B(b, l)

so Smith is ‘closer’. This provides an example similar to the above weather example,
which however involves a binary relation rather than just unary predicates/ proposi-
tional variables. By the end of this section we shall justify in some detail why H , B is
an equally expressive pair as H , D.

Let the polyadic language L �R contain relation symbols R1, . . . , Rq of arities
r1, . . . , rq respectively and constants a1, a2, . . . (needed later). Let L−

�R stand for the
language L �R without the constants ai . A state formula of L �R for variables x1, . . . , xn
is a formula

�(x1, . . . , xn) =
∧

i∈{1,2,...,q}
〈 j1,..., jri 〉∈{1,2,...,n}ri

R
ε(i, j1,..., jri )
i (x j1 , . . . , x jri ) (9)

of L−
�R , where the ε(i, j1, . . . , jri ) ∈ {0, 1}. If �(x1, . . . , xn) is a state formula and the

(distinct) b1, . . . , bn are from a1, a2, . . . then �(b1, . . . , bn) is called a state descrip-
tion (for b1, . . . , bn) .

Let r = max{r1, . . . , rq}. An atom of L �R is a state formula for r variables. Hence
an atom of L �R is determined by a map

ε :
q⋃

i=1

({i} × {1, 2, . . . , r}ri ) → {0, 1}.

Mimicking the notation of the previous section let � �R denote the set of such maps ε

and for ε ∈ � �R let αε denote the atom determined by ε. Permutations of atoms are
identified with the corresponding permutations of � �R . We shall similarly use ε, δ, . . .

for elements of � �R .
We say that a q-tuple of quantifier free formulae ψi (x1, . . . xri ) forms a translation

of L−
�R if the

α
�ψ
ε (x1, . . . , xr ) =

∧

i∈{1,2,...,q}
〈 j1,..., jri 〉∈{1,2,...,r}ri

ψ
ε(i, j1,..., jri )
i (x j1 . . . , x jri ) (10)

run through all the atoms of L �R as the ε run through � �R .

6 We do not introduce a precise notion of distance here wishing just to convey the intuition. It could be
the Hamming distance between atoms, see below, in which case we should also incorporate the prisoners’
opinion about, and the truth of, D(b, b), D(l, l), B(b, b) and B(l, l). However since B(x, x) and D(x, x)
coincide, this would make no difference to comparisons of descriptions using H , D and H , B.
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496 J. B. Paris, A. Vencovská

We say that a permutation τ of atoms (equivalently of � �R) is supported by the
translation ψ1, . . . , ψq if for each ε ∈ � �R ,

αε(x1, . . . , xr ) = α
�ψ
τ(ε)(x1, . . . , xr ).

As in the unary case, we denote such a permutation τ by τ �ψ .
Note that this is the situation when if we define the new predicates Qi (x1, . . . , xri )

for i = 1, 2, . . . , q by

Qi (x1, . . . , xri ) = ψi (x1, . . . , xri )

then for each ε the atom

αε(x1, . . . , xr ) =
∧

i∈{1,2,...,q}
〈 j1,..., jri 〉∈{1,2,...,r}ri

R
ε(i, j1,..., jri )
i (x j1 . . . , x jri )

is logically equivalent to the atom

α
�Q

δ (x1, . . . , xr ) =
∧

i∈{1,2,...,q}
〈 j1,..., jri 〉∈{1,2,...,r}ri

Q
δ(i, j1,..., jri )
i (x j1 . . . , x jri ) (11)

of the language L �Q with relation symbols Q1, Q2, . . . , Qq just when δ = τ �ψ(ε).
Unlike the purely unary case however, in the polyadic it is not in general the case

that just any permutation, or renaming, of atoms is supported by a translation. As we
shall prove this will be the case just if the permutation satisfies a certain property
(C) from Ronel and Vencovská (2014) which we will define shortly. Interestingly, as
we shall subsequently explain, condition (C) is also equivalent to the permutation of
atoms generating an automorphism of a certain structure BL relevant in Pure Inductive
Logic.

To formulate (C) we shall need the following notation.

• Let �(x1, . . . , xn) be as in (9) and let k1, . . . , kt be distinct numbers from
{1, . . . , n}. Then �[xk1 , . . . , xkt ] denotes the state formula obtained from (9) by
restricting it to xk1 , . . . , xkt , that is, replacing

〈 j1, . . . , jri 〉 ∈ {1, 2, . . . , n}ri

by

〈 j1, . . . , jri 〉 ∈ {k1, . . . , kt }ri .

• Let �(xk1 , . . . , xkt ) be a state formula, m1, . . . ,ms distinct numbers and

f : {m1, . . . ,ms} → {k1, . . . , kt }
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Translation Invariance and Miller’s Weather Example 497

a surjection. Then (�(xk1 , . . . , xkt )) f denotes the state formula �(xm1 , . . . , xms )

for which

�(x f (m1), . . . , x f (ms )) = �(xk1 , . . . , xkt ).

We can now state condition (C) for a permutation σ of � �R :

(C) For ε, δ ∈ � �R , t ≤ r and distinct j1, . . . , jt from {1, . . . , r}, if f : {1, . . . , r} →
{ j1, . . . , jt } is a surjection then

αε(x1, . . . , xr ) = (αδ[x j1 , . . . , x jt ]) f ⇐⇒ ασ(ε)(x1, . . . , xr )

= (ασ(δ)[x j1, . . . , x jt ]) f .

We shall also need a consequence of (C) which it is apposite to spell out. Assume
that m1, . . . ,ms ∈ {1, 2, . . . , r} are distinct, k1, . . . , kt ∈ {1, 2, . . . , r} are distinct,

f : {m1, . . . ,ms} → {k1, . . . , kt }

is a surjection and ε, δ ∈ � �R are such that .

αε[xm1 , . . . , xms ] = (αδ[xk1 , . . . , xkt ]) f .

Let

g : {1, . . . , r} → {m1, . . . ,ms}

be such that for i ∈ {m1, . . . ,ms}, g(i) = i and for i /∈ {m1, . . . ,ms}, g(i) = m1.
Hence

f g : {1, . . . , r} → {k1, . . . , kt }

is a surjection and its restriction to {m1, . . . ,ms} is f . Let γ ∈ � �R be such that

(αε[xm1 , . . . , xms ])g = αγ (x1, . . . , xr ) = (αδ[xk1 , . . . , xkt ]) f g.

Then for any σ satisfying (C) we have

(ασ(ε)[xm1 , . . . , xms ])g = ασ(γ )(x1, . . . , xr ) = (ασ(δ)[xk1 , . . . , xkt ]) f g.

Since g is the identity on {m1, . . . ,ms}, it follows that

ασ(ε)[xm1 , . . . , xms ] = ασ(γ )[xm1 , . . . , xms ] = (ασ(δ)[xk1 , . . . , xkt ]) f .

Since we can argue conversely in the same way, any σ that satisfies (C) also satisfies
the following condition:
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498 J. B. Paris, A. Vencovská

(D) For distinct m1, . . . ,ms ∈ {1, 2, . . . , r}, k1, . . . , kt ∈ {1, 2, . . . , r}, surjection
f : {m1, . . . ,ms} → {k1, . . . , kt } and ε, δ ∈ � �R ,

αε[xm1 , . . . , xms ] = (αδ[xk1 , . . . , xkt ]) f ⇐⇒ ασ(ε)[xm1 , . . . , xms ]
= (ασ(δ)[xk1 , . . . , xkt ]) f

In particular, taking f to be identity, we have

(E) For distinct m1, . . . ,ms ∈ {1, 2, . . . , r},

αε[xm1 , . . . , xms ] = αδ[xm1, . . . , xms ] ⇐⇒ ασ(ε)[xm1 , . . . , xms ]
= ασ(δ)[xm1 , . . . , xms ].

Theorem 2 Given a permutation σ of � �R there is a translation supporting σ just if σ
satisfies (C).

Proof First suppose that σ is a permutation of atoms satisfying condition (C). Define

ψi (x1, . . . , xri ) =
∨

σ(ε)(i,1,2,...,ri )=1

αε[x1, . . . , xri ]. (12)

We shall show that this provides the required translation supporting σ .
Let j1, . . . , jri be from {1, . . . , r} (not necessarily distinct). We have

ψi (x j1, . . . , x jri ) =
∨

σ(ε)(i,1,...,ri )=1

(αε[x1, . . . , xri ])(x j1/x1, . . . , x jri /xri ). (13)

We shall now prove that this gives

ψi (x j1 , . . . , x jri ) =
∨

σ(ε)(i, j1,..., jri )=1

αε[x jh1 , . . . , x jht ] (14)

where jh1, . . . , jht are the distinct numbers from amongst the j1, . . . , jri .
Let A1, A2, . . . , At form the partition of {1, 2, . . . , ri } such that for x, y ∈

{1, 2, . . . , ri }, x, y are in the same Ak just if jx = jy . Let hk = min{Ak} for
k = 1, 2, . . . , t . A disjunct

(αε[x1, . . . , xri ])(x j1/x1, . . . , x jri /xri ) (15)

of (13) is consistent just if for 1 ≤ m ≤ q, 1 ≤ d1, d2, . . . , drm ≤ ri ,
ε(m, d1, d2, . . . , drm ) depends only on which of the classes A1, . . . , At the dn are
in. Equivalently

ε(m, d1, d2, . . . , drm ) = ε(m, f (d1), f (d2), . . . , f (drm ))
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Translation Invariance and Miller’s Weather Example 499

where f maps the members of each Ak to hk , the least member of that Ak . Another
way of expressing this is that

αε[x1, . . . , xri ] = (αε[xh1 , . . . , xht ]) f . (16)

Notice that when (15) is consistent then

(αε[x1, . . . , xri ])(x j1/x1, . . . , x jri /xri )=(αε[xh1, . . . , xht ])(x jh1 /xh1 , . . . , x jht /xht ).
(17)

Let g be a permutation of {1, 2, . . . , r} which, in particular, maps each hk to jhk .
Note that this means that for each c ∈ {1, . . . , ri } we have g( f (c)) = jc. For each
ε ∈ � �R define ε′ ∈ � �R by

ε′(m, g(u1), g(u2), . . . , g(urm )) = ε(m, u1, u2, . . . , urm ), (18)

for m = 1, 2, . . . , q and u1, . . . , urm ∈ {1, . . . , r}, equivalently

αε′(x1, x2, . . . , xr ) = αε(xg(1), xg(2), . . . , xg(r)),

that is,
αε(x1, x2, . . . , xr ) = (αε′(x1, x2, . . . , xr ))g. (19)

From (17) a consistent disjunct (15) equals

(αε[xh1, . . . , xht ])(x jh1 /xh1 , . . . , x jht /xht ), (20)

and since jhk = g(hk), we get by (18) that

αε[xh1 , . . . , xht ](x jh1 /xh1 , . . . , , x jht /xht ) =
=

∧

m∈{1,2,...,q}
〈u1,...,urm 〉∈{h1,...,ht }rm

R
ε(m,u1,...,urm )
m (xg(u1), . . . , xg(urm )) = αε′ [x jh1 , . . . , x jht ].

(21)

By (C) and (19) we have

ασ(ε)(x1, x2, . . . , xr ) = (ασ(ε′)(x1, x2, . . . , xr ))g,

that is,

σ(ε′)(m, g(u1), g(u2), . . . , g(urm )) = σ(ε)(m, u1, u2, . . . , urm ).

Hence, using the fact that jc = g( f (c)) for each c ∈ {1, . . . , ri },

σ(ε′)(i, j1, . . . , jri ) = σ(ε′)(i, g( f (1)), . . . , g( f (ri ))) = σ(ε)(i, f (1), . . . , f (ri )).
(22)
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From (16) and (D) we have

ασ(ε)[x1, . . . , xri ] = (ασ(ε)[xh1, . . . , xhri ]) f

so

σ(ε)(i, f (1), . . . , f (ri )) = σ(ε)(i, 1, . . . , ri ).

With (22) it now follows that

σ(ε′)(i, j1, . . . , jri ) = σ(ε)(i, 1, . . . , ri ). (23)

Hence a consistent disjunct (15), equivalently (20) and (21), with σ(ε)(i, 1, 2, . . . ,
ri ) = 1 equals

αε′ [x jh1 , . . . , x jht ]

with σ(ε′)(i, j1, . . . , jri ) = 1. Consequently (13) logically implies

∨

σ(ε′)(i, j1,..., jri )=1

αε′ [x jh1 , . . . , x jht ].

Clearly then the disjunction in (13) logically implies the disjunction in (14) with ε′ in
place of ε and hence also the right hand side of (14) without this replacement.

Conversely, let γ ∈ � �R be such that σ(γ )(i, j1, . . . , jri ) = 1 (soαγ [x jh1 , . . . , x jht ]
contributes to the right hand side of (14)). With g as above, let ξ ∈ � �R be such that

αξ (x1, x2, . . . , xr ) = (αγ (x1, x2, . . . , xr ))g,

that is,
γ (m, g(u1), g(u2), . . . , g(urm )) = ξ(m, u1, u2, . . . , urm ). (24)

(Using our above notation, γ = ξ ′.)
Let ε be such that

αε(x1, . . . , xr ) = (αξ [xh1 , . . . , xht , xri+1, . . . , xr ]) f

where f is an extension of the above defined f , mapping the members of each Ak to
hk and f (h) = h for h > ri . So

(αε[x1, . . . , xri ])(x j1/x1, . . . , x jri /xri )

is consistent (which may not have been true of ξ ),

αε[xh1 , . . . , xht ] = αξ [xh1, . . . , xht ] (25)
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and ε satisfies (16). Let ε′ be associated with ε as above, that is, via

ε′(m, g(u1), g(u2), . . . , g(urm )) = ε(m, u1, u2, . . . , urm ). (26)

Noting that for h ∈ {h1, . . . ht } we have g(h) = jh , from (24), (25), (26),

αε′ [x jh1 , . . . , x jht ] = αγ [x jh1 , . . . , x jht ] (27)

Sinceσ(γ )(i, j1, . . . , jri ) = 1, byproperty (E)wehave alsoσ(ε′)(i, j1, . . . , jri ) =
1 and furthermore by virtue of (23), σ(ε)(i, 1, . . . , ri ) = 1.

Hence from (21), αγ [x jh1 , . . . , x jht ] with σ(γ )(i, j1, . . . , jri ) = 1 equals (20) and
(15) with σ(ε)(i, 1, . . . , ri ) = 1, and thus the disjunction from (14) logically implies
the disjunction from (13) and the identity (14) is proved.

Note that by virtue of the condition (E), if for some ε, δ ∈ � �R we have

αε[x jh1 , . . . , x jht ] = αη[x jh1 , . . . , x jht ]

then

σ(ε)(i, j1, . . . , jri ) = σ(η)(i, j1, . . . , jri )

and if αε[x jh1 , . . . , x jht ], αη[x jh1 , . . . , x jht ] are not equal then they are disjoint. Since
the disjunction of αε[x jh1 , . . . , x jht ] over all the ε ∈ � �R is a tautology, we have

¬ψi (x j1 , . . . , x jri ) =
∨

σ(ε)(i, j1,..., jri )=0

αε[x jh1 , . . . , x jht ].

It follows that for ε ∈ � �R ,

σ(ε)(i, j1, . . . , jri ) = 1 ⇐⇒ αε(x1, . . . , xr ) |� ψi (x j1 , . . . , x jri ). (28)

Hence

αε(x1, . . . , xr ) |�
∧

i∈{1,2,...,q}
〈 j1,..., jri 〉∈{1,2,...,r}ri

ψ
σ(ε)(i, j1,..., jri )
i (x j1 . . . , x jri ) = α

�ψ
σ(ε)(x1, . . . , xr ).

and since there are as many formulae α
�ψ
σ(ε)(x1, . . . , xr ) as there are atoms and they

are exclusive, we must have
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αε(x1, . . . , xr ) = α
�ψ
σ(ε)(x1, . . . , xr ),

which concludes this direction of the proof.
For the converse suppose that the translation �ψ supports a permutation σ of atoms.

We need to show that σ satisfies (C).
Since �ψ supports σ we have that for each ε ∈ � �R ,

αε(x1, . . . , xr ) =
∧

i∈{1,2,...,q}
〈 j1,..., jri 〉∈{1,2,...,r}ri

R
ε(i, j1,..., jri )
i (x j1 . . . , x jri )

= α
�ψ
σ(ε)(x1, . . . , xr ) =

∧

i∈{1,2,...,q}
〈 j1,..., jri 〉∈{1,2,...,r}ri

ψ
σ(ε)(i, j1,..., jri )
i (x j1 . . . , x jri ).

(29)

Note that this means that when γ ∈ � �R and t ≤ r , k1, . . . , kt from {1, . . . , r} are
distinct and f : {1, . . . , r} → {k1, . . . , kt } is a surjection, then

(αγ [xk1 , . . . , xkt ]) f =
∧

i∈{1,2,...,q}
〈 j1,..., jri 〉∈{1,2,...,r}ri

R
γ (i, f ( j1)..., f ( jri ))
i (x j1, . . . , x jri ).

= (α
�ψ
σ(γ )[xk1 , . . . , xkt ]) f

=
∧

i∈{1,2,...,q}
〈 j1,..., jri 〉∈{1,2,...,r}ri

ψ
σ(γ )(i, f ( j1),..., f ( jri ))
i (x j1 . . . , x jri ).

Hence αε(x1, . . . , xr ) = (αγ [xk1 , . . . , xkt ]) f just when for all i and j1, . . . , jri ∈
{1, . . . , r} we have

ε(i, j1, . . . , jri ) = γ (i, f ( j1) . . . , f ( jri ))

and just when for all i and j1, . . . , jri ∈ {1, . . . , r} we have

σ(ε)(i, j1, . . . , jri ) = σ(γ )(i, f ( j1) . . . , f ( jri ))

which is equivalent to ασ(ε)(x1, . . . , xr ) = (ασ(γ )[xk1 , . . . , xkt ]) f , as required. ��
The Example continued For a language L containing one unary predicate R1 and

one binary predicate R2, let σ : � �R → � �R be defined by

σ(ε) =
{

δ if ε(2, 1, 2) 
= ε(2, 2, 1) and ε(1, 1) = ε(1, 2) = 1,
ε otherwise,

where δ is as ε except that δ(2, 1, 2) = ε(2, 2, 1) and δ(2, 2, 1) = ε(2, 1, 2). Consid-
ering the 3 non-identity possibilities for f in condition (C) it is easy to see that the
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condition is satisfied and hence σ is supported by a translation. From (12) we can see
that the translation is ψ1(x) = R1(x) and

ψ2(x, y) = (¬(R1(x) ∧ R1(y)) ∧ R2(x, y)) ∨ (R1(x) ∧ R1(y) ∧ R2(y, x)).

This shows that Smith and Jones could argue in terms of H , B just as well as in terms
of H , D.

As in the unary case, a translation �ψ as above that maps the atom αε(x1, . . . , xr )
to the atom

α
�Q

τ �ψ(ε)(x1, . . . , xr )

(which is logically equivalent to αε(x1, . . . , xr ) when the Q j are defined by
Q j (x1, . . . , xr j ) = ψ j (x1, . . . , xr j )) extends to all formulae of L−

�R , and hence also
to all sentences of L �R . To see that, first note that any state formula �(x1, x2, . . . , xn)
is logically equivalent to a conjunction of atoms, see (Ronel and Vencovská 2014) or
(Paris and Vencovská 2015, Chapter 41):

�(x1, . . . , xn) =
∧

〈k1,...,kr 〉∈{1,...,n}r
αε〈�,〈k1,...,kr 〉〉(xk1 , . . . , xkr ), (30)

where the ε〈�,〈k1,...,kr 〉〉 are elements of � �R .
7 Hence with the Q j defined as the ψ j ,

�(x1, . . . , xn) is logically equivalent to

∧

〈k1,...,kr 〉∈{1,...,n}r
α

�Q
τ �ψ(ε〈�,〈k1,...,kr 〉〉)(xk1 , . . . , xkr ) (31)

(which we may denote (τ �ψ�)
�Q(x1, . . . , xn)).

The rest follows by the Prenex and Disjunctive Normal Form Theorems because
any formula ξ(x1, . . . , xn) of L−

�R is logically equivalent to a formula of L−
�R of the

form

T1xn+1T2xn+2 . . . Tmxn+m

t∨

j=1

� j (x1, . . . , xn+m) (32)

where each Ti is one of ∀ or ∃, and hence also to

T1xn+1T2xn+2 . . . Tmxn+m

t∨

j=1

(τ �ψ� j )
�Q(x1, . . . , xn+m). (33)

7 Note that this means that the notation, if the need ever arose to write this out, would require us to talk about
ε〈�,〈k1,...,kr 〉〉(i, j1, . . . , jri )which are values from {0, 1} such that�(x1, . . . , xn) |� Ri (xk j1

, . . . , xk jri
)

just when ε〈�,〈k1,...,kr 〉〉(i, j1, . . . , jri ) = 1; the 〈k1, . . . , kr 〉 are from {1, . . . , n}r , i from {1, . . . , q} and
〈 j1, . . . , jri 〉 from {1, . . . , r}ri . Note also in particular that tuples 〈k1, . . . , kr 〉 and 〈 j1, . . . , jri 〉with repeats
are included.
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This observation is not surprising in the unary casewhere atoms for distinct variables
are disjoint but seems somewhat remarkable in the polyadic case where atoms for
different r -tuples of variables may well be incompatible if the r -tuples have some
variables in common.

Unlike the unary case for the polyadic case we will leave open the question of
fully characterising the permutations of constituents (as described in Hintikka (1965))
which are supported by a translation.

3 Verisimilitude?

The original motivation for the research in this note came from Miller’s paper (Miller
1974) regarding a measure of closeness of a theory to the truth, where, as explained
in e.g., (Miller 1978), the truth is identified with a constituent of a finite propositional
language (a complete consistent theory) and the theory with a set of constituents
(possibly just one as in the Prisoner Example). First propositional languages were
considered (equivalently, unary predicate languages with one constant), then unary
predicate languages with no constants, see (Miller 1978).

With predicate languages however, it appears natural to employ languages with
constants. In this case we are led to the notion of the quantifier free truth about
a1, a2, . . . , an being a state description for a1, a2, . . . , an and a quantifier free theory
about a1, a2, . . . , an being a set (disjunction) of such. State descriptions are conjunc-
tions of instantiated atoms and in Sect. 1 we have seen that for unary languages and
any permutation of atoms (that is of � �P ) there is a translation supporting it, which
consequently disqualifies Hamming distance between atoms as ameasure of verisimil-
itude. In the polyadic case a permutation of atoms (that is of � �R) is supported by a
translation just when it satisfies the condition (C) and the same conclusion has to be
reached regarding the suitability of the Hamming distance between atoms for measur-
ing verisimilitude.

Whilst atoms can be ‘renamed’ by translations in various ways [subject to (C)], and
the Hamming distance between them (i.e., the Hamming distance between elements of
� �R) can change translations do preserve Hamming distances between state formulae

�(x1, . . . , xn) =
∧

〈k1,...,kr 〉∈{1,...,n}r
αε〈�,〈k1,...,kr 〉〉(xk1 , . . . , xkr ),

�(x1, . . . , xn) =
∧

〈k1,...,kr 〉∈{1,...,n}r
αε〈�,〈k1,...,kr 〉〉(xk1 , . . . , xkr ),

as given by

∑

〈k1,...,kr 〉∈{1,...,n}r
#(ε〈�,〈k1,...,kr 〉〉, ε〈�,〈k1,...,kr 〉〉)
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where

#(ε〈�,〈k1,...,kr 〉〉, ε〈�,〈k1,...,kr 〉〉) =
{
0 if ε〈�,〈k1,...,kr 〉〉 = ε〈�,〈k1,...,kr 〉〉,
1 otherwise.

Translations also preserve the structure of state descriptions/formulae in the sense
whichwe now explain. In Paris andVencovská (2015, Chapter 40) the following notion
of similarity is introduced:

State formulae �(x1, . . . , xn),�(x1, . . . , xn) are similar, if for distinct m1, . . . ,ms ∈
{1, 2, . . . , n}, k1, . . . , kt ∈ {1, 2, . . . , n} and surjection f : {m1, . . . ,ms} →
{k1, . . . , kt },

�[xm1 , . . . , xms ] = (�[xk1 , . . . , xkt ]) f ⇐⇒ �[xm1 , . . . , xms ] = (�[xk1 , . . . , xkt ]) f .

Informally, �(x1, . . . , xn), �(x1, . . . , xn) are similar if, whenever in � the
behaviour8 of some variables xm1 , . . . , xms exactly corresponds to the behaviour
of some further variables xk1 , . . . , xkt (with f specifying how the xk1 , . . . , xkt are
‘cloned’ by the xm1 , . . . , xms ), the same happens in �, and conversely.

It follows from results in Ronel and Vencovská (2014), Paris and Vencovská (2015,
Chapter 41) and the above that state formulae �(x1, . . . , xn) and �(x1, . . . , xn) with
� as in (30) are similar just when there is a a permutation of atoms σ that is supported
by a translation such that �(x1, . . . , xn) is equal to

σ(�(x1, . . . , xn)) =
∧

〈k1,...,kr 〉∈{1,...,n}r
ασ(ε〈�,〈k1,...,kr 〉〉)(xk1 , . . . , xkr ), (34)

that is, just when � is a ‘translated’ version of �. In other words there are quantifier
free formulae ψi (x1, . . . , xri ) such that if we replace each Ri in � by ψi we obtain �.

Hence any translated version of the truth carries some information about the truth,
namely the shared structure. From this viewpoint then theminimumHammingdistance
between translations of state descriptions/formulae might be used to measure how far
a theory is from capturing the structure of the truth.

4 Renaming Invariance and Rationality

Consider the problem Pure Inductive Logic aims to address: How to give a rational
assignment of probabilities w(θ) to sentences θ of an entirely uninterpreted lan-
guage L �R?9 The current modus operandi here is to propose principles which we
may intuitively feel are somehow ‘rational’ for the probability function w to satisfy
and investigate their consequences and inter relationships.10

8 By the behaviour of the variables xm1 , . . . , xms in � we mean all the information contained in � that
involves just these variables and no others.
9 See for example (Paris and Vencovská 2015, Chapter 1) for further details.
10 For the definition of a probability function in this context and general background see for example (Paris
and Vencovská 2015) or [12].
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The previous sections suggest a principle of ‘translation invariance’, that w should
be unaffected by the sort of translation we have considered above. For suppose that
within the remit of Pure Inductive Logic we have chosen a ‘rational’ probability
function w on the set of sentences of the language L �R (denoted SL �R), that is chosen
a probability function satisfying those principles which we judge to demarcate what
‘rational’means.Acaviller nowpoints out that since there is supposed tobeno intended
interpretation here we could equally well have based our choice on a translation of
the original relations - on an equally expressive set of relation symbols of appropriate
arities. So, the caviller continues, to be consistent we should still be giving the same
probabilities even after making this translation (and regardless of the the names chosen
for the relation symbols). In other words, at risk of otherwise being seemingly not
consistent we should accept the principle that a rational assignment of probabilities
should additionally be invariant under translations.

Translation Invariance Principle, TIP

If σ is a permutation of atoms supported by a translation and wσ is the probability
function on SL �R determined by11

wσ (�(b1, . . . , bn)) = w(σ(�(x1, . . . , xn))(b1/x1, . . . , bn/xn)), (35)

then w = wσ .

It turns out that such a principle of ‘translation invariance’ already exists in equiv-
alent forms in the literature. We shall now discuss this in more detail.

4.1 The Unary Case

We start with the case of the purely unary language L �P , adopting again the notation of
that first section.12 Let w be a probability function on the set of sentences SL �P of L �P .
Then w is uniquely determined (see for example (Paris and Vencovská 2015, Chapter
7) or [12]) by its values on the state descriptions of L �P , that is sentences of L �P of the
form

m∧

i=1

αεi (bi )

where the b1, b2, . . . , bm are distinct constants from {a1, a2, a3, . . .}.
As in Sect. 1 but using �P also in place of �Q, any permutation τ of � �P determines

a permutation/renaming/translation of atoms and in turn of state formulae, that is
formulae of L−

�P of the form
∧m

i=1 αεi (xi ), by sending
∧m

i=1 αεi (xi ) to
∧m

i=1 ατ(εi )(xi ).

11 Using the condition (E) and (Paris and Vencovská 2015, p 42), or [12], we can see that this definition
does yield a probability function.
12 So in particular � �P is the set of maps from {1, 2, . . . , q} to {0, 1}.
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For a probability function w, each such translation uniquely determines a further
probability function wτ on SL �P by setting

wτ

(
m∧

i=1

αεi (bi )

)
= w

(
m∧

i=1

ατ(εi )(bi )

)
. (36)

The requirement that a probability function w is invariant under translation in the
sense we have discussed above can be seen to be equivalent to satisfying the well know
property of Atom Exchangeability:13

The Principle of Atom Exchangeability, Ax

For τ a permutation of atoms and a state description
∧n

i=1 αεi (bi ),

w

(
n∧

i=1

αεi (bi )

)
= w

(
n∧

i=1

ατ(εi )(bi )

)
.

Atom Exchangeability follows from Johnson’s Sufficientness Postulate (see for
example (Paris and Vencovská 2015, Lemma 17.1)) and hence holds for the members
of Carnap’s Continuum of Inductive methods. It implies (but is not implied by) two
other principles which are central in the field:

The Principle of Predicate Exchangeability, Px

For θ ∈ SL and predicate symbols Pi , Pj of L , if θ ′ is the result of transposing Pi , Pj

throughout θ then w(θ) = w(θ ′).

The Strong Negation Principle, SN

For θ ∈ SL , w(θ) = w(θ ′) where θ ′ is the result of replacing each occurrence of the
predicate symbol Pi in θ by ¬Pi .

Each of the principles Px and SN have an evident claim to rationality on the grounds of
symmetry. Namely in the completely uninterpreted situation envisaged here it would
be irrational to assign probability values which broke the existing symmetries in the
language. However, the reasons for the rationality of Atom Exchangeability are less
easy to appreciate, as indeed the surprise inherent in Miller’s example shows.

For this reason one might require the constraints imposed on one’s choice of prob-
ability function to at least include Px+SN. That being the case one might argue not
that we should always have w = wτ for τ a permutation of {0, 1}q but simply that wτ

was, as far as these constraints were concerned, an equally good choice, i.e., that the
wτ should also satisfy at least Px+SN.

Thus we would be advocating here a sort of meta-principle, namely that if one ini-
tially proposed that adherence to principles X ,Y , Z etc. determined what constituted

13 For more details on Atom Exchangeability see (Paris and Vencovská 2015, Chapter 14).
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a choice of probability function w being rational, then on secondary consideration w

should additionally be such that all the wτ also satisfy X ,Y , Z etc..14

In the particular case of Px+SN this meta-principle yields a new principle which,
for q > 2, lies strictly between Px+SN and Ax:

The Unary Principle of Inculcated Px+SN, I(Px+SN)

For every permutation τ of � �P , wτ satisfies Px+SN.

Theorem 3 Let w be a probability function on SL �P . Then the probability function wτ

satisfies Px+SN for each permutation τ of � �P just if q > 2 and w = wσ for every
even permutation σ of � �P or q ≤ 2 and w satisfies Ax.

Proof We first show this in the forward direction. Let S �P be the group of permutations
of � �P . Let H be the subgroup of S �P of permutations τ such that vτ = v for all
probability functions v on SL �P which satisfy Px+SN. Equivalently, H is generated by
the permutations of atoms which just transposes Pi , Pj and those which just transpose
Pi ,¬Pi . Notice that for q > 2 all such permutations are even whilst for q ≤ 2 H also
contains odd permutations. Note too that a probability function v satisfies Px+SN just
when vτ = v for all τ ∈ H .

Let Kw be the set of τ ∈ S �P such that w = wτ . Then Kw is a subgroup of S �P . For
ρ ∈ Kw, and σ ∈ S �P ,

wσ

(
m∧

i=1

αεi (bi )

)
= w

(
m∧

i=1

ασ(εi )(bi )

)
= wρ

(
m∧

i=1

ασ(εi )(bi )

)

= w

(
m∧

i=1

αρσ(εi )(bi )

)
= wσ

(
m∧

i=1

ασ−1ρσ(εi )
(bi )

)

so σ−1Kwσ ⊆ Kwσ and hence, since |σ−1Kwσ | = |Kwσ |, Kwσ = σ−1Kwσ.

Also since the wσ all satisfy Px+SN, H ⊆ Kwσ so

⋂

σ∈S �P

Kwσ =
⋂

σ∈S �P

σ−1Kwσ

is a subgroup of S �P containing H (and so is non-trivial). In fact it is a normal subgroup
since if

γ ∈
⋂

σ∈S �P

σ−1Kwσ

then

τγ τ−1 ∈
⋂

σ∈S �P

τσ−1Kwστ−1 =
⋂

δ∈S �P

δ−1Kwδ

14 Another such ‘meta-principle’ in this area is (Unary) Language Invariance, see for example (Paris and
Vencovská 2015), which again applies not simply to a single probability functionw but to a family of related
probability functions to which w belongs.
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since δ = τσ−1 will run through all elements of S �P as σ does.
Now suppose that q > 2. Then since the only non-trivial normal subgroups of S �P

are itself and the alternating group A of even permutations it must be the case that⋂
σ∈S �P

Kwσ is one of these and hence, by taking σ to be the identity permutation, it
follows that A ⊆ Kw. Hence w = wσ for every σ ∈ A. (As we shall see later in this
case of q > 2, H only contains even permutations and we cannot obtain a stronger
result here.)

We now turn to the case q ≤ 2. When q = 1, S �P is the only non-trivial normal
subgroup of S �P so in this case we must have Kw = S �P , in other words w satisfies Ax.
When q = 2, S �P has two non-trivial proper normal subgroups. However both of these
only contain even permutations while H contains some odd permutations so again we
must have Kw = S �P and Ax follows.

Turning to the converse direction this is clear in the case of q ≤ 2. For q > 2,
suppose that w = wσ for all σ ∈ A. Then certainly since H ⊆ A for q > 2, w is
invariant under permutations of predicate symbols and permutations replacing Pi by
¬Pi , so w satisfies Px+SN, and so does wσ for σ an even permutation. Also since
wσ = wτ for all even permutations σ, τ , it is easy to see that this must also hold for
all odd permutations σ, τ and hence by the same argument as in the even case, for σ

an odd permutation wσ must satisfy Px+SN too. ��
At this point onemight questionwhether even forq > 2 thenewprinciple I(Px+SN),

amounting to A ⊆ Kw, really is strictly between Px+SN andAx. (As Theorem 3 shows
it is equivalent to Ax for q ≤ 2.) We now construct examples of probability functions
which show that this is the case.

Let ε1, ε2, . . . , ε2q list the elements of� �P . For σ ∈ S �P it will be convenient to also
treat σ as a permutation of these subscripts, that is σ(εi ) = εσ(i).

For �c = 〈c1, c2, . . . , c2q 〉 ∈ R
2q such that the ci are non-negative with sum 1 define

the probability function15 w�c by16

w�c

(
m∧

i=1

αεhi
(bi )

)
=

m∏

i=1

chi .

Now set

v = |A|−1
∑

σ∈A

wσ �c

where σ �c = 〈cσ(1), cσ(2), . . . , cσ(2q )〉. Then Kv ⊇ A and for distinct constants bi,k ,
i = 1, 2, . . . , 2q , k = 1, 2, . . . , i − 1,

v

⎛

⎝
2q∧

i=1

i−1∧

k=1

αi (bi,k)

⎞

⎠

15 See (Paris and Vencovská 2015, Page 51) for more details.
16 The w�c , and in turn the probability functions v, u to be introduced shortly, immediately satisfy the
ubiquitous Constant Exchangeability Principle, Ex, see for example (Paris and Vencovská 2015, Page 33).

123



510 J. B. Paris, A. Vencovská

is the sumof thepositive terms from thedeterminant of theVandermonde2q×2q matrix
with i, j th entry c j−1

i . Since we can find suitable �c yielding positive Vandermonde
determinant this means that for any odd permutation τ

v

⎛

⎝
2q∧

i=1

i−1∧

k=1

αi (bi,k)

⎞

⎠ > v

⎛

⎝
2q∧

i=1

i−1∧

k=1

ατ(i)(bi,k)

⎞

⎠

so in this case Kv ⊆ A, forcing Kv = A.
To distinguish the ‘new principle’ from Px+SN in the case q > 2 suppose without

loss of generality that

αε1(x) = P1(x) ∧ P2(x) ∧
q∧

j=3

Pj (x)

αε2(x) = P1(x) ∧ ¬P2(x) ∧
q∧

j=3

Pj (x)

αε3(x) = ¬P1(x) ∧ P2(x) ∧
q∧

j=3

Pj (x)

and let ν be the even permutation ε1 �→ ε2 �→ ε3 �→ ε1 and leaving all remaining
elements of � �P fixed. Then ν /∈ H since it does not preserve Hamming Distance
between atoms whilst every permutation in H does (and conversely in fact, see (Hill
and Paris 2013)). Then since ν /∈ H the polynomials

∑

σ∈H

2q∏

i=1

xiσ(i),
∑

σ∈H

2q∏

i=1

xiνσ(i),

are not formally the same and hence there must be a vector in the positive quad-
rant, indeed since these polynomials are homogeneous, a normalized positive vector
〈c1, c2, . . . , c2q 〉, on which they give different values. But that means that if

u = |H |−1
∑

σ∈H
wσ �c

then u satisfies Px+SN whilst u 
= uν since they give different values on

2q∧

i=1

i∧

k=1

αi (bi,k).

A somewhat surprising observation on the proof of Theorem 3 is that we could
have dropped SN throughout. Similarly as far as the result for q > 2 is concerned we
could have dropped Px (while retaining SN). Notice too that all the above results (and
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counter-examples) hold equally well if we add to Px+SN also the ubiquitous Principle
of Constant Exchangeability, Ex, that is that for any sentence θ(a1, a2, . . . , an) and
distinct j1, j2, . . . , jn ,

w(θ(a1, a2, . . . , an)) = w(θ(a j1 , a j2 , . . . , a jn )).

4.2 The Polyadic Case

We now turn to the case of the polyadic language L �R and w a probability function on
SL �R .

In this case too, equivalent forms of the Invariance Under Translation Principle
already exist in the literature, see (Paris and Vencovská 2015, Chapters 39, 40; Paris
and Vencovská 2011; Ronel and Vencovská 2014). Most directly, the principle is
equivalent to the the Permutation Invariance Principle, PIP. This is a special case of
the ‘ultimate’ symmetry principle of Pure Inductive Logic, INV, which we will briefly
explain to start with.

In Paris and Vencovská (2015, Chapters 23, 39) we have argued that assigning
probabilities to (classes of logically equivalent) sentences of an entirely uninterpreted
language L �R could be imagined as a task to be performed by an agent who knows
that s/he is in a structure M for L �R with universe {a1, a2, . . .}, in which each constant
symbol ai is interpreted as ai , but having no information as to what sentences of
SL �R hold in their ambient structure M . Since a rational agent in such a situation
would presumably wish to respect symmetry, this picture clearly helps to motivate the
symmetry principles which we have mentioned already. Our attempt to capture that
which underlies all symmetry principles in Pure Inductive Logic, see the foregoing,
was based on the observation that any symmetry of the (classes of logically equivalent)
sentences of SL �R corresponds to an automorphism of the set of all possible structures
as above, along with the set of its definable subsets, in the following sense:

Let T L �R be the set of structures M for L �R with universe {a1, a2, a3, . . .} where
each constant symbol ai of the language is interpreted in M by the element ai . Let
BL �R be the two-sorted structure with universe T L �R together with the sets

[θ ] = { M ∈ T L �R | M |� θ } for θ ∈ SL �R

and the membership relation between elements of T L �R and these sets.
An automorphism η of BL �R is a bijection of T L �R such that for each θ ∈ SL �R

there is some ψ ∈ SL �R such that

η[θ ] = { η(M) | M ∈ T L �R, M |� θ } = [ψ] (37)

and conversely, for every ψ ∈ SL �R there is a sentence θ ∈ SL �R satisfying (37). We
write η(θ) for the sentenceψ ∈ SL �R forwhich η[θ ] = [ψ] (up to logical equivalence).
The Invariance Principle, INV

If η is an automorphism of BL �R then w(θ) = w(η(θ)) for θ ∈ SL �R .
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As discussed in Paris and Vencovská (2015), INV in its full generality may be
too strong, possibly denying rationality to almost all probability functions. This has
indeed been proved for languages L �P with only unary predicates: there is only one
(from various points of view a not-entirely-suitable) probability function on SL �P
satisfying INV, see (Paris and Vencovská 2015, Chapter 23). The situation in the
polyadic remains intriguingly open.

Whilst INV in the purely unary context, after corroborating the intuition for previ-
ously known symmetry principles, has been shown to just go too far, in the polyadic
context INV has yielded a further interesting symmetry principle which obtains from
INV by imposing an additional requirement on the η, namely that they map state
descriptions to state descriptions. In Paris and Vencovská (2015, Chapter 39) this has
been proved to be equivalent to the principle PIP which we will state precisely after
introducing some further definitions from Paris and Vencovská (2015).

We say that a function � permutes state formulae if for each n and (distinct) vari-
ables x j1 , . . . , x jn , � permutes the state formulae �(x j1 , . . . , x jn ) in these variables
(up to logical equivalence). Properties (A) and (B) are defined as follows:

(A) For each state formula�(xk1 , . . . , xkt ) and surjective mapping τ : {m1, . . . ,ms}
→ {k1, . . . , kt },

(�(�(xk1 , . . . , xkt ))τ = �(�(xk1 , . . . , xkt )τ ).

(B) For each state formula�(x j1 , . . . , x jn )and (distinct) i1, i2, . . . , ik ∈ { j1, . . . , jn}

�(�)[xi1 , . . . , xik ] = �(�[xi1 , . . . , xik ]).

The Permutation Invariance Principle, PIP

If � is a permutation of state formulae of L �R satisfying (A) and (B) then for a state
description �(b1, . . . , bn),

w(�(b1, . . . , bn)) = w(�(�(x1, . . . , xn))(b1/x1, . . . , bn/xn)).

The equivalence of PIP and TIP follows by Lemma 4 from Ronel and Vencovská
(2014) which shows that a permutation σ of atoms extends to a permutation of state
formulae satisfying (A) and (B), by mapping �(x1, . . . , xn) to σ(�(x1, . . . , xn)) as
in (34) (and analogously for any other n-tuple of distinct variables), just when σ

satisfies the condition (C). We remark that PIP, and hence TIP, is also equivalent
to the principle which states that similar state descriptions get the same probability
(Nathanial’s Invariance Principle, NIP), cf. (Paris and Vencovská 2015, Chapter 41).

In the purely unary context, PIP is equivalent to Ax. As Ax does in the unary case,
in the polyadic PIP implies Px and SN (the general formulation of these principles
are as in the unary case except that in Px we need to say that we exchange predicate
symbols of the same arities). How PIP relates to the Inculcated Px+SN, that is, to
the requirement that Px and SN hold not only for w but also for any wσ where σ
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is a permutation of � �R satisfying (C) and wσ is defined as in (35), remains an open
question. Although much of the reasoning used in the proof of Theorem 3 could be
used with S �P replaced by the group of all permutations of � �R satisfying (C), we
lack sufficient insight into the structure of this group to allow us to draw interesting
conclusions.

5 Conclusion

Inspired by Miller’s Weather Example and its underlying notion of a translation we
have considered the extent to which a simple permutation of atoms can be formulated,
or explained, in terms of a translation. It turns out that this is always the case for purely
unary languages whilst for general polyadic languages it requires the permutation to
also satisfy a certain property (C). This also establishes a precise connection between
translations and those permutations that can be extended to automorphisms of the
overlying structure since (C) is again exactly the additional ingredient needed in that
case too.

A salient feature ofMiller’sWeatherExample is that it reveals an underlying rational
commitment to adopting beliefs that are translation-proof.Whilst themost rigidmean-
ing one might give to that expression is that beliefs should be translation-invariantwe
argue that within the context of Pure Inductive Logic a more catholic interpretation
might be that the translation preserves the rationality of the beliefs, rather than the
actual quantitative beliefs themselves. Formally this leads to a meta-principle which
we have characterised for certain rationality criteria in unary languages, showing it
(for languages with at least three predicate symbols) to lie strictly between simply
observance of these criteria and full preservation of belief values under translation.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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