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Abstract

The DAPRECO knowledge base is the main outcome of the interdisciplinary project
bearing the same name1. It is a repository of rules written in LegalRuleML, an
XML formalism designed to be a standard for representing the semantic and logical
content of legal documents. The rules represent the provisions of the General Data
Protection Regulation (GDPR), the new Regulation that is significantly affecting
the digital market in the European Union and beyond. The DAPRECO knowledge
base builds upon the Privacy Ontology (PrOnto) (Palmirani et al., 2018c), which
provides a model for the legal concepts involved in the GDPR, by adding a further
layer of constraints in the form of if-then rules, referring either to standard first order
logic implications or to deontic statements. If-then rules are formalized in reified
Input/Output logic (Robaldo and Sun, 2017) and then codified in LegalRuleML.
Reified Input/Output logic is an application of standard Input/Output logic for
legal reasoning, in which Input/Output logic is combined with the reification-based
approach in (Hobbs and Gordon, 2017). The DAPRECO knowledge base is then a
case study for reified Input/Output logic, and it shows that the formalism indeed
appears to be a good candidate to effectively formalize, via uniform and simple
(flat) representations, complex linguistic/deontic phenomena that may be found in
legal texts. To date, the DAPRECO knowledge base is the biggest knowledge base
in LegalRuleML and Input/Output logic freely available online2.

∗Research supported by the Luxembourg national FNR-CORE project “DAPRECO: DAta Protection
REgulation Compliance”, and by the European Union’s Horizon 2020 research and innovation programme
under the Marie Skodowska-Curie grant agreement No 690974 for the project “MIREL: MIning and
REasoning with Legal texts”. Arianna Rossi performed this work at CIRSFID (University of Bologna)
and ICR (University of Luxembourg) while she was supported by LAST-JD, the Joint International
Doctoral Degree in Law, Science, and Technology, financed by EACEA.

1https://www.fnr.lu/projects/data-protection-regulation-compliance.
2https://github.com/dapreco/daprecokb/blob/master/gdpr/rioKB_GDPR.xml.
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1 Introduction

The management of large repositories of norms, the semantic access to these norms, and
the legal reasoning based on them are key challenges in Computational Law, the branch
of Legal Informatics concerned with the computational analysis of norms occurring in
legislation and related documents (jurisprudence, recommendations from authoritative
sources, doctrine, etc.), which are originally available in natural language only.

Legal Informatics has recently received a lot of investments from industry and insti-
tutions, as witnessed by the EU projects MIREL3 and LAST-JD4, due to the well-known
rise of RegTech and FinTech5, which is in turn due to the 2008 global financial cri-
sis (Arner, Barberis, and Buckey, 2016).

In the years 2010-2016, research in Computational Law had primarily focused on the
application of Natural Language Processing (NLP) methods to legal texts, particularly
to design legal document management systems to assist legal professionals in retrieving
the information they are interested in. An example is the Eunomos legal document
management system (Boella et al., 2012; Boella et al., 2016).

Eunomos and similar systems classify, index, and discover inter-links between le-
gal documents, retrieved through Web-crawling tools, by exploiting NLP tools, such as
parsers and statistical algorithms, as well as semantic knowledge bases, such as legal
ontologies in Web Ontology Language (OWL)6. This is often done by transforming the
source legal documents into XML standards and tagging the relevant information. Sub-
sequent phases are devoted to archiving and querying the XML files.

One of the most known legal XML standards is Akoma Ntoso7 (Palmirani, 2011;
Palmirani and Vitali, 2011), a.k.a. LegalDocML, a Committee specification by OASIS
that defines a set of simple, technology-neutral representations of legislative and judiciary
documents in XML format.

Akoma Ntoso provides in-line tags8 to annotate, either manually or via entity-linking
and concept-mining NLP techniques, textual information with respect to the classes
and individuals of legal (computational) ontologies. These encode formal naming and
definitions of the concepts involved in the modeled domain, which enables reuse and
cross-document navigation and search. The ontological concepts may also be organized
and connected to each other via basic semantic relations (is-a, part-of, etc.) that enable
basic forms of reasoning, and they can be linked to other concepts from external public
ontologies from the Web of Things, including Linked Open Data (LOD), thus enhancing
the interoperability, the standardization, and the reasoning capabilities of the resources.

Although the joint use of Akoma Ntoso and legal ontologies indeed helps navigate
legislation and retrieve information, its overall usefulness and effectiveness is limited due

3http://www.mirelproject.eu
4https://www.last-jd-rioe.eu
5FinTech (Financial Technology) refers to the use of artificial intelligence and computer science to

support or enable banking and financial services. The main functions of FinTech software include regu-
latory monitoring, reporting, and compliance. RegTech (Regulatory Technology) is a more general term
referring to computer technology applied to any kind of regulated business, not only finance.

6https://www.w3.org/OWL
7http://www.akomantoso.org
8See Section 5.5 of http://docs.oasis-open.org/legaldocml/akn-core/v1.0/akn-core-v1.

0-part1-vocabulary.html.
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to the focus on terminological issues and information retrieval, all the while disregard-
ing the specific semantic aspects of law, in particular its logical structure in terms of
constitutive and regulating rules, which are those that effectively allow legal reasoning:
given a description of the state of affairs, logic rules determine what is obligatory and
what is forbidden, which obligations have already been fulfilled, which ones have already
been violated, which ones are still in force, as well as what the provisions allow. Such
inferences provide precious information that can be expended, for instance, in decision
making and risk assessment.

For this reason, recent research in Computational Law led to the identification of a
new component devoted to logic rules, as exemplified in Figure 1.

Figure 1: Three levels in Computational Law.

Legal document management systems such as Eunomos incorporate the first two levels
in Figure 1, while the third one (logic rules) is mostly at the stage of basic research as of
today. The research presented in this paper deals with this level.

A new standardization initiative called LegalRuleML9 has been recently proposed by
OASIS10 to explicitly deal with the third level in Figure 1. LegalRuleML (Athan et al.,
2013; Athan et al., 2015) is an XML format that extends the RuleML standard11 to
define a rule interchange language for the legal domain.

9https://www.oasis-open.org/committees/legalruleml/.
10https://www.oasis-open.org/.
11http://wiki.ruleml.org/.
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While Akoma Ntoso is used to tag the original textual content of the legal docu-
ments, LegalRuleML separately represents and stores the logical content of the provisions.
Specifically, LegalRuleML allows to specify semantic/logical representations in RuleML
and associate them with both the structural elements (such as articles and paragraphs)
of the Akoma Ntoso documents, as well as with the concepts in the legal ontology.

A very simple example is the LegalRuleML representation of the sentence “every man
is obliged to run”, which may be simply represented by the following LegalRuleML rule:

<l rm l :P r e s c r i p t i v eS ta t ement key=”someuniquekey”>
<ru l eml :Ru le c l o s u r e=” un i v e r s a l ”>

<r u l em l : i f>
<ruleml:Atom>

<ru l eml :Re l i r i=”man” />
<ru leml :Var key=” :x ”>x</ ru leml :Var>

</ ruleml:Atom>
</ r u l em l : i f>
<ru l eml : then>

<l rm l :Ob l i g a t i on>
<ruleml:Atom>

<ru l eml :Re l i r i=”run” />
<ru leml :Var key r e f=” :x ” />

</ ruleml:Atom>
</ l rm l :Ob l i g a t i on>

</ ru l eml : then>
</ ru l eml :Ru le>

</ l rm l :P r e s c r i p t i v eS ta t ement>

Predicates can be connected to ontological concepts, and the connection is encoded in
LegalRuleML via the attribute iri of the tag <ruleml:Rel>. For instance, the Legal-
RuleML representation above involves the concepts “man” and “run”.

Note that LegalRuleML only provides a set of XML tags to encode formulæ in some
logic. For instance, the logic of the previous formula could be taken as Standard Deontic
Logic12. The formula is then standardly written as ‘∀x[man(x)→ OB(run(x))]’. In the
rest of the paper, all formulæ that we will encode in LegalRuleML are expressed in reified
Input/Output logic (Robaldo and Sun, 2017), the representational language chosen for
the research presented in this paper. We will extensively illustrate and discuss reified
Input/Output logic and its features below.

This paper presents an implementation, formalized in reified Input/Output logic and
encoded in LegalRuleML, of the third level in Figure 1, with respect to the General
Data Protection Regulation (GDPR)13. Specifically, this paper presents the DAPRECO
knowledge base14, the main tangible output of the DAPRECO (DAta Protection REgu-
lation COmpliance) research project15 (Bartolini et al., 2016).

The GDPR brought about a small revolution in the world of online services, as attested
by the fact that most service providers changed their privacy policies and introduced more
fine-grained privacy controls for data subjects (Satariano, 2018). Enterprises dealing with
personal data, including of course those operating in the RegTech and FinTech domains,

12https://plato.stanford.edu/entries/logic-deontic/#2
13Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the

protection of natural persons with regard to the processing of personal data and on the free movement
of such data, and repealing Directive 95/46/EC.

14https://github.com/dapreco/daprecokb/blob/master/gdpr/rioKB_GDPR.xml.
15https://www.fnr.lu/projects/data-protection-regulation-compliance/.
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have become concerned with making their business compliant with the new legal regime.
Failure to comply with the GDPR could imply major financial losses16 and the inability
to carry on their business, a fatal possibility in the frantically competing environment of
Internet services.

As said above, in order to make a step forward in the basic research in Computa-
tional Law, the project DAPRECO pioneered the use of reified Input/Output logic and
LegalRuleML to implement the third level in Figure 1. The GDPR has been selected as
case study due to its impact to the nowadays society.

The DAPRECO knowledge is built upon recent research results, mainly developed at
the University of Bologna, in the context of the MIREL (MIning and REasoning with
Legal texts) project17. These results cover the first and the second level in Figure 1, with
respect to the GDPR:

- The GDPR has been tagged in Akoma Ntoso. The indexes of the structural ele-
ments (paragraphs, points, etc.) of the Akoma Ntoso representation of the GDPR
are used within the DAPRECO knowledge base in order to associate the correspond-
ing structural elements with the reified Input/Output logic formulæ representing
their meaning.

- An ontology called PrOnto (Privacy Ontology) has been developed following a thor-
ough ontology development methodology called MeLON (Palmirani et al., 2018d;
Palmirani et al., 2018c; Palmirani et al., 2018b). The ontology has been then en-
coded in OWL2-DL18. The latest version of PrOnto is described in (Palmirani et al.,
2018a). PrOnto is built according to a modular structure. The ontology is designed
in such a way that it models the essential European data protection rules contained
in the GDPR, but these rules can be easily extended by attaching additional ontolo-
gies (for example, for domain-specific provisions, or for Member State legislation).
PrOnto concepts are also tagged within the Akoma Ntoso representation mentioned
in the previous point and with the predicates used in the DAPRECO knowledge
base, as shown below, via LegalRuleML tags.

The MeLOn methodology, on which the design of the PrOnto ontology has been grounded,
follows standard principles of minimization, which may be found within main surveys on
computational ontology design and evaluation (Brank, Grobelnik, and Mladenić, 2005;
Bandeira et al., 2016). As a general rule in ontology engineering, design principles
such as minimization and avoiding redundancy are needed to achieve computational
efficiency (Bandeira et al., 2016).

However, PrOnto alone is not a suitable knowledge base truly fit for automatic legal
reasoning. Simply put, a computational ontology in OWL only defines and describes
the main concepts involved, as well as the main semantic relations between them, that
may be useful to index information in the data protection domain, thus facilitating their
navigation and search. This allows for basic reasoning, but it does not suffice to assess

16A particularly representative example is the “Délibération SAN-2019-001 du 21 janvier 2019”, issued
by the Commission nationale de l’informatique et des libertés (CNIL), the Supervisory Authority of
France, which sanctioned Google LLC for 50 million euros.

17http://www.mirelproject.eu
18https://www.w3.org/TR/owl2-overview
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compliance checking. To this end, we also need fine-grained rules representing the obli-
gations and permissions from the GDPR, as well as further concepts involved in these
obligations and permissions.

In particular, it is well-known that, while assessing compliance with legislation, the
matter of interpretation (that is, the fact that provisions are subject to different, and
possibly incompatible, legal interpretations) needs to be taken into account. Further-
more, in the case of the GDPR, the Regulation itself requires the definition of additional
documents (data protection policies, codes of conduct, etc., as further discussed in sec-
tion 6) to fine-tune its provisions within specific contexts (Fintech, eHealth, IoT, etc.) or
with respect to different technologies used for the processing. As technology advances,
new official documents may be produced to override preexisting ones.

In order to account for this additional dimension, standard logical languages for legal
reasoning are defeasible, a feature that is not implemented in PrOnto nor, more generally,
in OWL2-DL (Casini et al., 2015).

Reified Input/Ouput logic has been precisely designed to represent complex, and
possibly defeasible, deontic statements in natural language, by means of a simple formal
machinery, thus facilitating the creation of large knowledge bases of machine-readable
formulæ associated with existing legislative provisions.

The next sections describe the DAPRECO knowledge base while focusing on the
Natural Language Semantics issues encountered during the development of the knowledge
base, and how reified Input/Output logic is able to cope with them. In the future, we
plan to build on top of the DAPRECO knowledge base towards a comprehensive reference
knowledge base for applications in Legal Informatics in the data protection domain.

The rest of the paper is structured as follows: section 2 presents Input/Output logic
as a general abstract formalism to model logical inferences while section 3 presents rei-
fied Input/Output logic, the underlying formalism of the DAPRECO knowledge base,
which applies Input/Output logic for legal reasoning; the construction of the DAPRECO
knowledge base, the issues encountered during its development, and their representation
in reified Input/Output logic will be explained in section 4; on the other hand, section 5
provides an overview of related works, while comparing them with the solutions offered
herein, and section 6, devoted to future works, discusses the necessary steps that we still
need to make the DAPRECO knowledge base as truly usable in real-world applications;
section 7 concludes the paper.

2 Background (1): Input/Output logic

Input/Output logic was introduced in (Makinson and van der Torre, 2000) as a general
abstract formalism to model logical inferences, including certain non-standard ones in
which “input propositions are not in general included among outputs, and the operation
is not in any way reversible”.

Input/Output systems are a family of if-then rules in the form (a, b), such that
when a is given in input, b is returned in output. The if-then rules are also called
Input/Output pairs or Input/Output generators. Moreover, in the rest of the paper we
will respectively term a and b as the LHS (left-hand side) and the RHS (right-hand side)
of the Input/Output pair.
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The LHSs and the RHSs of the Input/Output pairs are whole formulæ in some object
logic with language L. In what follows, given a set A of formulæ in the object logic,
Cn(A) refers to the set of all formulæ derived from A through the inference rules of the
logic; in symbols, Cn(A) = {a ∈ L: A ` a}.

Further axioms, a.k.a. derivation rules, may be then added to the Input/Output
system in order to obtain different outputs, i.e., different operational meanings, when the
system is fed with certain inputs.

For this reason, the semantics of Input/Output logic is said to be “norm-based” (Hansen,
2014). Other deontic frameworks based on norm-based semantics are imperative logic (Hansen,
2008), prioritized default logic (Horty, 2012), and defeasible deontic logic (Governatori
et al., 2013). These frameworks represent an alternative to deontic frameworks based on
possible-worlds semantics, e.g., STIT logic (Horty, 2001).

Norm-based semantics have been proposed as a straightforward solution to the well-
known Jørgensen’s dilemma (Jørgensen, 1937), saying that norms are entities different
from declarative statements. Specifically, declarative statements may bear truth-values,
which means they are capable of being true or false, while norms may be complied with
or violated, but it makes no sense to state that they are true or false. Input/Output
logic aims at solving Jørgensen’s dilemma at its starting line, in that conditional norms
do not bear truth values (see discussion in (Makinson and van der Torre, 2003b)).

In the past literature in Input/Output logic, the formalism was mostly used to model
deontic and legal reasoning, and the same will be done in this paper. However, as said
at the beginning of this section, Input/Output logic is a general formalism that may be
likewise used to model other forms of reasoning; for instance (Bochman, 2004) uses it for
modeling causal reasoning.

In (1) we report three axioms that we may impose on a set of pairs S belonging to
an Input/Output system:

(1) - SI (strengthening the input): from (a, x) to (b, x), whenever a ∈Cn({b})

- WO (weakening the output): from (a, x) to (a, y), whenever y ∈ Cn({x})

- AND (conjunction of output): from (a, x) and (a, y) to (a, x ∧ y)

Imposing, for instance, the axiom SI to a set of pairs S amounts to saying that, if S
includes a pair (a, x) and the formula a is derivable from the formula b through the
derivation rules of the object logic, then also the pair (b, x) must belong to S. The
axiom WO imposes the same, but on the outputs rather than the inputs: if S includes a
pair (a, x), then S must also includes a pair (a, y) for every formula y derivable from x
through the derivations rules of the object logic. Finally, AND states that if S includes
two pairs (a, x) and (a, y), then also the pair (a, x∧ y) (same LHS and RHS obtained by
conjoining the RHSs of the two initial pairs) belongs to S.

By imposing the closure of SI, WO, and AND on a set of pairs S, we obtain an output
configuration called “simple-minded output”, denoted as out1.

As said at the beginning of the section, “input propositions are not in general included
among outputs”. This is achieved only if we impose another axiom, called ID, that
requires S to include the pair (a, a), for every formula a of the object logic:

(2) - ID (identity): from nothing to (a, a)
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By imposing ID on out1 we obtain its “throughput” version denoted as out+1 . Two other
axioms extensively studied in the Input/Output logic literature are OR and CT:

(3) - OR (disjunction of input): from (a, x) and (b, x) to (a ∨ b, x)

- CT (cumulative transitivity): from (a, x) and (a ∧ x, y) to (a, y)

OR states that if two inputs a and b produce the same output x, then the latter is
produced also by their disjunction, i.e., a∨ b. By imposing OR on out1 we obtain another
configuration called “basic” and denoted as out2. OR does not seem to be appropriate to
model legal reasoning19, so that we will no longer consider it below.

On the other hand, it is easy to see that the effect of CT on a set of pairs S is the
one of reusing the outputs x as inputs again: by adding the pair (a, y) to S, we obtain
the output y when the Input/Output system is fed with a; this is equivalent to feeding
it with a and x, if S includes the pairs (a, x) and (a∧ x, y). For this reason, by imposing
CT on out1, we obtain a configuration called “reusable” and denoted as out3. Again, by
also imposing the axiom ID on out3, we obtain its “throughput” version out+3 .

(Parent and van der Torre, 2014) and (Parent and van der Torre, 2014) later showed
that the combined effect of the axioms CT and WO could lead to certain paradoxes20, so
that they proposed a new version of Input/Output logic, called aggregative Input/Output
logic, obtained by replacing CT and WO with the stronger axioms ACT and EQ:

(4) - ACT (aggregative cumulative transitivity): from (a, x) and (a ∧ x, y)

to (a, x ∧ y)

- EQ: (output equivalence) from (a, x) to (a, y), whenever y ∈ Cn({x})
and x ∈ Cn({y})

The literature about Input/Output logic has extensively shown that the formalism, in
particular its aggregative version, is able to solve common paradoxes in Standard Deontic
Logic. Two recent papers addressing the capabilities of Input/Output logic to solve these
paradoxes are (Parent and van der Torre, 2017) and (Parent and van der Torre, 2018).

2.1 Using Input/Output logic for legal reasoning

The first relevant proposal to use Input/Output logic for legal reasoning has been (Boella
and van der Torre, 2004b). While previous literature in Input/Output logic (Makinson
and van der Torre, 2000; Makinson and van der Torre, 2001; Makinson and van der

19As discussed in (Robaldo and Sun, 2017), consider the obligations “If someone kills a dog, s/he has
to spend two years in prison” and “If someone robs a bank s/he has to spend two years in prison”.
Suppose also that John did one of the two, but there is no way to come to know which one, i.e. whether
he killed a dog or robbed a bank. Logically, John must spend two years in prison. But on the perspective
of legal reasoning, he must not: only if concrete evidence of what he did is found, obligations apply. The
example considered marks an interesting border between legal reasoning and standard logical reasoning.

20The example of paradox discussed in (Parent and van der Torre, 2014) is: given the obligations “You
ought to exercise hard everyday” (>, Ex) and “If you exercise hard everyday, you ought to eat heartily”
(Ex, Eh), we derive via CT that also the obligation “You ought to eat heartily” (>, Eh) holds. However,
this is not clearly the case: you are obliged to eat heartily only if you exercise hard everyday.
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Torre, 2003a) focused on regulative norms and deontic reasoning only (i.e., obligations
and permissions), (Boella and van der Torre, 2004b) was the first attempt to also formalize
constitutive norms, another kind of conditionals present in legal texts.

The distinction between regulative and constitutive norms is well-known in the lit-
erature (see (Searle, 1995), among others). Regulative norms specify what is obligatory
or permitted in terms of certain abstract concepts called “institutional facts”, whereas
constitutive norms specify what counts as institutional facts in the context.

Formally, Input/Output systems for legal reasoning combine three sets of pairs:

(5) - O, which includes pairs (o1, o2) reading as “o2 is obligatory given o1”.

- P , which includes pairs (p1, p2) reading as “p2 is permitted given p1”.

- C, which includes pairs (c1, c2) reading as “c1 counts as c2”.

The sets of Input/Output rules O, P , and C may be regulated by different output
configurations. For instance, the definitions in (Boella and van der Torre, 2004b) use
out3 for obligations and permissions and out+3 for constitutive rules. In other words,
both output configurations are “reusable”, but only the one imposed on constitutive
rules features a throughput from the input to the output, enforced by the axiom ID. As
regulative rules may be directly applied to these inputs, we want them to also count as
institutional facts. On the other hand, by imposing the axiom ID on the pairs in O (or
in P ), we would obtain that, for every institutional fact a, a is obligatory (or permitted)
in the context, which is clearly not the case.

However, the formalization in (Boella and van der Torre, 2004b) does not consider the
axioms ACT and EQ, which have been proposed only later on in (Parent and van der Torre,
2014). Moreover, it is indeed too complex for the purposes of our research: the framework
in (Boella and van der Torre, 2004b) is grounded on the metaphor of normative systems
as agents, in which regulative rules correspond to the goals of the agents and constitutive
rules to their belief; in this settings, agents are assumed to be “obliged” to pursue their
goals, and they can interact with each other by playing games.

Therefore, in the rest of the paper we will adhere to the simpler formalization proposed
in (Sun and van der Torre, 2014). Specifically, the Input/Output framework in (Sun and
van der Torre, 2014) may be depicted as two sequential Input/Output systems, in which
the output of the first one is given in input to the second one; see Figure 2.

The first Input/Output system enforces constitutive norms (set of pairs C, under
out+3 , i.e., under axioms SI, AND, ACT, EQ, and ID) while the second one enforces obli-
gations and permissions (set of pairs O and P , under out3, i.e., under axioms SI, AND,
ACT, EQ, and ID). Again, the difference between the two output operations is the axiom
ID, which only holds on the constitutive if-then rules, so that the initial input facts are
also given in input to the regulative if-then rules, i.e., they also “count as” institutional
facts. On the other hand, the ACT axiom, holding in both Input/Output systems, makes
the overall framework equivalent to one where the final output is “reused” as the initial
input. See (Sun and van der Torre, 2014) for formal details.
The neat formal distinction between constitutive and regulative norms is particularly
convenient when the normative system may be subject to revisions. This has been re-
cently shown in (Maranhão, 2017), which extends Input/Output logic with constructs
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Figure 2: An Input/Output framework for legal reasoning.

from the literature in belief revision, fit to revise the sets of Input/Output pairs against
the introduction of new rules, abrogation of old ones, or ascription of legal interpretations
to the rules. Maranhão and de Souza (2018) later formalizes three “contraction” oper-
ators for combined Input/Output systems, in order to update the sets of Input/Output
pairs alongside the evolution of the legal framework modeled by these sets.

The Input/Output framework in Figure 2 is able to infer what is obligatory and
permitted, given a description of the state of affairs (input facts).

To determine whether the regulative norms have been violated, it is sufficient to check
whether the set of obligations in output contains a formula that is inconsistent with one
of the input facts (see also subsection 5.2 below). For instance, let’s assume that, in
Figure 2, the input facts include ¬e. Then, the if-then rule (b, e) ∈ O has been violated:
e is obligatory with respect to the normative system and the input facts; but the latter
also includes the negation of e.

Other reasoning tasks are desirable; for those tasks, it is necessary to introduce addi-
tional meta-structures to the Input/Output framework.

For instance, (Makinson and van der Torre, 2001) proposes to handle contrary-to-duty
reasoning, i.e., the task of determining which obligations are operative in a situation that
already violates some of them, by introducing a meta-structure outfamily(O, A), where
A is the input of the pairs in O (note that, with respect to Figure 2, A is the set of
institutional facts). Taken out3(O, A) as the set of RHSs in O whose LHSs occur in A,
outfamily(O, A) is defined as the family of all out3(O′, A) such that O′ ⊆ O and A is
consistent with out3(O′, A). The reader interested in the (general) formal definitions and
proofs is addressed to (Makinson and van der Torre, 2001). Here we just report a simple
example to understand how outfamily(O, A) works. Suppose we have two obligatory
norms: “The cottage must not have a fence or a dog” (in symbols: (>, ¬(f ∨ d)) ∈ O)
and “If the cottage has a dog it must have both a fence and a warning sign.” (in symbols:
(d, f ∧ w) ∈ O). Suppose further that we are in the situation where the cottage has a
dog (in symbols: d ∈ A). In this context, the first norm is violated, as d is inconsistent
with ¬(f ∨ d). Still, we would like to infer that we are still obliged to build a fence
with a warning sign around the cottage. Assuming O is restricted by the axiom EQ, as
in Figure 2, outfamily(O, A) precisely enables that inference, in that it contains the
targeted obligation: outfamily(O, A) ≡ {{s : s↔ (f ∧ w)}}.

Other similar meta-structures have been defined in (Makinson and van der Torre,
2003a) to identify and reason with different kinds of permissions. The if-then rules in P
are called positive static permissions, as they explicitly state what is permitted in the
normative system. More generally, positive permissions are those that may be deductively
derived from P and O.
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However, from a philosophical perspective, it may be argued that all that is not
forbidden is permitted, even if it is not explicitly asserted. This is another notion of
permission, called negative permission.

A much more subtle notion of permission, called positive dynamic permission, is iden-
tified as follows: a formula x is a positive dynamic permission in a certain state of affairs
A if and only if the prohibition of x given A (in symbols: (

∧
A,¬x) ∈ O) creates incon-

sistency in the normative system for some possible sets of input facts. In other words,
these permissions hold if and only if prohibiting them would produce inconsistencies for
the normative system with respect to any state of affairs that can be given in input.
As (Makinson and van der Torre, 2003a) states, dynamic positive permissions behave
like “amplified” negative permission.

The formal definitions and proofs of the meta-structures needed to reason on this
kind of permissions are quite complex and beyond the scope of the present paper; the
interested reader is addressed to (Makinson and van der Torre, 2003a).

Further reasoning tasks worthy of consideration concern moral conflicts. In fact,
violating the norms is not always the worst possible action agents can do. Thus, agents
should be indeed allowed to violate them, while evaluating the penalties and the risks of
these violations compared to the nonfulfillment of the corresponding goals. For instance,
suppose that I do not have the money for buying the ticket for the bus but I have to
rush to the hospital as I was just informed that my mother has been brought there. In
such a case, the best action to do could arguably be to take the bus and risk the fine.
Parent (2011) proposes to deal with moral conflicts in terms of additional meta-structures
based on priorities. On the other hand, (Sun and Robaldo, 2015) define different kinds
of agents (moral, amoral, negatively impartial, and positively impartial) with respect to
a normative system formalized in Input/Output logic.

Computational complexity results for basic satisfiability tasks in Input/Output logic,
including contrary-to-duty reasoning and the three notions of permissions mentioned
above, have been presented in (Sun and Robaldo, 2017).

Specifically, it has been shown that Input/Output logic is decidable, although in-
tractable, contrary to main deontic frameworks based on possible-worlds semantics; for
instance, it has been proved in (Schwarzentruber and Semmling, 2014) that STIT logic is
undecidable. The reason is that possible-worlds semantics adds an extra machinery that
compromises decidability. On the contrary, the “if-then” architecture of the Input/Out-
put logic pairs does not require such an extra effort while computing the aforementioned
reasoning tasks.

On the other hand, (Sun and Robaldo, 2017) studied the complexity of Input/Output
logic while considering standard propositional logic as the object logic. Since this is not
the object logic used in reified Input/Output logic, as shown in the next subsection, the
results in (Sun and Robaldo, 2017) do not hold here. We will come back to this issue
again in subsection 6.2 below, devoted to future works.

3 Background (2): reified Input/Output logic

Reified Input/Output logic (Robaldo and Sun, 2017) is a recent formalism for representing
and reasoning on norms originally available in natural language. It has been chosen in
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the project DAPRECO as the underlying formalism to represent GDPR provisions.
Reified Input/Output logic is an application (and not an extension) of Input/Output

logic for Natural Language Semantics, designed for legal reasoning.
As it should be clear from the previous section, Input/Output logic is an abstract

framework to represent and detach conditionals, i.e., a meta-logic to unwrap formulæ
written in another language, called the object logic, when the system is fed with formulæ
in the same language. Input/Output logic can be used to model any kind of reasoning,
not only deontic reasoning.

We can then obtain specialized Input/Output systems by choosing: (1) different com-
binations of axioms, each of which defines a different relation between the outputs and

the inputs (out
{+}
1 , out

{+}
2 , out

{+}
3 , etc.), and (2) different object logics.

Concerning (1), following (Sun and van der Torre, 2014) and (Boella and van der
Torre, 2004b), in reified Input/Output logic we use two sequential Input/Output systems,
one for constituency rules and one for regulative rules, as depicted in Figure 2; we use
out+3 for the first system and out3 for the second one.

On the other hand, the object logic is the logic proposed in (Hobbs and Gordon,
2017), described in the next subsection. In past Input/Output logic literature, the ob-
ject logic has been mostly standard propositional logic. However, as it is well-known, the
expressivity of standard propositional logic does not suffice to adequately represent nat-
ural language utterances in practical applications. On the contrary, (Hobbs and Gordon,
2017) includes First Order Logic (FOL) terms to achieve the required expressivity.

3.1 The neo-Davidsonian approach in (Hobbs and Gordon, 2017)

The framework in (Hobbs and Gordon, 2017)21 is a wide-coverage logic for Natural
Language Semantics able to handle a fairly large set of linguistic phenomena into a
simple logical formalism.

It is grounded on the notion of reification, a concept originally introduced in (David-
son, 1967). Modern logical approaches based on reification, such as (Hobbs and Gordon,
2017), are known in the literature as ‘neo-Davidsonian’ approaches.

Reification allows complex natural language statements to be expressed in FOL, by
formalizing them such that events, states, and the like correspond to FOL constants or
variables. Every predication in FOL, e.g., ‘(blond John)’ asserting that John is blond,
may be associated with another FOL predication ‘(blond′ eb John)’, where eb is a new
FOL term called “eventuality”, from (Bach, 1981). The term eb is the reification22 of
John’s “blond-ness”, i.e., it represents the fact that John is blond.

Other properties or events may be then applied to eb, and recursively reified into new
eventualities. For instance, we may represent the sentence “John wishes to be blond”
with a predicate wish which takes John and eb as arguments; then, John’s wishing action
may be reified into a new eventuality ew:

21See also the manuscripts at http://www.isi.edu/~hobbs/csk.html and http://www.isi.edu/

~hobbs/csknowledge-references/csknowledge-references.html for a quick introduction to the logi-
cal framework.

22States, facts, and events are reified into FOL individuals, from the Latin word “re(s)” for “thing”:
we take states, facts, and events to be things.
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(6) (wish′ ew John eb) ∧ (blond′ eb John)

In order to distinguish that the fact that John wishes to be blond (variable ew) holds in
the context at time t, while nothing can be inferred about the fact that John is blond
(variable eb), we assert the predication ‘(RexistAtT ime ew t)’.

Only eventualities for which RexistAtT ime is asserted on t really exist at time t.
RexistAtT ime resembles closely the predicate HoldsAt, used in Event Calculus ap-
proaches (see (Galton, 2006)).

The final representation23 of the sentence “John wishes to be blond” (at time t) is:

(7) (RexistAtT ime ew t) ∧ (wish′ ew John eb) ∧ (blond′ eb John)

The explicit representation of time in FOL terms, such as “t”, is a mandatory requirement
for machine-readable representations in the legal domain. It is well-known (see (Ajani
et al., 2017), Section 4.4) that overridden legal concepts still apply retroactively in the
time span where they were in force. For instance, the norms in the GDPR are valid only
from the date in which the Regulation states that those norms became applicable (25
May 2018). For infringements of the protection of personal data that occurred before
that date, Directive 95/46/EC (or, rather, its Member State implementations, since a
Directive is not applicable per se, but it needs to be enacted in Member State law) still
applies. Therefore, time needs to be represented, in that legal reasoning tasks must only
consider norms that hold in specific intervals of time. For instance, for all formulæ in
the DAPRECO knowledge base and for all FOL terms t referring to instants of time, it
holds “t ≥ 25 May 2018”.

The logical framework in (Hobbs and Gordon, 2017) is characterized by a massive use
of reification. Every relation on eventualities, including boolean operators, causal and
temporal relations, and even tense and aspect, may be reified into another eventuality.

For instance, in (Hobbs and Gordon, 2017), ‘(not′ e1 e2)’ is used to assert that e1 is
the eventuality of e2’s not existing, while the predication ‘(or′ e e1 e2)’ states that e is
the fact that at least one of e1 and e2 really exists. In order to get the intended meaning,
not′ and or′ need to be defined in terms of additional axioms/definitions. For instance,
we may model their meaning via the axioms in (8) and (9) respectively. The former
states that, for every instant t, if two eventualities e and e1 are related to each other in
terms of a not′ relation, whenever e really exists, e1 does not. The latter states that, for
every instant t, if two eventualities e1 and e2 are related with a third eventuality e in
terms of an or′ relation, whenever e really exists, at least one of e1 and e2 really exists
as well.

(8) ∀t∀e∀e1 [ ((RexistAtT ime e t) ∧ (not′ e e1)) → ¬(RexistAtT ime e1 t) ]

(9) ∀t∀e∀e1∀e2 [ ((RexistAtT ime e t) ∧ (or′ e e1 e2)) →
((RexistAtT ime e1 t) ∨ (RexistAtT ime e2 t)) ]

23Note that in the formulæ, all terms are FOL constants. They could be FOL variables, provided that
we quantify them, e.g., ‘∃eb [(blond′ eb John)]′.
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What is important to understand is that not′ and or′ are not boolean operators. They
are FOL predicates relating two and three eventualities respectively. The axioms in (8)
and (9) define their meaning in terms of the boolean operators ‘¬’ and ‘∨’.

In reified Input/Output logic, we distinguish between formulæ belonging to the as-
sertive contextual statements (ABox), such as (6) and (7), from formulæ belonging to
the terminological declarative statements (TBox), such as (8) and (9).

The former are flat conjunctions of atomic predications, and the only possible infer-
ences are those allowed by conjunction (‘A,B ` A ∧B’ and ‘A ∧B ` A’).

On the other hand, the latter may be any formula in standard FOL, possibly including
other boolean operators besides ‘∧’.

With respect to Figure 2, the ABox is represented by the sets of pairs C, O, and P ,
while the TBox corresponds to the derivation rules allowed on the predications occurring
in these pairs. The application of these derivation rules has been termed as “Cn(A)” at
the beginning of the previous section, where A is a set of input formulæ; we remind that
Cn(A) is involved in the definitions of the axioms SI, WO, and EQ.

Thus, if A is a conjunction of the predications in (Hobbs and Gordon, 2017) that
constitutes either the LHS or the RHS of an Input/Output if-then rule, Cn(A) is the
set of all formulæ derived from A through the statements in the TBox. In the case of
the DAPRECO knowledge base, the TBox includes the semantic relations codified in
PrOnto, e.g., the is-a relations between the ontological classes, as well as definitions of
other needed predicates, such as (8) and (9) above for negation and disjunction24.

Therefore, as explained in (Robaldo and Sun, 2017), in reified Input/Output logic the
complexity is fully moved to the TBox, in that the ABox only includes conjunctions of
atomic FOL sentences, and their complexity is then trivial. This feature appears pivotal
for building and keeping under control large knowledge bases of formulæ, which was one
of the main motivations behind the design of reified Input/Output logic.

In practical applications, the size of the TBox is usually much lower than the size of
the ABox. Therefore, legal practitioners, who usually have little expertise in logic, could
actively collaborate in the building of (large) ABoxes of formulæ representing norms
from existing legislation. On the other hand, the construction of the TBox, i.e., the con-
struction of the reference legal ontology, is left to researchers having advanced expertise
in knowledge representation and ontology modeling. We will further elaborate on the
distinction between ABox and TBox in subsection 6.2 below, devoted to future works.

For the time being, it should be clear that, thanks to reification, we are able to avoid
nestings of subformulæ within complex operators, for the formulæ in the ABox. This is
the main insight of the approach in (Hobbs and Gordon, 2017): using solely the simple
formal mechanism of reification to model complex operators for causality, time, space,
and the like, as well as for different modalities.

In light of this, combining (Hobbs and Gordon, 2017) and Input/Output logic appears
to be a promising choice. Formally, Input/Output logic is a flat set of if-then rules, con-
strained by separate axioms, aiming at modeling the same meaning modeled as standard
deontic logic, without the complex deontic operators that embed (nested) subformulæ.

24In the DAPRECO knowledge base, special LegalRuleML prefixes allow to distinguish the predicates
corresponding to concepts in PrOnto from the others. See section 4 below.
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3.2 Combining the approach in (Hobbs and Gordon, 2017) and
Input/Output logic

(Hobbs and Gordon, 2017) is the object logic of reified Input/Output logic, meaning that
the LHSs and the RHSs of the pairs in O, P , and C are formulæ in (Hobbs and Gordon,
2017). The output operations out+3 and out3 enforce and constrain the detachment of
the RHSs when the Input/Output systems are fed with the LHSs, as explained above.

A preliminary example is the obligation in (10), which is formalized with the reified
Input/Output logic formula in (11).

(10) Those who are not wearing a tie or those who are blond ought to leave the room.

(11) ∀x∀t(
∃eo∃en∃eb∃ew∃t1 [(RexistAtT ime eo t) ∧ (or′ eo en eb) ∧ (not′ en ew) ∧

(wearing′ ew x t1) ∧ (tie t1) ∧ (blond′ eb x)],

∃el [(RexistAtT ime el t) ∧ (leave′ el x Room)] ) ∈ O

In (11), universal quantifiers external to the pair are introduced in order to “carry” single
individuals from the input to the output. In other words, they act as a “bridge” from the
LHS to the RHS. Only variables which occur in both the LHS and the RHS are bound by
these quantifiers. The formulæ in (11) also include existential quantifiers, which outscope
the LHSs and RHSs and, as explained in (Robaldo and Sun, 2017), may be safely removed
via Skolemization.

The formula in (11) reads as follows: for every individual x and for every time t, if it
really exists that either x does not wear a tie t1 or x is blond, then the real existence of
a “leaving” action from the room, performed by x, is obligatory.

On the other hand, we may introduce the constitutive rule in (12) in order to state
that whoever wears a tie is considered (“counts as”) elegant.

(12) ∀x∀t( ∃ew∃t1 [(RexistAtT ime ew t) ∧ (wearing′ ew x t1) ∧ (tie t1)],

∃ee [(RexistAtT ime ee t) ∧ (elegant′ ee x)] ) ∈ C

A more complex example, taken from the DAPRECO knowledge base, is the represen-
tation in reified Input/Output logic of the provision in Article 12, paragraph 7, of the
GDPR, shown in (13). Other examples are provided in (Bartolini et al., 2016; Robaldo
and Sun, 2017).

(13) GDPR (Art.12, par.7): The information to be provided to data subjects pursuant
to Articles 13 and 14 may be provided in combination with standardised icons in
order to give in an easily visible, intelligible and clearly legible manner a meaningful
overview of the intended processing. Where the icons are presented electronically
they shall be machine-readable.

The provision in (13) contains both a permission and an obligation. In the DAPRECO
knowledge base, these are expressed using the formulæ in (14) and (15), respectively.
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(14) ∀t∀y∀en(

∃a1
∃ep∃edp∃w∃z∃x∃i[ (RexistAtT ime a1 t) ∧ (and′ a1 ep en edp) ∧

(DataSubject w) ∧ (PersonalData z w) ∧ (Controller y z) ∧
(Processor x) ∧ (nominates’ edp y x) ∧
(PersonalDataProcessing’ ep x z) ∧ (Communicate’ en y w i)],

∃eat∃ic[(RexistAtT ime eat t) ∧ (AttachTo′ eat y ic en) ∧ (Icon ic)] ) ∈ P

The formula in (14) contains an and′ predicate25. This is a relation between multiple
eventualities: its first argument (a1, in (14)) really exists if, and only if, all other ar-
guments (ep, en, and edp, in (14)) really exist. All other predicates in (14) parallel NL
words and do not need particular explanations.

The formula reads as follows: whenever there is a processor y and a notification event
en of some information i, performed by y with respect to a data subject w (to whom
some personal data z are related, processed by a processor x and controlled by y), then
y is permitted to attach an icon ic to the notification en.

As said above, the provision in (13) also contains an obligation: in case the icon is
in electronic form, it ought to be machine-readable. This is represented by the reified
Input/Output logic formula in (15):

(15) ∀t1∀ic(
∃a1∃ep∃en∃eat∃el∃edp∃w∃z∃y∃x∃i[(RexistAtT ime a1 t1) ∧

(and′ a1 ep en eat el edp) ∧ (DataSubject w) ∧ (PersonalData z w) ∧
(Controller y z) ∧ (Processor x) ∧ (nominates’ edp y x) ∧
(PersonalDataProcessing’ ep x z) ∧ (Communicate’ en y w i) ∧
(AttachTo′ eat y ic en) ∧ (Icon ic) ∧ (electronicForm′ el ic)],

∃emr
[(RexistAtT ime emr t1) ∧ (machineReadableness′ emr ic)] ) ∈ O

A significant difference between (15) and (14) is that, in (15), the LHS also requires the
real existence of eat and of el. The former models the action of attaching an icon to
the notification, performed by the controller y, while the latter represents the fact that
the icon ic is in electronic form. In case these eventualities really exist as well, then the
“machine-readable-ness” of ic is required, or, in other words, the fact that the icon is
machine-readable must obligatorily exist.

4 Building the DAPRECO knowledge base

The current version of the DAPRECO knowledge base includes 966 formulæ in reified
Input/Output logic: 271 obligations, 76 permissions, and 619 constitutive rules. The
number of constitutive rules is much higher than the one of obligations and permissions

25See https://www.isi.edu/~hobbs/bgt-logic.text for details.
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as the knowledge base includes constitutive rules needed to trigger special inferences, as
explained below in subsection 4.1.

The formulæ refer to the paragraphs or sub-paragraphs in the GDPR. It is possible to
associate more than one formula with a single paragraph. This is the case, for instance, of
Article 12, paragraph 7, shown above in (13), which is associated both with an obligation
and with a permission.

Not all articles of the GDPR are currently covered. In particular, the DAPRECO
knowledge base is conceived for being used within future applications, mainly for compli-
ance checking. For this reason, its main target is the set of stakeholders that are involved
in the actual personal data processing activities, such as controllers and processors. Con-
versely, we are not currently aiming at monitoring GDPR compliance with respect to
the organization of supervisory authorities and administrative structures. We therefore
skip the formalization of the provisions in chapters VI and VII, specifically from Arti-
cle 51 to Article 76, which state the duties and powers of the data protection supervisory
authorities and the European Data Protection Board. In future works, the DAPRECO
knowledge base will be possibly extended to include such provisions.

The reified Input/Output logic formulæ in the DAPRECO knowledge base are for-
malized in LegalRuleML. Indeed, a very limited set of LegalRuleML tags are used to this
end, in that, as explained in the previous section, reification allows to deal with complex
semantic phenomena in terms of formally simple logical constructs.

As pointed out in section 1, LegalRuleML allows for a threefold interconnection be-
tween the structural items in the legal document (paragraphs, subparagraphs, and other
structural components), the concepts in the PrOnto ontology, and the deontic formulæ
expressing the meaning of the spans of text.

In LegalRuleML, legal sources may be referred via the LegalReference tag, as shown
in the following example:

<l rm l :Lega lRe f e r enc e r e f e r sTo=”gdprC3S1A12P7ref” re f ID=”GDPR:art 12 para 7 ” />

where “art 12 para 7” is the eId of Article 12, paragraph 7, in the Akoma Ntoso file of
the GDPR:

<paragraph eId=” a r t 1 2 pa r a 7 ”>
<num>7 .</num>
<content>

<p>The in format ion to be . . . they s h a l l be machine−readab le .</p>
</ content>

</paragraph>

Legal sources may be associated with statements, i.e., collections of semantic represen-
tations, such as reified Input/Ouput formulæ, via the LegalRuleML tag Association:

< l rm l :A s s o c i a t i o n>
< l rm l : a pp l i e s S ou r c e key r e f=”#gdprC3S1A12P7ref” />
<l rm l : t oTarge t key r e f=”#statements38 ” />

</ l rm l :A s s o c i a t i o n>

Finally, statements are formalized via the LegalRuleML tag Statements. Each Statements

tag contains one or more ConstitutiveStatement tags, each corresponding to an In-
put/Output if-then rule. To distinguish which of the sets O, P , or C of the Input/Output
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normative system in Figure 2 the if-then rules belongs to, we use the LegalRuleML tag
Context. For instance, in order to assert that the first formula of the Statements with
key=statements38, shown below in Listing 1, is a permission, the DAPRECO knowledge
base includes the following:

<l rml :Context key=” context 2 ” type=” r ioOnto :permis s ionRule ”>
. . .
<l rm l : i nScope key r e f=”#statements38Formula1 ” />
. . .

</ l rml :Context>

The (compressed) LegalRuleML representation of the formulæ (14) and (15) is re-
ported in Listing 1; the full version is online26.

Listing 1: LegalRuleML representation of formulæ (14) and (15).

<l rml :S tatements key=” statements38 ”>
<l rm l :Cons t i tu t i v eSta t ement key=” statements38Formula1 ”>

<ru l eml :Ru le c l o s u r e=” un i v e r s a l ”>
<r u l em l : i f>

<r u l em l :Ex i s t s>
<ru leml :Var key=” :a1 ”>a1</ ru leml :Var>
. . .
<ru leml :Var key=” : i ”> i</ ru leml :Var>
<ruleml:And>

<ruleml:Atom>
<ru l eml :Re l i r i=” rioOnto:RexistAtTime” />
<ru leml :Var key r e f=” :a1 ” />
<ru leml :Var key=” : t 1 ”>t1</ ru leml :Var>

</ ruleml:Atom>
. . .
<ruleml:Atom keyr e f=” :A620”>

<ru l eml :Re l i r i=”prOnto:Communicate” />
<ru leml :Var key r e f=” : en ” />
<ru leml :Var key r e f=” :y ” />
<ru leml :Var key r e f=”:w” />
<ru leml :Var key r e f=” : i ” />

</ ruleml:Atom>
</ ruleml:And>

</ ru l em l :Ex i s t s>
</ r u l em l : i f>
<ru l eml : then>

<r u l em l :Ex i s t s>
<ru leml :Var key=” : e a t ”>eat</ ru leml :Var>
<ru leml :Var key=” : i c ”> i c</ ru leml :Var>
<ruleml:And>

<ruleml:Atom>
<ru l eml :Re l i r i=” rioOnto:RexistAtTime” />
<ru leml :Var key r e f=” : e a t ” />
<ru leml :Var key r e f=” : t 1 ” />

</ ruleml:Atom>
<ruleml:Atom keyr e f=” :A621”>

<ru l eml :Re l i r i=”dapreco:AttachTo” />
<ru leml :Var key r e f=” : e a t ” />
<ru leml :Var key r e f=” :y ” />
<ru leml :Var key r e f=” : i c ” />
<ru leml :Var key r e f=” : en ” />

</ ruleml:Atom>
<ruleml:Atom>

<ru l eml :Re l i r i=” dapreco : I con ” />
<ru leml :Var key r e f=” : i c ” />

26https://github.com/dapreco/daprecokb/blob/master/gdpr/rioKB_GDPR.xml
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</ ruleml:Atom>
</ ruleml:And>

</ ru l em l :Ex i s t s>
</ ru l eml : then>

</ ru l eml :Ru le>
</ l rml :Cons t i tu t i v eSta t ement>

<l rm l :Cons t i tu t i v eSta t ement key=” statements38Formula2 ”>
<ru l eml :Ru le c l o s u r e=” un i v e r s a l ”>

<r u l em l : i f>
<r u l em l :Ex i s t s>

<ru leml :Var key=” :a1 ”>a1</ ru leml :Var>
. . .
<ru leml :Var key=” : i ”> i</ ru leml :Var>
<ruleml:And>

<ruleml:Atom>
<ru l eml :Re l i r i=” rioOnto:RexistAtTime” />
<ru leml :Var key r e f=” :a1 ” />
<ru leml :Var key=” : t 1 ”>t1</ ru leml :Var>

</ ruleml:Atom>
. . .
<ruleml:Atom keyr e f=” :A625”>

<ru l eml :Re l i r i=”dapreco:AttachTo” />
<ru leml :Var key r e f=” : e a t ” />
<ru leml :Var key r e f=” :y ” />
<ru leml :Var key=” : i c ”> i c</ ru leml :Var>
<ru leml :Var key r e f=” : en ” />

</ ruleml:Atom>
<ruleml:Atom>

<ru l eml :Re l i r i=” dapreco : I con ” />
<ru leml :Var key r e f=” : i c ” />

</ ruleml:Atom>
<ruleml:Atom keyr e f=” :A626”>

<ru l eml :Re l i r i=” dapreco : e l e c t ron i cForm ” />
<ru leml :Var key r e f=” : e l ” />
<ru leml :Var key r e f=” : i c ” />

</ ruleml:Atom>
</ ruleml:And>

</ ru l em l :Ex i s t s>
</ r u l em l : i f>
<ru l eml : then>

<r u l em l :Ex i s t s>
<ru leml :Var key=” :emr”>emr</ ru leml :Var>
<ruleml:And>

<ruleml:Atom>
<ru l eml :Re l i r i=” rioOnto:RexistAtTime” />
<ru leml :Var key r e f=” :emr” />
<ru leml :Var key r e f=” : t 1 ” />

</ ruleml:Atom>
<ruleml:Atom keyr e f=” :A627”>

<ru l eml :Re l i r i=”dapreco:machineReadableness ” />
<ru leml :Var key r e f=” :emr” />
<ru leml :Var key r e f=” : i c ” />

</ ruleml:Atom>
</ ruleml:And>

</ ru l em l :Ex i s t s>
</ ru l eml : then>

</ ru l eml :Ru le>
</ l rml :Cons t i tu t i v eSta t ement>

</ l rml :Statements>

On the other hand, let us consider an example of if-then rule belonging to the set C. The
rule represents the meaning of Article 6, paragraph 1, point 1, of the GDPR.

According to the GDPR, Article 5, paragraph 1, point 1, it is obligatory for a process-
ing of personal data to be lawful. This is mirrored in the PrOnto ontology via a boolean
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attribute called lawfulness, which is a data property of the PersonalDataProcess-
ing class. The attribute is true when the processing is lawful, and false otherwise.

However, the PrOnto ontology does not specify the conditions under which the law-
fulness attribute is set to either true or false. This is achieved by means of a set of
formulæ in the DAPRECO knowledge base.

For instance, Article 6, paragraph 1, point 1, of the GDPR specifies that one of the
possible conditions under which the processing is lawful if that “the data subject has given
consent to the processing of his or her personal data for one or more specific purposes;”.

This is formalized via the reified Input/Output logic formula27 in (16), which is in
turn codified in the LegalRuleML constitutive statement shown in Listing 2.

(16) ∀ep( ∃a1
∃t1∃ehc

∃eau
∃edp∃w∃z∃y∃x∃c[ (RexistAtT ime a1 t1) ∧

(and′ a1 ep ehc eau edp ) ∧ (DataSubject w) ∧ (PersonalData z w) ∧
(Controller y z) ∧ (Processor x) ∧ (nominates’ edp y x) ∧
(PersonalDataProcessing’ ep x z) ∧ (Purpose epu) ∧ (Consent c) ∧
(isBasedOn ep epu) ∧ (GiveConsent′ ehc w c) ∧
(AuthorizedBy′ eau epu c) ],

(lawfulness ep) ) ∈ C

Listing 2: LegalRuleML representation of formula 16.

<l rm l :Cons t i tu t i v eSta t ement key=” statements7Formula1 ”>
<ru l eml :Ru le c l o s u r e=” un i v e r s a l ”>

<r u l em l : i f>
<r u l em l :Ex i s t s>

<ru leml :Var key=” :a1 ”>a1</ ru leml :Var>
. . .
<ru leml :Var key=” : c ”>c</ ru leml :Var>
<ruleml:And>

<ruleml:Atom>
<ru l eml :Re l i r i=” rioOnto:RexistAtTime” />
<ru leml :Var key r e f=” :a1 ” />
<ru leml :Var key r e f=” : t 1 ” />

</ ruleml:Atom>
<ruleml:Atom>

<ru l eml :Re l i r i=” rioOnto:and ” />
<ru leml :Var key r e f=” :a1 ” />
<ru leml :Var key=” :ep ”>ep</ ru leml :Var>
<ru leml :Var key r e f=” : ehc ” />
<ru leml :Var key r e f=” :eau ” />
<ru leml :Var key r e f=” :edp ” />

</ ruleml:Atom>
<ruleml:Atom>

<ru l eml :Re l i r i=”prOnto:DataSubject ” />
<ru leml :Var key r e f=”:w” />

</ ruleml:Atom>
<ruleml:Atom>

<ru l eml :Re l i r i=”prOnto:PersonalData ” />

27Indeed, the formula in (16) lacks a predicate referring to an exception to Article 6, paragraph 1,
point 1. The handling of exceptions in reified Input/Output logic will be illustrated below in subsec-
tion 4.2, so that we avoid that predicate in (16).
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<ru leml :Var key r e f=” : z ” />
<ru leml :Var key r e f=”:w” />

</ ruleml:Atom>
<ruleml:Atom>

<ru l eml :Re l i r i=” prOnto :Contro l l e r ” />
<ru leml :Var key r e f=” :y ” />
<ru leml :Var key r e f=” : z ” />

</ ruleml:Atom>
<ruleml:Atom>

<ru l eml :Re l i r i=” prOnto :Processor ” />
<ru leml :Var key r e f=” :x ” />

</ ruleml:Atom>
<ruleml:Atom keyr e f=” :A120”>

<ru l eml :Re l i r i=”prOnto:nominates ” />
<ru leml :Var key r e f=” :edp ” />
<ru leml :Var key r e f=” :y ” />
<ru leml :Var key r e f=” :x ” />

</ ruleml:Atom>
<ruleml:Atom keyr e f=” :A121”>

<ru l eml :Re l i r i=” prOnto:PersonalDataProcess ing ” />
<ru leml :Var key r e f=” : ep ” />
<ru leml :Var key r e f=” :x ” />
<ru leml :Var key r e f=” : z ” />

</ ruleml:Atom>
<ruleml:Atom>

<ru l eml :Re l i r i=”prOnto:Purpose ” />
<ru leml :Var key r e f=” :epu ” />

</ ruleml:Atom>
<ruleml:Atom>

<ru l eml :Re l i r i=”prOnto:isBasedOn” />
<ru leml :Var key r e f=” : ep ” />
<ru leml :Var key r e f=” :epu ” />

</ ruleml:Atom>
<ruleml:Atom>

<ru l eml :Re l i r i=”prOnto:Consent ” />
<ru leml :Var key r e f=” : c ” />

</ ruleml:Atom>
<ruleml:Atom keyr e f=” :A122”>

<ru l eml :Re l i r i=”dapreco:GiveConsent ” />
<ru leml :Var key r e f=” : ehc ” />
<ru leml :Var key r e f=”:w” />
<ru leml :Var key r e f=” : c ” />

</ ruleml:Atom>
<ruleml:Atom keyr e f=” :A123”>

<ru l eml :Re l i r i=”dapreco:AuthorizedBy” />
<ru leml :Var key r e f=” :eau ” />
<ru leml :Var key r e f=” :epu ” />
<ru leml :Var key r e f=” : c ” />

</ ruleml:Atom>
</ ruleml:And>

</ ru l em l :Ex i s t s>
</ r u l em l : i f>
<ru l eml : then>

<ruleml:And>
<ruleml:Atom>

<ru l eml :Re l i r i=” prOnto : l awfu lnes s ” />
<ru leml :Var key r e f=” : ep ” />

</ ruleml:Atom>
</ ruleml:And>

</ ru l eml : then>
</ ru l eml :Ru le>

</ l rml :Cons t i tu t i v eSta t ement>

As mentioned above, the connection between the predicates in the formulæ and the
corresponding ontological concepts is implemented by the attribute iri of the tag Rel.
In the DAPRECO knowledge base, there are three reference ontologies: rioOnto, PrOnto,
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and dapreco. rioOnto refers to the concepts of the logical framework, such as the concept
of real existence at a certain time (predicate RexistAtT ime) or the boolean connectives
(and, or, and not). PrOnto refers to the concepts in the PrOnto ontology. Finally,
dapreco includes the additional concepts which are not part of PrOnto but are needed
to model the semantics of the GDPR norms; these predicates are connected to the ones
in PrOnto via further constitutive rules.

It is then possible to navigate from a concept in the PrOnto ontology to the set of
rules conveying the obligations and permissions related to that concept.

We developed a JavaScript tool to guide and monitor the building of the formulæ.
Figure 3 shows the main screenshot of the tool.

Figure 3: The tool to edit reified Input/Output logic formulæ.

The tool allows to load an Akoma Ntoso file, as well as the set of predicates associated
with the concepts of the referenced ontologies. Then, it allows to select an excerpt of
text and to associate it with one or more reified Input/Output logic formulæ.

Since reified Input/Output logic formulæ are if-then rules of conjunctions of atomic
predications, the human annotator simply specifies, one by one, the predicates in the
conjunctions, while filling them with their arguments. Special placeholders allow to
specify whether the rule is an obligation, a permission, or a constitutive rule, as well as
which predicates belong to the LHS rather than to the RHS of the rule. Once the formulæ
are complete, the tool allows to save the result in LegalRuleML, while automatically
creating the associations with the Akoma Ntoso indexes and the ontological concepts. In
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future works, we plan to extend and reuse the tool for translating in reified Input/Output
logic other legislative documents.

Of course, it is not possible to illustrate the details of each formula in the DAPRECO
knowledge base. The following subsections illustrate how reification allows to easily and
uniformly deal with three well-known thorny issues for the proper semantic-pragmatic
representations of NL norms: nested obligations and nested permissions, defeasibility,
and legal interpretations.

4.1 Nested obligations and nested permissions

As extensively argued above in subsection 3.1, reification allows to avoid nestings of
subformulæ within complex operators in the ABox. Complex operators are represented
in terms of first-order predicates that take, among their arguments, the main eventuality
referring to the state of affairs described by the subformula. Further restrictions to model
the operators’s meaning may be asserted in terms of axioms in the TBox.

In light of this, concrete benefits brought by reification in the deontic realm can be
shown by investigating deontic assertions featuring similar forms of nestings. Although
such assertions are rare, they indeed exists, and they have been recently addressed, for
instance, in (Governatori, 2015) (see section 5 below, devoted to related works). A
preliminary example is provided in (17).

(17) If a manager is obliged to perform an action a, his secretary is obliged to write it
down in his agenda.

The intended meaning of (17) is that the secretary is obliged to write down in the man-
ager’s agenda the fact that the manager is obliged to perform the action a, whenever this
is the case. In this paper, we will term sentences such as (17) as “nested obligations”; in
section 5 below, an example of nested permissions will be shown, i.e., sentence (48.e).

In standard Input/Output logic it is not possible to represent the meaning of nested
obligations such as the one displayed above, as the formalism does not allow to specify
semantic links between the if-then rules. Conversely, reification makes that possible,
provided that we manage to explicitly assert an eventuality reifying the fact that someone
is obliged to do something.

Suppose that, in our context, every manager who will attend the party “p” is obliged
to be elegant. Such an obligation may be represented via the formula in (18):

(18) ∀m∀t( ∃ea [(RexistAtT ime ea t) ∧ (attend′ ea m p) ∧ (manager m)],

∃ee [(RexistAtT ime ee t) ∧ (elegant′ ee m)] ) ∈ O

We can then represent the status of being obliged, under which the manager m is, in
terms of a new predication ‘(Obliged′ eo t m e)’, meaning that m is obliged to the real
existence of e at time t.

Then, we add to the knowledge base a special constitutive rule, associated with the
rule in (18), asserting that the fact that the manager m is attending p entails that he or
she is in the status of being obliged to be elegant:
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(19) ∀m∀t( ∃ea [(RexistAtT ime ea t) ∧ (attend′ ea m p) ∧ (manager m)],

∃eo [(Obliged′ eo t m ee) ∧ (elegant′ ee m)] ) ∈ C

According to this definition, the obligation of the manager’s secretary in (17) is straight-
forwardly represent as:

(20) ∀m∀eo∀t( ∃e[(Obliged′ eo t m e) ∧ (manager m)],

∃ew [(RexistAtT ime ew t) ∧ (write′ ew secr(m) descr(eo))] ) ∈ O

In (20), ‘secr(m)’ is a FOL function that, taken a manager m as input, returns his
secretary, who is the agent of the writing action ew. Similarly, “descr(eo)” is a function
that returns the description28 of an eventuality; indeed, the secretary must write down a
text describing the actions that the manager is obliged to do, not the actions themselves.
On the other hand, the object/patient of the writing action is the fact that m is obliged
to the real existence of e at time t.

Like RexistAtT ime, Obliged is a possible modality29 that eventualities may hold
at a certain time t. RexistAtT ime specifies which eventualities hold the status of real
existence at t, while Obliged specifies which eventualities hold the status of obligatoriness
at t, as well as who is the bearer30 of such obligatory eventualities. A dual predicate
Permitted may be of course introduced to specify which eventualities hold the status of
permissiveness at t.

In the light of this, every obligation and every permission needs to be associated with
an additional constitutive rule specifying the status of obligatoriness or permissiveness of
their bearers. Note that this also applies recursively; for instance, (21) is the constitutive
rule associated with (20), stating that the fact that the manager is obliged to the real
existence of e entails that his secretary is in the status of being obliged to write this down
in the manager’s agenda:

(21) ∀m∀eo1∀t( ∃e[(Obliged′ eo1 t m e) ∧ (manager m)],

∃eo2∃ew [(Obliged′ eo2 t secr(m) ew) ∧
(write′ ew secr(m) descr(eo1))] ) ∈ C

As said at the beginning of this subsection, although nested obligations are rare, they
could indeed occur in existing legislation31. The DAPRECO knowledge base contains
some nested obligations as well. An example can be seen in Article 17, paragraph 2:

(22) GDPR (Art.17, par.2): Where the controller has made the personal data public
and is obliged pursuant to paragraph 1 to erase the personal data, the controller,

28We assume, for simplicity, that each eventuality may be described in a single way, i.e., that only a
single description “descr(e)” (functionally) corresponds to an eventuality e.

29See http://www.isi.edu/~hobbs/bgt-modality.text.
30LegalRuleML includes a special tag to mark the bearers of obligations and permissions:

<lrml:Bearer/>. The DAPRECO knowledge base omits this tag to avoid redundancies: the bearers
need to be already specified at the level of the underlying logical formalism, in order to enable nested
obligations and nested permissions.

31(Idelberger et al., 2016) recently showed that nested obligations and nested permissions may also
occur in the formalization of smart contracts.
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taking account of available technology and the cost of implementation, shall take
reasonable steps, including technical measures, to inform controllers which are pro-
cessing the personal data that the data subject has requested the erasure by such
controllers of any links to, or copy or replication of, those personal data.

The reference provision in (22) is represented via the reified Input/Output logic formula32

in (23):

(23) ∀y1
∀y2
∀w∀z∀t1(

∃eob∃era1
[(RexistAtT ime eob t1) ∧
(DataSubject w) ∧ (PersonalData z w) ∧ (Controller y1 z) ∧
(Controller y2 copyOf(z)) ∧ (public z)

(Obliged′ eob y1 era1 t1)) ∧ (Delete’ era1 w z)],

∃en∃era2∃t2 [(RexistAtT ime en t2) ∧ (numeric-greater-than-or-equal t2 t1) ∧
(Communicate’ en y1 y2 era2) ∧ (Delete’ era2 w copyOf(z)) ∧
(reasonable en)] ) ∈ O

The above formula reads as follows: if a controller y1 controls public personal data z
related to a data subject w, a controller y2 controls a copy of z, and a situation really
exists whereby y1 is burdened by an obligation to make era1 really existing (where era1
is the fact that w has requested to erase his personal data z), then, in a certain moment
t2 in the future, y1 is obliged to communicate era2 to y2. In other words, y1 is obliged
to report to y2 the fact that w has requested to also delete the copy of z. Furthermore,
such a communication action has to be “reasonable”33.

A final remark concerns that, although reification allows to flatten embeddings, the
eventualities involved in the modal predicates define a hierarchy that parallels the same
architecture of the embeddings. For instance, in (21) above, the eventuality eo2 “domi-
nates” the eventuality eo1 through the modal predicate Obliged′, paralleling the fact that
the obligation of the secretary “embeds” the obligation of the manager.

Of course, the logical framework must include axioms avoiding eventualities to dom-
inate each other, to properly prevent the occurrence of self-reference paradoxes34.

(Hobbs and Gordon, 2017) introduces such an axiom for the RexistAtT ime modal-
ity35. The axiom states that, for every predicate P , the following holds:

(24) ∀x1x2...xn [ (P x1 x2 . . . xn) → ∃e∃t[(RexistAtT ime e t) ∧ (P ′ e x1 x2 . . . xn)] ]

The axiom in (24) relates the reification of the FOL predicates with their non-reified
counterparts. As explained at the beginning of subsection 3.1, it states that, for instance,
(25) entails (26):

32In reality, formula (23) is a simplification of the formula stored in the DAPRECO knowledge base
and associated with (22), as it does not specify the exceptions of Article 17, paragraph 2. subsection 4.2
below illustrates how reified Input/Output logic deals with exceptions.

33As it will be clarified below in subsection 4.3, the truth value of the predicate ‘reasonable’ depends
on context-specific legal interpretations of the corresponding adjective.

34See https://plato.stanford.edu/entries/self-reference.
35See https://www.isi.edu/~hobbs/bgt-evstruct.text.
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(25) (blond John)

(26) ∃e∃t[(RexistAtT ime e t) ∧ (blond’ e John)]

Being RexistAtT ime a FOL predicate itself, it is of course possible to recursively apply
the axiom in (24), thus obtaining (27), (28), etc.

(27) ∃e1∃e∃t[ (RexistAtT ime e1 t) ∧ (RexistAtT ime’ e1 e t) ∧ (blond’ e John) ]

(28) ∃e2∃e1∃e∃t[ (RexistAtT ime e2 t) ∧ (RexistAtT ime’ e2 e1 t) ∧
(RexistAtT ime’ e1 e t) ∧ (blond’ e John) ]

Similar axioms must of course be asserted for the other modalities, e.g., Obliged and
Permitted, but we omit their formalization.

Since the eventualities introduced via RexistAtT ime, Obliged, Permitted, and so on
will always be outscoped by the existential quantifiers, so that they will be different from
the ones already present in the formula, a set of eventualities will never dominate each
other in a cycle, i.e., no self-reference paradoxes occur.

4.2 Exceptions

Legal reasoning has to handle conflicts, in that often a rule derogates to another. The
selection of applicable provisions in a certain case is a major problem in the general
theory of law, and several criteria exist to determine which provisions prevail. The main
ones are: chronological (subsequent laws derogate to the previous ones), hierarchical
(primary provisions derogate to secondary ones), and specialty (special laws prevail over
the general rule). So, for example, general regulative norms may be overridden by more
specific rules in restricted contexts. Those more specific rules are then exceptions to the
general rule. Furthermore, specific rules may be in turn defined in the restricted contexts
(exceptions of exceptions). To boot, exceptions may interact with each other, just like
the general rules they are associated with. An example taken from Article 8, paragraph 1,
of the GDPR is shown in (29):

(29) GDPR (Art. 8, par. 1): Where point (a) of Article 6(1) applies, in relation to
the offer of information society services directly to a child, the processing of the
personal data of a child shall be lawful where the child is at least 16 years old.
Where the child is below the age of 16 years, such processing shall be lawful only
if and to the extent that consent is given or authorised by the holder of parental
responsibility over the child. Member States may provide by law for a lower age
for those purposes provided that such lower age is not below 13 years.

GDPR (Art. 5, par. 1): Personal data shall be:

(a) processed lawfully, fairly and in a transparent manner in relation to the data
subject (“lawfulness, fairness and transparency”);

(b) . . .
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GDPR (Art. 6, par. 1): Processing shall be lawful only if and to the extent that
at least one of the following applies:

(a) the data subject has given consent to the processing of his or her personal
data for one or more specific purposes;

(b) . . .

The intended meaning of (29) may be summarized as follows:

(30)
a. Processing of personal data ought to be lawful.

b. The fact that the data subject has given consent to the processing of his
personal data entails that the processing is lawful.

c. Exception to point (b): in case the data subject is less than 16 years old, his
consent does not entail lawfulness of processing.

d. In case the data subject is less than 16 years old, the fact that the holder of
his parental responsibility has given consent to the processing of his personal
data, entails that the processing is lawful.

e. Exception to points (c) and (d): Member States may lower the minimal age
for giving consent, although not below 13 years.

(30.a–b) concern the representation of Article 6, paragraph 1, point (a). The corre-
sponding formulæ in reified Input/Output logic, which do not seem to require further
explanations, are shown in (31) and (32), respectively. Note that the former is an obli-
gation, while the latter is a constitutive rule, used to define the lawfulness of processing.

(31) ∀ep∀t( ∃a1
∃edp∃x∃y∃z∃w[(RexistAtT ime a1 t) ∧ (and a1 edp ep) ∧
(DataSubject w) ∧ (PersonalData z w) ∧ (Controller y z) ∧
(Processor x) ∧ (nominates’ edp y x) ∧
(PersonalDataProcessing’ ep x z)],

∃el [(RexistAtT ime el t) ∧ (lawfulness’ el ep)] ) ∈ O

(32) ∀ep∀t( ∃epu∃edp∃ehc
∃eau∃a1∃x∃y∃z∃w∃c[ (RexistAtT ime a1 t) ∧

(and a1 edp ep ehc eau) ∧ (DataSubject w) ∧ (PersonalData z w) ∧
(Controller y) ∧ (Processor x) ∧ (nominates’ edp y x) ∧
(PersonalDataProcessing’ ep x z) ∧ (Purpose epu) ∧
(isBasedOn ep epu) ∧ (Consent c) ∧ (GiveConsent’ ehc w c) ∧
(AuthorizedBy’ eau epu c)],

∃el [(RexistAtT ime el t) ∧ (lawfulness’ el ep)] ) ∈ C
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A standard solution to represent the exception in (30.c) is to introduce additional con-
structs that implement defeasibility. Several approaches in Legal Informatics, such as (Par-
ent, 2011), use priorities and/or partial orders to explicitly assert when a norm is “stronger”
than another one, that is, when it should prevail.

In (Hobbs and Gordon, 2017), defeasibility is handled implicitly by means of con-
structs drawn from Circumscriptive Logic (McCarthy, 1980). We illustrate the simple
idea behind Circumscriptive Logic with an example36. The fact that every bird flies may
be represented in FOL as ‘∀x[bird(x)→fly(x)]’. We add another predicate ‘normalBF ’
to the LHS to render the formula defeasible. This predicate models the fact that birds
fly only when it is “normal” to assume so. The resulting expression is ‘∀x[(bird(x)∧
normalBF (x))→fly(x)]’.

To model that penguins are non-flying birds, we assert they are not normal with
respect the property of flying: ‘∀x[ penguin(x)→¬normalBF (x)]’. Based on this as-
sertion, we may consistently state that they do not fly: ‘∀x[ penguin(x)→(bird(x)∧
¬fly(x))]’.

In other words, predicates like ‘normalBF ’ are introduced in the formulæ in order
to “block” the general inferences, and to consistently assert more specific ones. In this
sense, the specific rules are stronger than the general ones, meaning that they have
“higher priority”.

A similar mechanism handles exceptions. General inferences are allowed only if the
exceptions given by the specific rules do not occur. Exceptions correspond to FOL
predications paralleling ‘normalBF (x)’ in the previous example. However, to avoid
explicitly asserting whether an exception does not hold, instead of using a simple negation,
it is possible to use a negation-as-failure (naf , for short), which is a construct supported
by LegalRuleML. The distinction between ‘¬A’ and ‘naf(A)’ can be described as follows:
the former is true when it can be derived that A is false, while the latter is true when it
cannot be derived that A is true. In other words, the latter is true both when A is false
and when A is unknown.

In light of this, the formula in (32) is rewritten as in (33). The only difference between
the two formulæ is the predication ‘naf(exceptionCha2Art8Par1 ep)’, which is true if
the exception about the processing ep does not occur37.

(33) ∀ep∀t( ∃epu∃edp∃ehc
∃eau
∃a1
∃x∃y∃z∃w∃c[ (RexistAtT ime a1 t) ∧

(and a1 edp ep ehc eau) ∧ (DataSubject w) ∧ (PersonalData z w) ∧
(Controller y) ∧ (Processor x) ∧ (nominates’ edp y x) ∧
(PersonalDataProcessing’ ep x z) ∧ (Purpose epu) ∧
(isBasedOn ep epu) ∧ (Consent c) ∧ (GiveConsent’ ehc w c) ∧
(AuthorizedBy’ eau epu c) ∧ naf(exceptionCha2Art8Par1 ep)],

∃el [(RexistAtT ime el t) ∧ (lawfulness’ el ep)] ) ∈ C

36Taken from https://www.isi.edu/~hobbs/bgt-defeasibility.text.
37In footnote 32 above, we noted that the two elements x and y of a pair (x, y) belonging to either

O or P are always made up of conjunctions of atomic predications, with an important exception. The
exception is represented by ‘naf ’, which indeed introduces one level of nesting in the formulæ.
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Using LegalRuleML, ‘naf(exceptionCha2Art8Par1 ep)’ is codified as follows:

<ru l eml :Naf>
<ruleml:Atom>

<ru l eml :Re l i r i=” rioOnto:exceptionCha2Art8Par1 ” />
<ru leml :Var key r e f=” : ep ” />

</ ruleml:Atom>
</ ru leml :Naf>

The exception in (30.c) can then be modeled by using the formula in (34), which entails
the exception ‘(exceptionCha2Art8Par1 ep)’, in case the data subject is less than 16 years
old, and “blocks” the inference in (33). New obligations may be then consistently asserted
for data subjects who are less than 16 years old. An example is the one corresponding
to (30.d), but it will be omitted from this description.

(34) ∀ep( ∃a1
∃t∃edp∃x∃y∃z∃w[(RexistAtT ime a1 t) ∧ (and a1 ep edp) ∧

(DataSubject w) ∧ (PersonalData z w) ∧ (Controller y z) ∧
(Processor x) ∧ (nominates’ edp y x) ∧
(PersonalDataProcessing’ ep x z) ∧ (numeric-less-than ageOf(w) 16)],

(exceptionCha2Art8Par1 ep) ) ∈ C

Finally, it is necessary to (recursively) define an exception in (34) as well, since Article 8,
paragraph 1, allows Member States to lower down the minimal age for giving consent
(although not below 13 years).

To avoid over-assertion of rules, we can substitute the constant ‘16’ in (34) with
a FOL function ‘minAgeForConsent’ that takes in input the processing action ep and
returns the minimal age for giving consent to ep in the context where the formula is
instantiated. In other words, we replace the last predication in the LHS of formula (34)
with (‘numeric-less-than ageOf(w) minAgeForConsent(ep))’.

The following constitutive rule defines that the value of minimal age for giving consent
to processing of personal data is 16, provided that there are no exceptions.

(35) ∀ep( naf(exceptionMinAgeForConsent ep),

(numeric-equal minAgeForConsent(ep) 16) )∈ C

Assuming, for instance, that French national legislation lowers the minimal age for
giving consent to the processing of personal data down to 14 years, the DAPRECO
knowledge base can then be enriched with the following constitutive rule:

(36) ∀ep( ∃a1∃t∃edp∃x∃y∃z∃w[(RexistAtT ime a1 t) ∧ (and a1 edp ep) ∧
(DataSubject w) ∧ (PersonalData z w) ∧ (Controller y z) ∧
(Processor x) ∧ (nominates’ edp y x) ∧
(PersonalDataProcessing’ ep x z) ∧
(equal MemberState(y) France)],

(exceptionMinAgeForConsent ep) ∧
(numeric-equal minAgeForConsent(ep) 14) ) ∈ C
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4.3 Legal interpretations

Handling multiple interpretations of legal provisions is perhaps the best known prob-
lem in Legal Informatics. Laws can be pragmatically interpreted in multiple, and often
incompatible, ways in different contexts. Furthermore, what makes legal texts so much
dependent on human interpretation is that they are used in disputes that represent differ-
ent interests, so that the interpretation of the provisions tends to be stretched depending
on the interest involved.

Since it is impossible to predict every possible context where the provisions will be
deployed, legislators tend to use terms that are flexible enough to be adapted to the
required socio-legal context, and sometimes may appear as vague, such as “reasonable”
in the example shown in (22). In other words, such terms are used in case the legislator
cannot account for the multitude of situations that should be covered by the abstract
legislation, which often depend on the legal cases as they occur, and on the reflections of
legal doctrine. It is eventually up to judges and other appointed authorities to decide the
“final” interpretation of provisions in each context. However, even in similar contexts, it
is quite common that different judges adopt different legal interpretations, incompatible
among themselves (sometimes even concerning identical cases).

LegalRuleML provides tags, illustrated below, to enable the assertion of multiple legal
interpretations, while specifying that they are mutually exclusive of each another.

Within the DAPRECO project we provide some possible, early legal interpretations
of GDPR provisions in terms of correlations between them and the controls in some ISO
security standards (see (Bartolini et al., 2016)).

A clear example is shown in (37). The DAPRECO knowledge base assumes that
provisions (37.a-b) are correlated, so that compliance with control A9.1 of the ISO/IEC
27018:2014 security standard in (37.b) entails compliance with Article 33, paragraph 2,
of the GDPR, in (37.a-b).

(37)
a. GDPR (Art.33, par.2): The processor shall notify the controller without un-

due delay after becoming aware of a personal data breach.

b. ISO/IEC 27018:2014, A9.1: The public cloud PII processor should promptly
notify the relevant cloud service customer in the event of any unauthorized
access to PII.

In reified Input/Output logic, (37.a-b) are formalized as in (38) and (39) respectively38.

38In (39), we formalized “the relevant cloud service customer” occurring in (37) via the predicate
PIIController. According to ISO 27018, Article 0.1: “The cloud service customer, who has the contrac-
tual relationship with the public cloud PII processor, can range from a natural person, a ‘PII principal’,
processing his or her own PII in the cloud, to an organization, a ‘PII controller’, processing PII relating
to many PII principals”.
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(38) ∀x∀y∀eb∀t1(

∃a1
∃edp∃ep∃ea∃w∃z[(RexistAtT ime a1 t1) ∧ (and a1 edp ep ea) ∧

(DataSubject w) ∧ (PersonalData z w) ∧ (Controller y z) ∧
(Processor x) ∧ (nominates’ edp y x) ∧
(PersonalDataProcessing’ ep x z) ∧
(AwareOf ’ ea x eb) ∧ (DataBreach eb z)],

∃en∃t2 [(RexistAtT ime en t2) ∧ (numeric-greater-than-or-equal t2 t1) ∧
(Communicate’ en x y allInfoAbout(eb)) ∧ (nonDelayed en)] ) ∈ O

(39) ∀x∀y∀ea∀t1(

∃a1∃edp∃ep∃w∃z∃k[(RexistAtT ime a1 t1) ∧ (and a1 edp ep ea) ∧
(PIIPrincipal w) ∧ (PIIController y z) ∧ (PIIProcessor x) ∧
(PII z w) ∧ (nominates’ edp y x) ∧ (PersonalDataProcessing’ ep x z) ∧
(access’ ea k z) ∧ (unauthorized ea)],

∃en∃t2 [(RexistAtT ime en t2) ∧ (numeric-greater-than-or-equal t2 t1) ∧
(Communicate’ en x y allInfoAbout(ea)) ∧ (promptly en)] ) ∈ O

Correlating (39) and (38) amounts to introducing new assertions into the knowledge base,
containing further entailments between the predicates occurring in the two formulæ, so
that one obligation is satisfied (or violated) if the other one is.

It seems rather unquestionable to assume that “PII” (Personally Identifiable Informa-
tion), a term regularly used in ISO/IEC 27018:2014, and “personal data”, which is one
of the core terms of the GDPR, refer to the same concept. The definitions provided for
the two terms are also essentially identical. Thus, the knowledge base may safely include
the implication ‘∀z∀w[(PII z w) → (PersonalData z w)]’, in the form of a constitutive
rule, in order to assert that PII, as defined in ISO/IEC, has been considered as personal
data, as defined in the GDPR.

Similarly, we may add to the knowledge base, without particular concern, the formulæ
‘∀w[(PIIPrincipal w) → (DataSubject w)]’, ‘∀x[(PIIProcessor x) → (Processor x)]’,
‘∀y∀z[(PIIController y z)→(Controller y z)]’, and ‘∀e[(promptly e)→(nonDelayed e)]’,
stating that the PIIPrincipal of the online service is a data subject, the PII processor is a
processor, the PII controller is a controller, and that “promptly” entails “non-delayed”.

On the other hand, it could be questionable to assume that an unauthorized access
count as a data breach. In other words, the constitutive rule in (40) may be subject to
different legal interpretations.

(40) ∀ea∀z∀t( ∃k[(RexistAtT ime ea t) ∧ (access’ ea k z) ∧ (unauthorized ea)],

(DataBreach ea z) ) ∈ C
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To model different legal interpretations of (40), we use the same mechanism shown pre-
viously to model exceptions: we add a special predication ‘(assumption ea)’, which is
true if it may be assumed that the inference in (40) is valid. The final version of the
constitutive rule is therefore the following:

(41) ∀ea∀z∀t( ∃k[(RexistAtT ime ea t) ∧ (access’ ea k z) ∧
(unauthorized ea) ∧ (assumption ea)],

(DataBreach ea z) ) ∈ C

The knowledge base then contains further constitutive rules that block the inference in
(40), i.e., that entail the negation of (assumption ea).

It is also possible to introduce constitutive rules that determine when (assumption ea)
is true, even if these rules will be redundant: (assumption ea) is already assumed to be
always true, unless it is explicitly written that it is false. The reason behind this, as
argued in (Robaldo and Sun, 2017), is that reified Input/Output logic has been designed
for building knowledge bases “able to keep track of the different legal interpretations over
time”. Therefore, if some legal authorities explicitly state that the default assumptions
are true, we should “register” this in terms of parallel explicit formulæ in the knowledge
base, even if these formulæ are redundant. Otherwise, we lose the information that these
legal authorities “confirmed” the assumptions.

As an example, we can assume three fictitious pieces of case law, not pertaining to
actual legal decisions, for the sole purpose of illustrating how legal interpretations are
codified within the DAPRECO knowledge base. Suppose we have the following legal
interpretations of (41):

(42)
a. Italian Corte di Cassazione, sezione civile, 12530/2012 : An unauthorized ac-

cess counts as a data breach, according to the definitions found in the state of
the art of the cybersecurity and data protection domains.

b. Spanish Audiencia provincial de Toledo, n. 57/2016, 2/12/2016 : An unau-
thorized access does not count as a data breach, in that a data breach requires
not only an unauthorized access, but also a breach of security and a causal
connection between them.

c. French Tribunal de Grande Instance d’Avignon, decision du 17/04/2016 : In
this case, we assume that the specific conditions examined by the Tribunal
consisted in the company “Alpha” performing a security test on an IT system;
even if unauthorized accesses indeed took place, and although they have to be
considered as data breaches in the general case, in this specific scenario they
cannot be taken as such in that they were part of the security test.

The three legal interpretations above are modeled using the three sets of reified In-
put/Output logic in (43), (44), and (45) respectively.

(43) ∀ea( ∃k∃z∃t[(RexistAtT ime ea t) ∧ (access’ ea k z) ∧ (unauthorized ea)],

(assumption ea) ) ∈ C
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(44) ∀ea( ∃k∃z∃t[(RexistAtT ime ea t) ∧ (access’ ea k z) ∧ (unauthorized ea)],

¬(assumption ea) ) ∈ C

(45) ∀ea( ∃k∃z∃t[(RexistAtT ime ea t) ∧ (access’ ea k z) ∧ (unauthorized ea) ∧
naf(exceptionSecurityTest ea)],

(assumption ea) ) ∈ C

∀ea( ∃k∃z∃t[(RexistAtT ime ea t) ∧ (access’ ea k z) ∧ (unauthorized ea) ∧
(partOf ea et) ∧ (securityTest et)],

(exceptionSecurityTest ea) ) ∈ C

The formulæ in (43) and (44) have the same LHS of (40), and they respectively entail
‘(assumption ea)’ and its negation.

As discussed above, (43) is indeed redundant, in that we already postulated that
(assumption ea) is always true, provided that it is not explicitly asserted as false; how-
ever, we want to explicitly encode that the Italian court supports the assumption.

On the other hand, (44) is a simplification in that it only codifies that the Spanish
court does not accept (assumption ea), while it does not codify the full legal interpreta-
tion of data breach by that court, i.e., that a data breach includes both an unauthorized
access, a breach of security, and a causal connection between them; however, such details
are not relevant for the present discussion.

Finally, (45) includes two constitutive rules, one of which entails an exception to
the other one. The two formulæ in (45) read as follows: although the court recognizes
that an unauthorized access counts as a data breach in the general case, when it results
from security tests, such as the ones performed by the company “Alpha”, it is not to be
considered as such. Security tests are then exceptions to the general case.

The crucial difference between (43) and (45) is that, according to the former, the
processor shall comply with its GDPR obligations, including the one of notifying the
controller without undue delay, also in the case of security tests. In such cases, the
notification will simply specify that the unauthorized accesses were intentional and under
the control of the processor itself. On the other hand, according to (45), processors are
exempt from their GDPR obligations in case of security tests.

It is clear that the three legal interpretations in (42) cannot hold at the same time, as
their conjunction is inconsistent. LegalRuleML provides the tag ‘<lrml:Alternatives>’
to explicitly assert that they are mutually exclusive (Athan et al., 2014). We then codify
each of the three formulæ above into a tag <lrml:ConstitutiveStatement>, similarly
to what was done above in Listing 1, assigning each a different key:

<l rm l :Cons t i tu t i v eSta t ement key=” Ca s s a z i o n eC i v i l e I t a l i a ”>
. . .

</ l rml :Cons t i tu t i v eSta t ement>
<l rm l :Cons t i tu t i v eSta t ement key=”AudienciaDeToledoSpain”>

. . .
</ l rml :Cons t i tu t i v eSta t ement>
<l rm l :Cons t i tu t i v eSta t ement key=”TribunalDAvignonFrance”>

. . .
</ l rml :Cons t i tu t i v eSta t ement>
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The keys are then referred to within the LegalRuleML tag <lrml:Alternatives>, which
specifies that each of the three constitutive rules is an “alternative” to the other ones,
meaning that they are all mutually exclusive among themselves.

< l rm l :A l t e r n a t i v e s>
<l rm l : h a sA l t e r na t i v e key r e f=”#Ca s s a z i o n eC i v i l e I t a l i a ”/>
<l rm l : h a sA l t e r na t i v e key r e f=”#AudienciaDeToledoSpain”/>
<l rm l : h a sA l t e r na t i v e key r e f=”#TribunalDAvignonFrance”/>

</ l rm l :A l t e r n a t i v e s>

5 Related works

Reified Input/Output logic (Robaldo and Sun, 2017) has been proposed as a logical
framework to formalize provisions in existing legislation, which are expressed in natural
language only. Reified Input/Output logic takes the neo-Davidsonian approach of (Hobbs
and Gordon, 2017) as the object logic of two sequential Input/Output systems, described
above in Figure 2, one for constitutive rules and one for regulative rules.

(Hobbs and Gordon, 2017) features a total avoidance of nestings, thus allowing to
manage complex phenomena in Natural Language Semantics in a simple and flexible
way, and so does reified Input/Output logic. This holds for Natural Language Semantics
in general, not only for legal texts. It has been argued in (Hobbs, 1998) and (Hobbs,
2001) that avoidance of nestings allows for a straightforward treatment of anaphora,
while (Robaldo, 2010a) and (Robaldo, 2010b) argue that embeddings should be always
avoided, in order to properly represent not only the predications, but also the sets of
individuals involved in the predications.

Therefore, as explained in the two subsections below, the crucial benefits brought by
reification to Input/Ouput logic are formal simplicity and modularity, achieved without
lowering the required expressivity. Formal simplicity and modularity allow for the easy
and quick building of large repositories of reified Input/Output formulæ, such as the
DAPRECO knowledge base.

5.1 Exceptions and legal interpretations

Exceptions and legal interpretations have been well-known problems in Legal Informatics
for decades (see (MacCormick and Summers, 1991; Nute, 1997)). Literature is huge,
and several formalizations (Boella et al., 2010; Antoniou et al., 2001; Prakken, 2005;
Sartor, 2005; Governatori et al., 2009; Brozek, 2014; Walton, Sartor, and Macagno, 2016;
Malerba, 2017) have been proposed to deal with them.

All mentioned approaches, as well as the one proposed in this paper, deal with excep-
tions and legal interpretations via some kind of defeasible logic. Mechanisms imported
from standard Default Logic (Reiter, 1987), priorities, or partial orders between norma-
tive rules are common ways to implement defeasibility.

(Parent, 2011) proposes a defeasible extension of standard Input/Output logic based
on priorities in order to properly handle moral conflicts.

On the other hand, in reified Input/Output logic, as in (Hobbs and Gordon, 2017),
defeasibility is implemented in terms of mechanisms imported from (McCarthy, 1980)
that allow to “block” the entailments associated with the constitutive rules.
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As explained in subsection 6.2 below, devoted to future works, the latter are techni-
cally equivalent to standard constructs proposed since the Nineties to undercut defeasible
rules in logic programming (Nute, 1994a), and still used nowadays (Governatori et al.,
2013; Amgoud and Nouioua, 2015). The subsection will address the need of an exhaustive
analysis of the expressivity and the computational complexity of defeasible Input/Output
logic frameworks, such as (Parent, 2011) and the one proposed here.

Exceptions and legal interpretations are indeed two sides of the same coin, related to
the fact that existing provisions are highly dependent on human subjectivity and that all
possible real contexts where they could be applied cannot be predicted a priori.

Exceptions are mostly related to the notion of preference between multiple valid
rules, using the prevalence criteria that have been briefly mentioned at the beginning of
subsection 4.2. For example, considering the specialty criterion, special rules have to be
preferred over general ones; however, in case their LHS does not hold, the general rule
applies.

On the other hand, legal interpretation of the provisions mostly concerns the occur-
rence of multiple rules that cannot be applied together, because the conjunctions of their
RHSs is inconsistent, so that they are mutually exclusive.

It is of course possible to find real-world scenarios showing preferences among multiple
valid interpretative rules, which are exceptions to general legal interpretations. Such a
scenario has been exemplified above in (45). According to the (fictional) case law issued
at the Audiencia provincial de Toledo, unauthorized accesses are interpreted as data
breaches (general rule), unless they are specifically due to security tests (special rule).

Formula (45) shows that the reified Input/Output logic mechanism to implement
defeasibility also allows to easily represent preferences among legal interpretations.

Similarly, (Rotolo, Governatori, and Sartor, 2015) propose a rule-based framework
by adjusting the one proposed in (Governatori and Rotolo, 2008), which is a modal
defeasible logic extended with an operator ‘⊗’ to model preferences between multiple
legal interpretations. That work adopts three kinds of rules: monotonic implications,
non-monotonic (defeasible) implications, and the so-called “defeaters”, which are not
used to derive new conclusions, but only to “block” others; defeaters are similar to our
mechanism, imported from Circumscriptive Logic, exemplified for instance above in (34).
A binary superiority relation ‘>’ between rules is then introduced, as well as axioms to
constrain their model-theoretic interpretation and the interaction with the ‘⊗’ operator.

The authors then show that their formal machinery can be used to model interpreta-
tive arguments in deontic defeasible reasoning in two ways: by interpreting the provisions
in their sentential (propositional) meaning as a whole, or by ascribing different legal in-
terpretations to their intra-sentential components, or, in other words, by restricting legal
interpretations to the words or the chunks occurring in the textual content describing
the provision.

In reified Input/Output logic, it is not necessary to define two different formal schemas
to distinguish legal interpretations at either the sentential or the intra-sentential level, in
that reification allows to uniformly move across different levels of abstraction.

To understand why, let us consider the reified Input/Output logic formula in (23)
again, corresponding to the GDPR provision in (37.a), copied again in (46) for the reader’s
convenience:
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(46) GDPR (Art.33, par.2): The processor shall notify the controller without undue
delay after becoming aware of a personal data breach.

∀x∀y∀eb∀t1(

∃a1∃edp∃ep∃ea∃w∃z[(RexistAtT ime a1 t1) ∧ (and a1 edp ep ea) ∧
(DataSubject w) ∧ (PersonalData z w) ∧ (Controller y z) ∧
(Processor x) ∧ (nominates’ edp y x) ∧
(PersonalDataProcessing’ ep x z) ∧
(AwareOf ’ ea x eb) ∧ (DataBreach eb z)],

∃en∃t2 [(RexistAtT ime en t2) ∧ (numeric-greater-than-or-equal t2 t1) ∧
(Communicate’ en x y allInfoAbout(eb)) ∧ (nonDelayed en)] ) ∈ O

subsection 4.3 already introduced an example related to the (fictitious) legal interpreta-
tion of the term “data breach” in contexts where unauthorized accesses occur. For some
legal authorities, unauthorized accesses are considered as data breaches, for others they
are not.

On the other hand, in order to ascribe different legal interpretations at the sentential
level, we need to assert additional constitutive rules that defeasibly entail the truth or
the falsity of the whole LHS of the formula above. For instance, let’s assume a fictional
context where the processor x has been informed about a data breach by a friend k
via oral communication. Some legal authorities may assume that oral communication is
sufficient to entail that the processor has been properly made aware of the data breach,
and consequently that the LHS of (46) holds in such contexts, while other authorities
may decide otherwise.

To model these different legal interpretations, the constitutive rule in (47) is added to
the knowledge base. Additional constitutive rules may be added as well, to distinguish
the legal authorities for which ‘(assumption ecm)’ is true from the ones for which it is
not, along the line explained above in subsection 4.3.

(47) ∀x∀eb∀t1(

∃a1
∃edp∃ep∃ecm∃y∃z∃w∃k[(RexistAtT ime a1 t1) ∧ (and a1 edp ep ecm eb) ∧

(DataSubject w) ∧ (PersonalData z w) ∧ (Controller y z) ∧
(Processor x) ∧ (nominates’ edp y x) ∧
(PersonalDataProcessing’ ep x z) ∧ (DataBreach eb z) ∧
(Communicate’ ecm k x eb) ∧ (oralForm ecm) ∧ (assumption ecm)],

∃ea [(RexistAtT ime ea t1) ∧ (AwareOf ’ ea x eb)] ) ∈ C

Contrary to (Governatori and Rotolo, 2008), reified Input/Output logic is then able to
both add assumptions (and the corresponding constitutive rules) at the sentential level,
and other assumptions (and the corresponding constitutive rules) at the chunk/word
level, using a single uniform mechanism.
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5.2 Nested obligations and nested permissions

Readings concerning nested obligations and nested permissions (see subsection 4.1 above)
have been scarcely studied in literature, perhaps because they rarely occur in existing
legislation.

A recent paper that addresses them is (Governatori, 2015), where it is shown that
Linear Temporal Logic (Pnueli, 1977), used in several contemporary approaches to nor-
mative multi-agent systems and business process compliance, is unable to properly deal
with nested obligations and nested permissions. In light of this, that work proposes, as an
alternative to Linear Temporal Logic, the special operator originally introduced in (Gov-
ernatori and Rotolo, 2006), which is not affected by the paradoxes raised by nested
obligations and nested permissions through Linear Temporal Logic inferences. Specif-
ically, the analysis focuses on the Australian Privacy Amendment (Enhancing Privacy
Protection) Bill 201239, which contains provisions that have the same logical structure
of sentences (48.a-e).

(48)
a. Collection of information of type A is forbidden, in the general case.

b. Collection of information of type A is permitted if there is a court order
authorizing it. This means that collections of information of type A under
court orders are exceptions to the previous rule.

c. Destruction of illegaly collected information of type A, before accessing it,
compensates the prohibition in (48.a).

d. Collection of information of type B is forbidden, in the general case.

e. Collection of information of type B is permitted whenever collection of in-
formation of type A is permitted. This means that permissions of collecting
information of type A provide exceptions to the previous rule.

In (48.a-e), information of type A and information of type B are disjoint, i.e., A∩B ≡ ∅.
Note that (48.e) contains a nested permission. On the other hand, (48.c) is a so-called

“compensatory clause”: destruction of information of type A, unlawfully collected, before
accessing it compensates the violation of (48.a). In other words, in case someone collects
information of type A but then destroys it prior to accessing it, (48.a) is not indeed
violated, and the behaviour is compliant with the norms.

(Governatori, 2015) shows that, under Linear Temporal Logic derivations, the scenario
where one collects both information of type A and information of type B, and he or
she later destroys the unlawfully collected information of type A, is compliant with the
provisions in (48.a-e). However, this is incorrect, as the rule in (48.d) was violated: there
was no permission to collect information of type B, and compensation of (48.a) does
not entail compensation of (48.d). Therefore, in this scenario, Linear Temporal Logic is
indeed unable to derive the violation of (48.d).

39https://www.legislation.gov.au/Details/C2012B00077/ExplanatoryMemorandum/Text.
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This paper does not address compensations, as they do not occur in the DAPRECO
knowledge base. A simple and intuitive way to model violations and compensations in
reified Input/Output logic, which seems to be acceptable at least for the general cases such
as the exemplified one (see (Boella and van der Torre, 2004a) for a general discussion),
amounts at defining two new predicates, ‘V iolated’ and ‘Compensated’, that respectively
model the reification of the fact that an obligation has been violated and the fact that an
obligation has been compensated. The following (universal) constitutive rule axiomatizes
the relation between the two predicates:

(49) ∀eo∀x∀t( ∃e∃en [(Obliged′ eo t x e) ∧ (RexistAtT ime en t) ∧ (not en e) ∧
naf(Compensated eo t)],

∃ev [(V iolated ev t x eo)] ) ∈ C

The rule in (49) reads as follows: if x is obliged to make e really existing at time t, but,
on the contrary, at time t the negation of e really exists and it may be assumed that x’s
obligation has not been compensated, then x’s obligation is violated at time t.

Having defined the concepts of violation and compensation of an obligation, (48.a-e)
can be respectively represented via the reified Input/Output logic formulæ from (50) to
(54). Note that the predicate Compensated occurs in formula (52).

(50) ∀eco∀t( ∃x∃y[(infoA y) ∧ naf(exceptionCourtOrder eco x t) ∧ (Collect’ eco x y)],

∃enc
[(RexistAtT ime enc t) ∧ (not enc eco)] ) ∈ O

∀eco∀t( ∃x∃y[(infoA y) ∧ naf(exceptionCourtOrder eco x t) ∧ (Collect’ eco x y)],

∃eo∃enc
[(Obliged′ eo t x enc) ∧ (not enc eco)] ) ∈ C

(51) ∀x∀eco∀t( ∃eau
∃w∃y[(RexistAtT ime eau t) ∧ (Authorize’ eau w eco) ∧

(courtOrder w) ∧ (Collect’ eco x y) ∧ (infoA y)],

(exceptionCourtOrder eco x t) ) ∈ C

∀eco∀t( ∃eau
∃x∃y∃w[(RexistAtT ime eau t) ∧ (Authorize’ eau w eco) ∧

(courtOrder w) ∧ (Collect’ eco x y) ∧ (infoA y)],

(RexistAtT ime eco t) ) ∈ P

∀eco∀x∀t( ∃eau
∃y∃w[(RexistAtT ime eau t) ∧ (Authorize’ eau w eco) ∧

(courtOrder w) ∧ (Collect’ eco x y) ∧ (infoA y)],

∃ep [(Permitted′ ep t x eco)] ) ∈ C

(52) ∀eo∀t1( ∃x∃y∃enc
∃eco∃ede∃t2 [ (Obliged′ eo t1 x enc) ∧ (not enc eco) ∧
(Collect’ eco x y) ∧ (infoA y) ∧ (RexistAtT ime ede t2) ∧
(numeric-greater-than-or-equal t2 t1) ∧ (Destroy’ ede x y) ],

(Compensated eo t1) ) ∈ C
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(53) ∀eco∀t( ∃x∃y[(infoB y) ∧ (Collect’ eco x y)],

∃enc
[(RexistAtT ime enc t) ∧ (not enc eco)] ) ∈ O

∀eco∀t( ∃x∃y[(infoB y) ∧ (Collect’ eco x y)],

∃eo∃enc
[(Obliged′ eo t x enc) ∧ (not enc eco)] ) ∈ C

(54) ∀x∀t( ∃ep∃eco1∃y[(Permitted′ ep t x eco1) ∧ (Collect’ eco1 x y) ∧ (infoA y)],

∃eco2∃z[(RexistAtT ime eco2 t) ∧ (Collect’ eco2 x z) ∧ (infoB z) ) ∈ P

∀x∀t( ∃ep1∃eco1∃y[(Permitted′ ep1 t x eco1) ∧ (Collect’ eco1 x y) ∧ (infoA y)],

∃ep2∃eco2∃z[(Permitted′ ep2 t x eco2) ∧ (Collect’ eco2 x z) ∧
(infoB z)] ) ∈ C

The problematic scenario exemplified above is described by the following atoms (let John
be the subject collecting the data)40:

(55) (RexistAtT ime ecaj t1) ∧ (Collect’ ecaj John y) ∧ (infoA y) ∧
(RexistAtT ime ecbj t1) ∧ (Collect’ ecbj John z) ∧ (infoB z) ∧
(RexistAtT ime edaj t2) ∧ (Destroy’ edaj John y) ∧ (infoA y) ∧
(numeric-greater-than-or-equal t2 t1)

It is easy to see that (55) is not compliant with the if-then rules from (49) to (54). From
the constitutive rule in (50) and the input in (55), we derive:

∃eo∃enc
[(Obliged′ eo t1 John enc) ∧ (not enc ecaj)]

Stating that, at time t1, John is obliged to not collect the portion of information of
type A referred by ‘y’. Note that, in (50), ‘naf(exceptionCourtOrder ecaj John t1)’
evaluates to true, in that we do not have any knowledge about a court order authorizing
the collecting action ‘ecaj’.

On the other hand, the inference in (49) is blocked precisely because the literal
‘naf(Compensated eo t1)’ evaluates to false, for the obligation eo. In other words,
‘(Compensated eo t1)’ is derived through (52), in that there is a destroying action of
the illegally collected information of type A, performed by John at time t2 >= t1.

Therefore, a violation for the illegally collected information of type A is not derived.
However, we can still derive the violation of the illegally collected information of type B,
through (49), (53), and (55).

Thus, like the approach of (Governatori and Rotolo, 2006), reified Input/Output logic
also derives the proper inferences within the exemplified scenario. Thanks to reification,
the proper violations and compensations are naturally and intuitively derived through
basic FOL implications.

40Note that, in (55), ecaj, ecbj, edaj, t1, t2, John, y, and z are FOL constants.
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6 Future work

In (Robaldo and Sun, 2017), the translation of the whole GDPR into reified Input/Output
logic has been advocated as a future work, with the aim of showing that, by simplify-
ing/flattening the architecture of the logical framework through reification, it is possible
to build large knowledge bases of formulæ in reasonable time, without limiting the ex-
pressivity needed to properly represent knowledge from legal texts.

The present paper provides that evidence; in the future, further evidence may be
provided by developing similar knowledge bases encoding norms from other regulations
or directives, such as MiFID II41.

Focusing on the DAPRECO knowledge base and the data protection domain only,
lot of further research still needs to be done to make the knowledge base really useful
in practical applications, or even only as a benchmark corpus of examples for reified
Input/Output logic and the LegalRuleML standard.

In particular, we identify two directions for further research, both indispensable to this
end: (1) extending the DAPRECO knowledge base with GDPR operational constraints,
i.e., context-specific requirements detailing how, and to what extent, GDPR norms are
met in real-world scenarios, and (2) designing and implementing inference schema to
perform legal reasoning tasks on the (extended) knowledge base.

6.1 Extending the DAPRECO knowledge base with GDPR op-
erational constraints

Our future research on the DAPRECO knowledge base is grounded on the distinction
between GDPR formal requirements (formal compliance) and GDPR operational require-
ments (substantive compliance), how and to what extent the GDPR formal requirements
are met in real-world scenarios.

For instance, in Article 12, the GDPR specifies that the controller shall take appropri-
ate measures to provide the data subject with any information about the collection of his
personal data or in case of data breach “in a concise, transparent, intelligible and easily
accessible form, using clear and plain language”. However, the regulation does not detail
which measures are appropriate in the different contexts to this end. Rather, it requires
controllers to define their own data protection policies (see Articles 13, 14, and 24(2)),
whereas associations and other bodies representing categories of controllers or proces-
sors are invited to prepare codes of conduct (see Article 40), and the European Data
Protection Board has the duty to release guidelines and recommendations (see 70(1)(d)).

At present, the DAPRECO knowledge base represents formal requirements only; to
model the example under examination, for instance, it uses a predicate “clearness”,
which is true if, and only if, the fact that the communication is done “in a concise,
transparent, intelligible and easily accessible form, using clear and plain language” really
exists. The predicate “clearness” parallels the same level of vagueness of the original
legal text: both the GDPR and the DAPRECO knowledge base do not specify how and
to what extent the communication is “clear” enough, in the different domains where

41https://eur-lex.europa.eu/legal-content/IT/ALL/?uri=CELEX:32014L0065&qid=1435045139484.
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personal data are processed (such as Fintech, eHealth, IoT) or with respect to different
technologies involved in the processing (such as augmented reality, blockchain).

To this end, in the future the DAPRECO knowledge base needs to be enriched by
constitutive rules specifying under which conditions the predicate “clearness” is true
in the different contexts, possibly with respect to different (and mutually exclusive) le-
gal interpretations. These additional constitutive rules will encode the content of the
mentioned recommendations, standards, codes of conduct, and the like, many of which
are currently unavailable. subsection 4.3 shows an example with respect to Article 33,
paragraph 2, of the GDPR and the control A9.1 of the ISO/IEC 27018:2014 standard.
However, this is just an isolated example to show how it is possible to correlate formal
and operational requirements, while a more systematic and exhaustive enrichment of the
knowledge base in that score is left as a future work.

Most important of all, we believe that the formulæ expressing correlations between
GDPR formal and operational constraints must be evaluated and approved by a large
set of domain experts with context-specific heterogeneous knowledge and perspectives on
GDPR operational constraints; this set includes lawyers and data protection officers, but
also security managers, process managers, data managers, and other professionals from
academia, industry, and institutions.

Therefore, in our future research we aim at designing and implementing question-
naires to gather feedbacks about the formulæ in the DAPRECO knowledge base while
abstracting their formal details. In addition, we aim at making these questionnaires
available online to encompass a large number of respondents, similarly to what has been
done in (Robaldo, Szymanik, and Meijering, 2014). As the set of documents containing
operational requirements is expected to be large, the construction of the questionnaires
will be supported by automatic procedures, drawn from past research in NLP (Robaldo
et al., 2011; Boella et al., 2013a; Boella et al., 2013b), to help identify new relevant
concepts or relate the ones already present in the DAPRECO knowledge base to their
matching textual excerpts.

The collected feedback will allow to understand whether, and to what extent, the
formal representations reflect the intended meaning of the textual sources, or whether
they will rather call for a revision of the formulæ in the DAPRECO knowledge base.

Once a correlation will be supported by a reasonably large set of domain experts,
it will be deemed “acceptable”, although not “universally valid”. It is always possible
to add additional legal interpretations, incompatible with the currently acceptable ones,
which may be possibly become acceptable in the future.

In other words, the DAPRECO knowledge base must be intended as a “living entity”
that will never be exhaustive and correct enough or, at the very most, only for short
periods. For this reason, as already pointed out in section 3 above, it is crucial to
explicitly represent the temporal dimension via FOL terms such as “t1”, “t2”, to infer
that, for instance, organizations that currently implement “appropriate measures” in the
sense of Article 12 of the GDPR are not liable for subsequent technological advancements
that nullify that level of appropriateness.

Note that approaches based on semi-structured questionnaires are already available in
literature to evaluate legal ontologies (Casellas, 2009; Ramakrishna, Gorski, and Paschke,
2016). The PrOnto ontology is currently under evaluation through similar questionnaires,
in the context of research projects at the University of Bologna.
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On the other hand, no evaluation methodology is available in the literature for fine-
grained logical representations such as the ones in the DAPRECO knowledge base, also
because these are indeed quite novel. The DAPRECO knowledge base will be the first
use case on which developing such a novel evaluation methodology.

6.2 Designing and implementing inference schema to perform
legal reasoning tasks on the DAPRECO knowledge base

Using the DAPRECO knowledge base in practical applications requires to define and
implement inference schemas for legal reasoning tasks on the if-then rules stored in the
knowledge base, first of all automatic compliance checking, which, given a description of
the state of affairs, entails the task of determining which GDPR obligations have been
fulfilled or violated, as well as which ones are still in force, even in case some other
obligations have been already violated (contrary-to-duty reasoning).

The design, and consequent implementation, of such reasoning tasks does not appear
to be an easy one, in light of the computational complexity analysis of Input/Output.
Satisfiability in Input/Output logic is coNP hard and in the second level of the polyno-
mial hierarchy; for instance, contrary-to-duty reasoning is BH2 complete42 (see (Sun and
Robaldo, 2017), Theorem 3.16).

On the one hand, these complexity results are not so comforting with respect to the
goal of using Input/Output logic in practical applications in computer science. However,
the main competitors of Input/Output logic face no less problems for standard reasoning
tasks. This is particularly true for deontic frameworks grounded on possible-world se-
mantics, which adds an extra machinery that makes the overall computational complexity
much worse than the one of Input/Output logic. For instance, STIT logic, one of the
main deontic logic grounded on possible-worlds semantics, is undecidable (Schwarzentru-
ber and Semmling, 2014).

Thus, we are still optimistic about the future of the formalism, but we acknowledge
that the computational complexity analysis of more advanced Input/Output frameworks,
such as the one used for the DAPRECO knowledge base, requires a lot of additional effort.

The basic inference tasks in Input/Output logic are currently limited to the original
definitions (Makinson and van der Torre, 2000; Makinson and van der Torre, 2001), which
take standard propositional logic as the object logic. Conversely, in the DAPRECO
knowledge base, the object logic is the first-order framework in (Hobbs and Gordon,
2017). As explained in subsection 3.1, the formulæ belonging to the assertive contextual
statements (the ABox) should be distinguished from those belonging to the terminological
declarative statements (the TBox).

The ABox formulæ feature a trivial syntax: they are all conjunctions of atomic pred-
icates, possibly outscoped by existential quantifiers. A pair of such formulæ constitutes
an Input/Ouput (if-then) rule. External universal quantifiers bind all variables that are
not existentially quantified within the inner formulæ from (Hobbs and Gordon, 2017).

Provided the universe is finite, the if-then rules may be easily reduced to pairs of
sets of propositional symbols via Skolemization and enumeration, and the computational

42BH2 is the class of languages which are the intersection of a language in NP and a language in coNP.

42



complexity turns out to be trival as the only possible inferences are those allowed by
conjunction (‘A,B ` A ∧B’ and ‘A ∧B ` A’).

More advanced inferences (such as negation, disjunction, or is-a relations) may be
then allowed by introducing corresponding axioms and semantic relations in the reference
ontology. It then follows that in reified Input/Output logic the computational complexity
wholly depends on the reference ontology; by restricting the expressivity of the TBox
axioms, we can then control the complexity of the overall Input/Output system in order,
for instance, to make it usable in practical applications.

With respect to the present work, the if-then rules in the DAPRECO knowledge base
constitute the ABox of the overall framework, while the TBox is mostly represented by
the PrOnto ontology, encoded in OWL2-DL.

Therefore, the first future work in this direction we advocate is the extension of the
results and proofs in (Sun and Robaldo, 2017) to the expressivity of description logic.

The next step would be to study the computational complexity of the defeasible
methods used in the DAPRECO knowledge base to handle assumptions and exceptions
(see subsection 4.2 and subsection 4.3 above). Those are respectively assumed to be true
and false, but they can be otherwise asserted, in order to block or allow certain inferences.

Note that, although the method to handle defeasibility in reified Input/Output logic
is drawn from Circumscriptive Logic, the latter is much more complex and technical
than just having abnormality predicates (Cadoli and Lenzerini, 1994; Bonatti, Lutz, and
Wolter, 2009). In other words, reified Input/Output logic does not convey the whole
complexity of the axiom of circumscription.

Our assumptions and exceptions are technically equivalent to standard constructs pro-
posed since the nineties to undercut defeasible rules in logic programming, such as the un-
dercutting defeaters of Defeasible Logic (Nute, 1994a), implemented in defeasible-Prolog
programming language (Nute, 1994b). Nowadays, they are widely used in argumentation
systems (Amgoud and Nouioua, 2015).

Other works (Governatori et al., 2013) use similar defeaters in a tractable extension.
On the other hand, that object logic has a quite reduced expressivity, in that it only
allows (modal) literals. Given the simplicity of the object logic, tractability comes out
easily. Nevertheless, it appears that defeaters do not add extra complexity per se, but the
complexity of the overall resulting system again depends only on the inferences allowed
by the object logic (the one of the reference ontology), in the reified Input/Output logic
setting. A further direction of future work that we advocate is to verify whether this
hypothesis is true.

More generally, rather than focusing on the computational complexity analysis of
reified Input/Output logic only, a broader and exhaustive future work would be to study
how the complexity of the (inner) object logic interacts with the complexity of the (outer)
Input/Output wrapper, in order to determine the complexity of the overall resulting
framework.

The computational complexity analysis of reasoning tasks on the DAPRECO knowl-
edge base should be then seen as a particular case study of this general future research,
but not the single one deserving further investigation.

For instance, (Parent, 2011) proposes an extension of standard Input/Output logic,
called prioritized Input/Output logic, suitable to handle moral conflicts; those are re-
solved based on a priority ordering on the power set of the Input/Output pairs. The
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complexity of prioritized Input/Output logic is superior to the one of the DAPRECO
knowledge base, and its investigation may be seen as a second case study of the general
research plan outlined here.

On the other hand, Input/Output logic has not been used for modeling legal reasoning
only; for instance, as mentioned in section 2 above, (Bochman, 2004) uses it to model
causal reasoning, but the author does not present any computational complexity analysis
of its framework either.

To conclude, investigating the computational complexity of the mentioned Input/Out-
put logic frameworks, and others as well, ought to be placed within a general perspective,
to avoid duplication of work. The way is still very long, in that the results hold for the
propositional level only.

7 Conclusions

In this paper, we have discussed how reified Input/Output logic is a suitable formalism
to express complex legal statements as those in the General Data Protection Regulation.

While showing interesting cases, some including defeasible meanings, from the Regu-
lation and from other (exemplified) legal statements, the paper also presented the process
of using reified Input/Output logic to express GDPR provisions, thoroughly explaining
how the legal statements are translated into formulæ. The result is an extensive data
base called the DAPRECO knowledge base.

The current version of the DAPRECO knowledge base includes 966 formulæ in reified
Input/Output logic: 271 obligations, 76 permissions, and 619 constitutive rules. To date,
the DAPRECO knowledge base is the biggest knowledge base in Input/Output logic and
LegalRuleML available online.

The knowledge base has been built in about four months by the first author of this
paper, with the aid of a Javascript tool allowing to select the portion of the legal text to
formalize, build the corresponding formulæ, and save the result in LegalRuleML.

The present paper shows that reified Input/Output logic appears to be a suitable for-
mal instrument to build, in a reasonable time, large knowledge bases of formulæ without
limiting the expressivity needed to properly represent content from legal texts.

Reification allows to extend the expressivity of the Input/Output framework (Makin-
son and van der Torre, 2000; Makinson and van der Torre, 2001) fit to represent GDPR
norms and similar deontic linguistic expressions found in existing legislation. On the
other hand, as shown in (Robaldo and Sun, 2017), since reification does not affect the
model-theoretic semantics of standard Input/Ouput logic, all meta-structures handling
contrary-to-duty reasoning, special subtypes of permissions, and the like may be imported
in reified Input/Output logic with very little tuning of the formal definitions.

As reified formulæ do not feature nestings of sub-formulæ within complex opera-
tors, the proper representation of nested obligations and permissions was achieved quite
straightforwardly, by introducing suitable eventualities referring to the fact that someone
is obliged/permitted to take some actions.

In addition, the avoidance of nestings, and the consequent architectural simplicity
of the formulæ, is the factor that allows to build such a large knowledge base in a
short time. Indeed, although the LegalRuleML standard has been under design for some
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years already, no other such large knowledge bases in LegalRuleML is currently available
online. There are of course papers showing examples in LegalRuleML, e.g., (Dimyadi,
Governatori, and Amor, 2017), but no enough exhaustive and systemic work has been
conducted so far to translate a whole relevant piece of legislation in LegalRuleML. The
DAPRECO knowledge base is the first and unique achievement in this respect.

In our view, the reason is that the formulæ in the underlying logics used in the
literature on LegalRuleML, e.g., in (Dimyadi, Governatori, and Amor, 2017), being
based on standard embeddings of sub-formulæ within complex operators, are less readable
than the ones in reified Input/Output logic, and so harder to edit and debug, in that
they require more effort and expertise, especially when the size of the knowledge base
increases.

As argued in (Robaldo, 2011), syntactic embeddings are convenient from a computa-
tional point of view, in that their model theory may be defined recursively, but they are
inadequate for Natural Language Semantics and hard to scale.

On the other hand, to handle exceptions and legal interpretations it was necessary to
introduce formal mechanisms to implement defeasibility. The constitutive rules contain
special predicates explicitly referring to exceptions and to assumptions taken in legal
interpretations. This solution is alternative to others proposed in literature (Rotolo,
Governatori, and Sartor, 2015; Parent, 2011), which use priorities or superiority binary
operators to infer which rules are “stronger” than the others.

Modelling defeasibility with predicates explicitly referring to exceptions and assump-
tions on certain eventualities appears to be an effective solution for representing legisla-
tion. Legislation is normally written by means of general and abstract provisions, in the
sense that legislators know a priori only the general contexts where legislation will apply,
although sometimes some special situations deserving exceptions to the general rules are
known already and encoded in the text of the law. For the most part, legal interpreta-
tions will be figured out later; in such cases, it is generally the role of jurisprudence to
rule out the correct application of the provisions (case law), but in some cases legislation
will be amended in order to account for new exceptions.

In light of this, it seems there is no need to introduce more complex defeasible schema
for modeling legislation. Advanced forms of reasoning could be instead needed whenever
we do not know a priori which rules override other rules, but this has to be inferred
from the asserted knowledge, including the prevalence criteria between different legal
sources43. Such a reasoning could be needed, for instance, in argumentation systems,
where the weight of each argument is assigned at the beginning, then it is inferred which
arguments override other ones.

On the other hand, although reified Input/Output logic introduces predicates explic-
itly referring to exceptions and assumptions by taking inspiration from Circumscriptive
Logic, these are rather limited in their expressivity. Specifically, they correspond to stan-
dard defeaters used since decades and still in several modern formalisms, among which
the deontic account from (Governatori et al., 2013).

A full and exhaustive computational complexity analysis of Input/Output logic de-
serves a lot of future work, but is needed to deploy the DAPRECO knowledge base in
real-world applications.

43Personal communication with Leon van der Torre.
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A second important direction of future research that we identified to this end concerns
the enrichment of the DAPRECO knowledge base with GDPR operational constraints,
coming from a plethora of additional documents (guidelines, recommendations, codes of
conduct) as specified in several GDPR articles.

The constraints conveyed by these documents specify how GDPR formal constraints
must be implemented in the different real-world scenarios where personal data are pro-
cessed. Therefore, they ought to be formalized in reified Input/Output logic as well,
linked to the if-then rules stored in the DAPRECO knowledge base, and evaluated by
domain experts, in an incremental and defeasible fashion. In fact, the if-then rules in the
DAPRECO knowledge base will never be exhaustive enough or, at the very most, only for
short periods. New official documents, overriding current interpretations, are expected
to be released as technology advances. It will be then necessary to incrementally evolve
the DAPRECO knowledge base in order to parallel and encompass them.
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