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1 Linguistic Introduction

The Lambek calculus (Lambek, 1958) was introduced for mathematical mod-
elling of natural language syntax via categorial grammars. The concept of cate-
gorial grammar goes back to ideas of Ajdukiewicz (1935) and Bar-Hillel (1953).
The framework of categorial grammars aims to describe natural language by
means of logical derivability (see Buszkowski (2003); Carpenter (1997); Mor-
rill (2011); Moot and Retoré (2012) etc). From the modern logical point of
view, the calculus of Lambek grammars (the Lambek calculus) is a variant of
Girard’s linear logic (Girard, 1987) in its non-commutative intuitionistic ver-
sion (Abrusci, 1990). Nowadays Lambek-style categorial grammars form one
framework in a family of closely related formalisms, including combinatory cat-
egorial grammars (Steedman, 2000), categorial dependency grammars (Dekht-
yar and Dikovsky, 2008), and others.

A categorial grammar assigns logical formulae to lexemes (words) of the
language. These formulae are syntactic categories, or types, of these words.
In Lambek grammars, types are constructed using three binary connectives,
namely two divisions, \ and /, and the product, ·.

Following the usual introduction into categorial grammars, we start with
the standard example: “John loves Mary.” Here “John” and “Mary” receive
syntactic type N (noun); “loves,” as a transitive verb, is of type (N \S) /N .
Here S is the syntactic category of grammatically valid sentences. Thus, a
transitive verb is handled as something that needs a noun phrase on the left
and a noun phrase on the right to become a complete sentence. In the Lambek
calculus, A,A \B yields B, and so does B /A,A (the complete formulation of
the Lambek calculus is presented in Section 2). Thus, N, (N \S) /N,N → S
is a theorem of the Lambek calculus, which validates “John loves Mary” as a
correct sentence.

Lambek grammars are also capable of handling more sophisticated syn-
tactic constructions, in particular, coordination (“and,” “or”) and some cases
of dependent clauses. These cases include examples like “the girl whom John
loves” (parsed as N). Here the most interesting syntactic type is the one for
“whom”: (CN \CN) /(S /N). The type CN stands for “common noun,” i.e.,
a noun without article. “Whom” takes, as its right argument, an incomplete
sentence “John loves,” which lacks a noun phrase on the right to become a
complete sentence (like “John loves Mary”) and is therefore of type S /N . The
complete analysis of “the girl whom John loves” corresponds to the following
theorem of the Lambek calculus:

N/CN,CN, (CN \CN) /(S /N), N, (N \S) /N → N.

Coordination between two sentences (“John loves Mary and Pete loves Ann”)
is handled by assigning (S \S) / S to “and.”
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There are, however, serious limitations of the expressive power of Lam-
bek grammars. Namely, the famous result of Pentus (1993) states that any
language described by a Lambek grammar is necessarily context-free. On the
other hand, context-freeness of real natural language syntax had been a dis-
puted question in the linguistic community, see Pullum and Gazdar (1982).
Finally, Shieber (1985) demonstrated a non-context-free construction in Swiss
German. Though examples like Shieber’s one may seem exotic, constructing
context-free grammars for sophisticated natural phenomena, even if such gram-
mars exist, is practically quite hard. This discrepancy motivates extending and
modifying the Lambek calculus in order to obtain more powerful categorial
grammar formalisms.

In this paper we consider some of these extensions. In the analysis of lin-
guistic examples, we generally follow Morrill (2011) and later papers by Morrill
and his co-authors.

The first extension handles the syntactic phenomenon called medial extrac-
tion by means of a subexponential modality allowing permutation. To make it
clear what medial extraction is, recall the “the girl whom John loves” example.
In this example, the dependent clause “John loves” is a sentence which lacks a
noun phrase. Let us call the place where this noun phrase is omitted a gap and
denote it by []. A sentence with a gap in the end (“John loves [],” cf. “John
loves Mary”) is of type S /N . Symmetrically, a gap in the beginning yields
type N \S, like for “[] loves Mary” in “the boy who loves Mary.” Here “who”
receives type (CN \CN) /(N \S). Unfortunately, this does not cover depen-
dent clauses in which the gap is located in the middle of the sentence, i.e.,
examples like “the girl whom John met [] yesterday.” This dependent clause
is neither of type S /N , nor of type N \S.

Medial extraction can be handled by adding a subexponential modality
(cf. Kanovich et al. (2019a)), denoted by !, which allows permutation. In gen-
eral, the Lambek calculus is non-commutative, thus, the order of the words
in a sentence matters. For formulae of the form !A, however, permutation is
allowed, and they can be freely moved. Now the gap gets type !N and can be
relocated to an arbitrary place of the dependent clause; the clause in whole
receives type S / !N .

Another issue connected to dependent clauses is overgeneration (i.e., wrong
judgement of incorrect syntactic structures as valid ones), which arises when
dependent clauses and “and”-coordination appear together. An example is
∗“the girl whom John loves Mary and Pete loves.” This is not a correct noun
phrase (which is denoted by the asterisk put before it). Unfortunately, “John
loves Mary and Pete loves []” is still of type S /N (cf. “John loves Mary and
Pete loves Ann” being of type S), which incorrectly validates our example as
a noun phrase. Another example is ∗“the paper that John saw the person who
wrote” (again, we have “John saw the person who wrote []” is of type S /N).

These wrong derivations can be cut off using the mechanism of brack-
ets (Morrill, 1992; Moortgat, 1996), which introduces controlled non-associa-
tivity. Brackets are instantiated by special bracket modalities (see Section 3
for details) and embrace certain parts of the sentence into islands. Islands
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typically include and-coordinated sentences, that-clauses, gerund clauses, etc.
Brackets (borders of islands) cannot be penetrated by the permutation rules
for !N . Thus, the dependent clause with brackets inside is no longer of type
S / !N , and the whole wrong derivation gets invalidated.

Finally, we consider a more rare syntactic phenomenon called parasitic ex-
traction, a typical example of which is given by the following noun phrase: “the
paper that John signed without reading.” In this example we have two gaps:
“John signed [] without reading [],” and both gaps should be filled with the
same object of type N : “John signed the paper without reading the paper.”
Of course, one can think of examples with three and more gaps, like “the pa-
per that the author of [] signed [] without reading [],” and so on. In a series
of papers (Morrill, 2014; Morrill and Valent́ın, 2015a; Morrill, 2017b,a, 2018b,
2019), Morrill, with his co-author Valent́ın, uses several different calculi for
handling parasitic extraction. All these approaches, however, use a subexpo-
nential modality the contraction rule, which makes proof search problematic
and often yields algorithmic undecidability. Generally, contraction is a rule of
the form

. . . , !A, . . . , !A, . . .→ C

. . . , !A, . . .→ C

Morrill and his co-authors, however, suggest more sophisticated versions of
contraction, which involve brackets. The general idea of their approaches is as
follows: in the situation of parasitic extraction, only one gap lies plainly in the
dependent clause; other gaps, which are called parasitic, reside in bracketed
subislands of the clause. Moreover, they can get nested. Thus, the contraction
rule becomes highly non-standard.

Morrill’s systems differ one from another in the rules for !. In this article,
we give a logical analysis for two of these systems. One is presented in Morrill
and Valent́ın (2015a); Morrill (2017b) and is closely related to the one of Mor-
rill (2017a). The other one is from Morrill (2019, 2018b). For both systems,
we discuss issues connected to cut elimination, and then prove cut elimination
for modified versions of these systems. Next, we provide a generic method of
encoding semi-Thue systems in extensions of the Lambek calculus with subex-
ponential modalities, and use this method to prove undecidability of the deriv-
ability problems for Morrill’s systems. We also show that categorial grammars
based on these systems generate all recursively enumerable languages. Finally,
using methods of Buszkowski (1982), we strengthen these algorithmic results
by restricting ourselves to smallest reasonable fragments, which includes only
one division, subexponential, brackets, and bracket modalities.

This journal article extends our conference papers in the 21st International
Symposium on Fundamentals of Computation Theory, FCT 2017, held in Bor-
deaux in September 2017 (Kanovich et al., 2017b), and in the 24th Conference
on Formal Grammar, FG 2019, held in Riga in August 2019 (Kanovich et al.,
2019b). However, here we provide a significant refinement of the results pre-
sented in the FCT ’17 and FG ’19 papers. First, here we consider the system
with additive connectives. This makes cut elimination results stronger. Second,
besides undecidability, we also show that categorial grammars based on each of
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the calculi in question generate all recursively enumerable languages, not just
one Σ0

1 -hard one (Section 10). Third, using a variant of Buszkowski’s transla-
tion (Buszkowski, 1982), we establish undecidability even for the one-division
fragments of the calculi in question (Section 11).

In comparison with a series of our papers on the Lambek calculus and
non-commutative linear logic with subexponential modalities (Kanovich et al.,
2016a, 2020, 2016b, 2019a, 2018), the principal difference of this paper is the
presence of brackets and bracket modalities. Contraction rules used by Morrill
in the bracketed calculi essentially interact with brackets and become disfunc-
tional in the bracket-free fragment. Undecidability results, on their turn, rely
on contraction. Thus, they should be proved for calculi with brackets indepen-
dently from the bracket-free case.

On the other side, two papers on the bracketed Lambek calculus (Kanovich
et al., 2017a; Morrill et al., 2018) do not deal with the subexponential modality
(!), and feature effective algorithms instead of undecidability results.

2 The Multiplicative-Additive Lambek Calculus with
Exponential/Relevant Modality

We start with more traditional calculi without brackets and bracket modal-
ities, namely, the multiplicative-additive Lambek calculus extended with a
(sub)exponential modality.

Formulae of the calculi we are going to define in this section are constructed
from a countable set Var of variables and the unit constant 1 using five binary
connectives: · (product, or multiplicative conjunction), \ (left division), / (right
division), ∧ (additive conjunction), and ∨ (additive disjuncton), and one unary
connective, ! (exponential). Sequents are expressions of the formΠ → A, where
A is a formula, and Π is a finite linearly ordered sequence of formulae. Notice
that these calculi are in general non-commutative, Π is a sequence, not a set
or multiset.

The first calculus we consider is !rMALC∗, the multiplicative-additive
Lambek calculus extended with a relevant subexponential modality (r stands
for “relevant,” see below). The axioms of !rMALC∗ are sequents of the form
A→ A and Λ→ 1, and the rules of inference are as follows:

A,Π → B

Π → A \B \R
Π → A ∆1, B,∆2 → C

∆1, Π,A \B,∆2 → C
\L

Π,A→ B

Π → B /A
/R

Π → A ∆1, B,∆2 → C

∆1, B /A,Π,∆2 → C
/L

Γ → A ∆→ B
Γ,∆→ A ·B ·R

∆1, A,B,∆2 → C

∆1, A ·B,∆2 → C
·L

∆1, ∆2 → C

∆1,1, ∆2 → C
1L

Π → A1 Π → A2

Π → A1 ∧A2
∧R

∆1, Ai, ∆2 → C

∆1, A1 ∧A2, ∆2 → C
∧Li, i = 1, 2
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Π → Ai
Π → A1 ∨A2

∨Ri, i = 1, 2
∆1, A1, ∆2 → C ∆1, A2, ∆2 → C

∆1, A1 ∨A2, ∆2 → C
∨L

!A1, . . . , !An → B

!A1, . . . , !An → !B
!R

∆1, A,∆2 → C

∆1, !A,∆2 → C
!L

∆1, !A,Φ,∆2 → C

∆1, Φ, !A,∆2 → C
!P1

∆1, Φ, !A,∆2 → C

∆1, !A,Φ,∆2 → C
!P2

∆1, !A, !A,∆2 → C

∆1, !A,∆2 → C
!C

Π → A ∆1, A,∆2 → C

∆1, Π,∆2 → C
cut

Notice that, from the proof-theoretic point of view, it is better to use,
instead of (contr), the following non-local contraction rules (Kanovich et al.,
2019a):

∆1, !A,Φ, !A,∆2 → C

∆1, Φ, !A,∆2 → C
!NC1

∆1, !A,Φ, !A,∆2 → C

∆1, !A,Φ,∆2 → C
!NC2

In the presence of !P1,2, however, !C has the same power as !NC1,2.

The ! modality here is called “relevant,” since it allows contraction and
permutation, but not weakening, like in relevant logic.

The second system without brackets is !MALC∗, the multiplicative-addi-
tive Lambek calculus extended with a full-power exponential modality. It is
obtained from !rMALC∗ by adding the lacking structural rule for !, namely
weakening:

Γ,∆→ C

Γ, !A,∆→ C
!W

Both !rMALC∗ and !MALC∗ are particular cases of SMALCΣ , the
multiplicative-additive Lambek calculus extended with an arbitrary family of
subexponentials Σ, considered by Kanovich et al. (2019a). In that paper it
is shown that these calculi enjoy cut elimination and that the derivability
problems for these calculi are undecidable.

Cut elimination yields the subformula property (each formula occurring in
the cut-free derivation is a subformula of the goal sequent) and thus conserva-
tivity of elementary fragments. Namely, if one wants to derive only sequents
that include formulae with a restricted set of connectives, it is sufficient just
to restrict the set of rules of the calculus to this set of connectives. For con-
venience, we use a shorter notation, !rL∗ and !L∗, for the fragments without
additive connectives (∨ and ∧) of !rMALC∗ and !MALC∗ respectively.

Let us formally define the notion of categorial grammar based on a non-
commutative intuitionistic-style sequent calculus L without brackets, like the
systems !rMALC∗ and !MALC∗ defined above.
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Definition 1 An L-grammar is a triple G = 〈Σ,B, H〉, where Σ is a finite
alphabet, H is a formula, and B is a finite binary correspondence between
letters of Σ and formulae (called lexicon). A word w = a1 . . . an over Σ is
accepted by G if there exist formulae A1, . . . , An such that aiBAi (i = 1, . . . , n)
and the sequent A1, . . . , An → H is derivable in L. The language generated,
or recognised, by G consists of all words recognised by G.

The system with weakening, !MALC∗, has not so much to do with linguis-
tic applications, but is interesting from the logical point of view. In particular,
we use it as an intermediate calculus in our undecidability proofs (Sections 9
and 11).

The system with a relevant modality, !rMALC∗, supports analysis of
many cases of extraction from dependent clauses, including parasitic extrac-
tion. For example, “the paper that John signed without reading” is analysed
as follows. First, we define the necessary fragment of the lexicon:

the BN/CN John BN

paper B CN signed, reading B (N \S) /N

that B (CN \CN) /(S/ !N) without B ((N \S) \(N \S)) /(N \S)

Here N stands for “noun phrase,” CN states for “common noun” (without
an article), and S stands for “sentence.” Next, we derive the sequent

N/CN,CN, (CN \CN) /(S / !N), N, (N \S) /N,

((N \S) \(N \S)) /(N \S), (N \S) /N → N

in !rMALC∗, as shown on Figure 1.
Without brackets, however, categorial grammars based on !rMALC∗ suf-

fer from overgeneration, parsing ungrammatical phrases like *“the girl whom
John loves Mary and Pete loves” (see Introduction). In the next section, we
introduce systems including both brackets and a restricted subexponential,
developed by Morrill in a series of papers.

3 Morrill’s Calculi with Brackets and Subexponential

In this section we describe extensions of the Lambek calculus, which include
both brackets (and bracket modalities which control them) and a subexponen-
tial, which interacts with brackets in an intricate way.

In his papers, Morrill (sometimes with his co-author Valent́ın) introduces
different variants of his calculus—the difference is in the most interesting rule,
contraction. We consider two of Morrill’s calculi, and denote these calculi by
!2015b MALC∗b(st) and !2018b MALC∗b(st), by the year of first publication. In
this notation, “(st)” means the presence of stoups, the b on the right stands
for “brackets,” and !b means that the subexponential ! interacts with the
bracketing structure.

The !2015b MALC∗b(st) system, in its version without stoups, appears
in Morrill and Valent́ın (2015a), and then in Morrill (2017b) (Morrill (2017a)
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Fig. 1 Derivation for “the paper that John signed without reading” in !rMALC∗ (like
(Morrill, 2019, Fig. 24), but with brackets and bracket modalities removed)

features a slightly different version of this system). The !2018b MALC∗b(st)
system appears in Morrill’s recent papers (Morrill, 2018b, 2019); however, es-
sentially here Morrill returns to an older formulation of the bracket-aware
contraction rule (Morrill, 2011, 2014).
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Morrill’s systems are quite involved, including up to 45 connectives. In
this article we consider their simpler fragments, including multiplicative and
additive Lambek connectives (\, /, ·,1,∨,∧), brackets and bracket modalities
(〈〉 and []−1), and the subexponential !. Since all Morrill’s systems do not in-
clude cut as a rule, these fragments are conservative inside the bigger systems,
and our undecidability results also work for the latter. (The question of ad-
missibility of cut in Morrill’s system is more subtle, and we discuss it later
on.)

Before going forward, let us notice that full Morrill’s systems also include
Kleene star, axiomatised by means of an ω-rule (Morrill calls it “existential
exponential” and denotes by “?”). In the presence of Kleene star, the Lam-
bek calculus is known to be at least Π0

1 -hard (Buszkowski and Palka, 2008;
Kuznetsov, 2017), if the ω-rule is used, and at leastΣ0

1 -hard (Kuznetsov, 2019),
if the Kleene star is axiomatised by means of induction axioms. In both cases,
this means undecidability. Moreover, in the view of Kozen’s results on com-
plexity of Horn theories of Kleene algebras (Kozen, 2002), the complexity of a
system with both Kleene star (with an ω-rule) and a subexponential modality
allowing contraction is likely to rise up to Π1

1 -completeness. Morrill, however,
emphasizes the fact that in formulae used in categorial grammars designed
for real languages the Kleene star never occurs with positive polarity. Thus,
the ω-rule is never used, and the Kleene star does not incur problems with
decidability. Thus, the only possible source of undecidability is the specific
contraction rule for the subexponential. We consider fragments of Morrill’s
systems with this rule, which are sufficient to show undecidability.

The syntax and metasyntax of sequents in Morrill’s systems (in particular,
their fragments considered throughout this article) is more involved, if com-
pared to the calculi without brackets. First, in the antecedents we now have
brackets which operate along with the structural comma (a metasyntactic cor-
respondent of the product connective), introducing partial non-associativity.
Second, in order to avoid superfluous usage of permutation rules for !-formulae
and to facilitate proof search, in his systems Morrill groups the !-formulae to
specifically designated commutative areas in the sequent. Using the terminol-
ogy of Girard (1991, 1993), Morrill calles these areas stoups. Morrill’s calculi,
both technically and ideologically, are close to the sequent system by Hodas
and Miller (1994). In that system, antecedents are split into two zones, ζ;∆,
where ζ is the intuitionistic zone (formulae there are allowed to contract and
weaken) and ∆ is the linear one. In Morrill’s terms, ζ is the stoup. Morrill’s
rules are more complicated, because of non-commutativity of the system in
general, and also partial non-associativity introduced by brackets. Introducing
the stoups, in fact, is the first step towards a focused proof system (Andreoli,
1992; Morrill and Valent́ın, 2015b; Kanovich et al., 2018). Since permutations
for !-formulae cannot penetrate brackets, each pair of brackets has its own
stoup.

Let us define the syntax formally. Formulae will be built from variables
(primitive types) p, q, . . . and the multiplicative unit constant 1 using three
binary operations: \ (left division), / (right division), · (product), and three
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unary operations: 〈〉 and []−1 (bracket modalities) and ! (subexponential).
Sequents (in Morrill’s terminology, h-sequents) are expressions of the form
Ξ ⇒ A, where A is a formula and Ξ is a complex metasyntactic structure
which we call meta-formula (Morrill calls them zones). Meta-formulae are built
from formulae using comma and brackets; also formulae which are intended to
be marked by the subexponential !, which allows permutation, are placed into
stoups. Following Morrill (2019), we define the notion of meta-formula along
with two auxiliary notions, stoup and tree term, simultaneously.

– A stoup is a multiset of formulae: ζ = {A1, . . . , An}. A stoup could be
empty, the empty stoup is denoted by ∅.

– A tree term is either a formula or a bracketed expression of the form [Ξ],
where Ξ is a meta-formula.

– A meta-formula is an expression of the form ζ;Γ , where ζ is a stoup and
Γ is a linearly ordered sequence of tree terms. Here Γ could also be empty;
the empty sequence is denoted by Λ.

We use comma both for concatenation of tree term sequences and for multiset
union of stoups (Morrill uses ] for the latter). Moreover, for adding one formula
into a stoup we write ζ,A instead of ζ, {A}. Empty stoups are omitted: instead
of ∅;Γ we write just Γ .

Let us first formulate the rules which do not operate !, since these rules are
the same in all Morrill’s systems.

A→ A
id

ζ1;Γ → B Ξ(ζ2;∆1, C,∆2)→ D

Ξ(ζ1, ζ2;∆1, C /B, Γ,∆2)→ D
/L

ζ;Γ,B → C

ζ;Γ → C /B
/R

ζ1;Γ → A Ξ(ζ2;∆1, C,∆2)→ D

Ξ(ζ1, ζ2;∆1, Γ, A \C,∆2)→ D
\L ζ;A,Γ → C

ζ;Γ → A \C \R

Ξ(ζ;∆1, A,B,∆2)→ D

Ξ(ζ;∆1, A ·B,∆2)→ D
·L ζ1;∆→ A ζ2;Γ → B

ζ1, ζ2;∆,Γ → A ·B ·R

Ξ → Ai
Ξ → A1 ∨A2

∨Ri i = 1, 2
Ξ(ζ;∆1, ∆2)→ A

Ξ(ζ;∆1,1, ∆2)→ A
1L

Ξ(ζ;∆1, A1, ∆2)→ C Ξ(ζ;∆1, A2, ∆2)→ C

Ξ(ζ;∆1, A1 ∨A2, ∆2)→ C
∨L

Λ→ 1
1R

Ξ(ζ;∆1, Aj , ∆2)→ C

Ξ(ζ;∆1, A1 ∧A2, ∆2)→ C
∧Lj j = 1, 2

Ξ → A1 Ξ ∧A2

Ξ → A1 ∧A2
∧R
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Ξ(ζ;∆1, A,∆2)→ B

Ξ(ζ;∆1, [[]
−1A], ∆2)→ B

[]−1L
[Ξ]→ A

Ξ → []−1A
[]−1R

Ξ(ζ;∆1, [A], ∆2)→ B

Ξ(ζ;∆1, 〈〉A,∆2)→ B
〈〉L Ξ → A

[Ξ]→ 〈〉A 〈〉R

The two calculi, !2015b MALC∗b(st) and !2018b MALC∗b(st), also share
two rules for !:

Ξ(ζ,A;Γ1, Γ2)→ B

Ξ(ζ;Γ1, !A,Γ2)→ B
!L

Ξ(ζ;Γ1, A, Γ2)→ B

Ξ(ζ,A;Γ1, Γ2)→ B
!P

However, the !R rule and, most importantly, the contraction rule !C are
different. In the “older” system !2015b MALC∗b(st) they are formulated as
follows:

ζ;Λ→ B

ζ;Λ→ !B
!R

Ξ(ζ1, ζ2;Γ1, [ζ2;Γ2], Γ3)→ B

Ξ(ζ1, ζ2;Γ1, Γ2, Γ3)→ B
!C, ζ2 6= ∅

The “newer” system !2018b MALC∗b(st) uses the following formulation of !R
and !C:

!A→ B
!A→ !B

!R
Ξ(ζ,A;Γ1, [A;Γ2], Γ3)→ B

Ξ(ζ,A;Γ1, [[Γ2]], Γ3)→ B
!C

As noticed above, in the absence of cut we can easily formulate fragments
of !2015b MALC∗b(st) and !2018b MALC∗b(st) without additive connectives:
one just removes the corresponding rules (∨L, ∨R1,2, ∧L1,2, ∧R). In the no-
tations, we just replace “MALC” with “L”: !2015b L∗b(st), !2018b L∗b(st). In
the following sections we use the same naming convention: if a calculus’ name
includes “MALC,” then replacing it with “L” gives a name for the fragment
of this calculus without additive connectives.

For calculi with brackets, defining recognition of words in categorial gram-
mars is trickier. One can keep the definition from Section 2 and say that
w = a1 . . . an is accepted by the grammar if A1, . . . , An → H is derivable,
for some Ai such that ai B Ai (i = 1, . . . , n). Notice that this sequent does
not include brackets, but may include bracket modalities, 〈〉 and []−1. Thus,
brackets could appear inside the derivation. This notion of recognition is called
s-recognition (Jäger, 2003).

Linguistic applications, however, suggest another notion of recognition for
Lambek grammars with brackets, called t-recognition. A word w = a1 . . . an
is t-accepted by an grammar G if the sequent Π → H is derivable for some
Π such that if one removes all brackets (but not bracket modalities!) from Π,
it yields A1, . . . , An, where ai B Ai (i = 1, . . . , n). In other words, a word is
accepted if there corresponding sequent is derivable for some bracketing Π.

In the implementation of Morrill’s bracketed calculi in the CatLog parser,
the bracket structure on A1, . . . , An is requested from the user as part of input
data (Morrill, 2018a). There is an ongoing project of implementing automatic
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guessing of the correct bracket structure (so-called bracket induction); at the
present time, there exists such an algorithm for the fragment with only multi-
plicative connectives and bracket modalities, without subexponential (Morrill
et al., 2018).

As an example, we analyse the phrase “the paper that John signed without
reading” using !2018b MALC∗b(st). Our analysis is a simplification of the one
of Morrill (2019). In comparison with the analysis in Section 2 (Figure 1),
here we take care of the bracketed domains, which cannot be penetrated by
associativity of product or permutations of !-formulae. Also notice that the
contraction rule here implements parasitic extension in the following sense:
applying contraction to !N (actually, to N located in the stoup) instantiates a
secondary (parasitic) copy of !N into an island. In order to prevent reusage of
islands for parasitic extraction, the island transforms from a strong (double-
bracketed) to a weak (single-bracketed) one. The lexicon now is as follows (if
compared to the one in Section 2, the types here are augmented with bracket
modalities):

the . N /CN likes, signed . (〈〉N \S) /N

man, paper . CN without . ([]−1((〈〉N \S) \(〈〉N \S))) /(〈〉N \S)

reading . (〈〉N \S) /N who, that . ([]−1[]−1(CN \CN)) /(S/ !N)

John . 〈〉N

Before parsing, we have to impose the right bracket structure on our phrase.
This is done as follows: “the paper [[that [John] signed [[without reading]]
]].” Indeed, in Morrill’s CatLog categorial grammar the subject group and
the without-clause form islands, and the that-clause forms a strong island,
embraced by double brackets. Moreover, we also have to double-bracket our
without-clause (make it a “strong island”), since it will be used for parasitic
extraction.

Now the sequent we have to derive in !2018b MALC∗b(st) is as follows:

N/CN, [[ ([]−1[]−1(CN \CN)) /(S / !N), [N ], (〈〉N \S) /N,

[[ ([]−1((〈〉N \S) \(〈〉N \S))) /(〈〉N \S), (〈〉N \S) /N ]] ]]→ N

The derivation is presented on Figure 2.

4 Issues with Cut Elimination

Cut elimination is one of the standard logical properties which is expected
from a reasonable Gentzen-style sequent calculus. Since in the systems dis-
cussed in this article cut is not included as an official rule, the question of
cut elimination appears as the question of the admissibility of cut. From the
linguistic perspective, cut supports the principle of compositionality: once we
have proved that a phrase has syntactic type, say, NP , we can use it at any
place where a noun phrase is allowed.
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Fig. 2 Derivation for “the paper that John signed without reading” in !2018b MALC∗b(st)
(cf. Morrill (2019, Fig. 24))
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Morrill (2019) mentions a semantic approach to prove admissibility of cut
in !2018b MALC∗b(st) as an ongoing work by O. Valent́ın. In this paper, we
wish to pursue the more traditional syntactic approach for cut elimination,
both in !2015b MALC∗b(st) and !2018b MALC∗b(st).

Unfortunately, Morrill’s systems, as formulated above (Section 3), fail to
enjoy cut elimination (cut admissibility). For !2018b MALC∗b(st), the counter-
example is !p, q → q · !p. This sequent expresses the natural property that
!-formulae commute with arbitrary formulae, and it is derivable using cut:

!p→ !p

!p→ !!p
!R

q → q !p→ !p

q, !p→ q · !p ·R
!p; q → q · !p !P

!!p, q → q · !p !L

!p, q → q · !p cut

However, no cut-free derivation is available. Indeed, the lowermost rule of
such a derivation should be either ·R or !L. The former is impossible, since
neither Λ → q, nor !p → q, nor !p, q → q is derivable. In the latter case, we
get p; q → q · !p and again have two possibilities: ·R or !P . For ·R, the only
possible way of splitting could be q → q and p;Λ → !p. The latter, however,
is counter-intuitively not derivable (though p in stoup should mean !p): one
cannot immediately apply !R, and applying !P gives p → !p. Applying !P
would give either p, q → q · !p or q, p→ q · !p, none of which is derivable. Notice
that the proof search here is finite, since the contraction rule could not be used
in the absence of brackets.

Thus, we have to modify !2018b MALC∗b(st) in order to restore the cut
elimination property. We do this by replacing !R and !C with the following
rules:

A;Λ→ B

A;Λ→ !B
!R′

Ξ(ζ,A;Γ1, [ζ
′, A;Γ2], Γ3)→ B

Ξ(ζ,A;Γ1, [[ζ
′;Γ2]], Γ3)→ B

!C ′

Notice that !R′ corresponds to the !R rule of Morrill’s !2015b MALC∗b(st).
The only difference is that here the stoup should include exactly one formula.

We denote the modified calculi by !2018b MALC∗b(st)
′
.

In what follows, we shall show (Theorem 1) that !2018b MALC∗b(st)
′

ad-
mits the cut rule in the following stoup-aware form:

ξ;Π → A Ξ(ζ;Γ1, A, Γ2)→ C

Ξ(ξ, ζ;Γ1, Π, Γ2)→ C
cut

Using cut and the left rules for !, one can derive the old !R rule from the new
!R′ one:

A→ A
A;Λ→ A

!P

A;Λ→ !A
!R′

!A→ B

A;Λ→ B
cut

A;Λ→ !B
!R′

!A→ !B
!L
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As for !C ′, the old rule !C is just its particular case, for ζ ′ = ∅. Thus,
!2018b MALC∗b(st)

′
is an extension of !2018b MALC∗b(st).

For !2015b MALC∗b(st), problems come from the non-emptiness restric-
tion imposed on the contraction rule. The !C rule in !2015b MALC∗b(st) is
formulated in the “multi-contraction” form, allowing to contract several for-
mulae in the stoup at once. However, it should contract at least one for-
mula. This constraint can be easily violated by cut with Λ → !1 (which is
derivable in !2015b MALC∗b(st)). In systems without brackets this would not
be an issue, since in such systems contraction of zero formulae does noth-
ing. In !2015b MALC∗b(st), however, !C operates brackets, so such a “zero-
contraction” would violate bracket discipline.

The concrete counter-example is q → 〈〉q. This sequent clearly has no cut-
free derivation, but can be derived using cut:

Λ→ 1
Λ→ !1

!R

q → q

[q]→ 〈〉q 〈〉R

[1, q]→ 〈〉q 1L

1, [1, q]→ 〈〉q 1L

1, [1; q]→ 〈〉q !P

1; [1; q]→ 〈〉q !P

1; q → 〈〉q !C

!1, q → 〈〉q !L

q → 〈〉q cut

We modify !2015b MALC∗b(st) in the following way, yielding the system
!2015b MALC∗b(st)

′
:

ζ;Λ→ B

ζ;Λ→ !B
!R′, ζ 6= ∅

Ξ(ζ1, ζ2;Γ1, [ζ
′, ζ2;Γ2], Γ3)→ C

Ξ(ζ1, ζ2, ζ
′;Γ1, Γ2, Γ3)→ C

!C ′, ζ2 6= ∅

Theorem 2 establishes cut admissiblity in !2015b MALC∗b(st)
′
.

5 Lambek’s Restriction

The original Lambek calculus (Lambek, 1958) has an important difference from
the systems discussed above, namely Lambek’s non-emptiness restriction. Let
us start with a linguistic example (Moot and Retoré, 2012, Sect. 2.5). In the
calculi defined above, one can derive (N/N) /(N/N), N → N . This sequent
validates “very book” as an object of type N (common noun), which is incor-
rect. Indeed, the type (N/N) /(N/N) for “very” is a left modifier for adjec-
tive, cf. “very interesting book,” analyzed as (N/N) /(N/N), N /N,N → N .

This example motivates the following constraint: left-hand sides of all se-
quents are required to be non-empty. This constraint existed in the original
Lambek calculus (Lambek, 1958). It is quite strange from the logical point of
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view, but is natural from the linguistic side and also in the view of algebraic
interpretations (considering residuated semigroups instead of monoids).

In the presence of a full-power exponential modality, however, imposing
Lambek’s restriction is quite a subtle matter (Kanovich et al., 2016a, 2020).
Actually, there is no way of doing it without losing at least one of the desired
properties of a good logical system—cut elimination and substitution. Similar
issues arise with reconciling Lambek’s restriction with the relevant modality.

The subexponential modalities used by Morrill, however, are not that pow-
erful, and their behaviour is constrained by brackets. This makes it possible
to impose Lambek’s restriction in a linguistically consistent manner. In this
section, we present !2018b MALCb(st)

′
, a version of !2018b MALC∗b(st)

′
with

Lambek’s restriction imposed.
Before going into the formalism, let us consider one more linguistic exam-

ple (Morrill, 2018b). This example features an incorrect noun phrase, *“man
who likes.” The dependent clause here is analysed with two gaps, *“man who
[] likes [].” The intended semantics (and the correct version of the phrase) is
“man who likes himself,” that is, both gaps should be filled with the same N ,
using the parasitic extraction mechanism. The lexicon here is the same as in
the example in Section 3.

Since the dependent clause forms a strong (double-bracketed) island, the
brackets are imposed as follows: “man [[who likes]].” Next, we recall that the
subject should form a weak (single-bracketed) island, and in these brackets
can be generated in !2015b MALC∗b(st) by the contraction rule. This allows
!2015b MALC∗b(st) to parse (incorrectly) “likes” as a dependent clause with
two gaps, a host one for the object and a parasitic one for the subject:

N → N

N → N
[N ]→ 〈〉N 〈〉R S → S

[N ], 〈〉N \S → S
\L

[N ], (〈〉N \S) /N,N → S
/L

[N ;Λ], (〈〉N \S) /N,N → S
!P

N ; [N ;Λ], (〈〉N \S) /N → S
!P

N ; (〈〉N \S) /N → S
!C

(〈〉N \S) /N, !N → S
!L

(〈〉N \S) /N → S / !N
/R

The complete derivation for *“man who likes” as a common noun group (CN)
in !2015b MALC∗b(st) is given on Figure 3

The problem here is the empty island (subject of the dependent clause)
generated by the !C rule. This issue was one of the motivations for Morrill
(2018b) to introduce the new system !2018b MALC∗b(st), which features an-
other version of !C.

With this new version, the island for parasitic extraction should be given
in the bracketing of the goal sequent. Moreover, it should be declared as a
strong (double-bracketed) island, and then the !C rule will transform it into a
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N → N

N → N

[N ]→ 〈〉N 〈〉R
S → S

[N ], 〈〉N \S → S
\L

[N ], (〈〉N \S) /N,N → S
/L

[N ;Λ], (〈〉N \S) /N,N → S
!P

N ; [N ;Λ], (〈〉N \S) /N → S
!P

N ; (〈〉N \S) /N → S
!C

(〈〉N \S) /N, !N → S
!L

(〈〉N \S) /N → S/ !N
/R

CN → CN CN → CN

CN,CN \CN → CN
\L

CN, [[[]−1[]−1(CN \CN)]]→ CN
[]−1L

CN, [[([]−1[]−1(CN \CN)) /(S/ !N), (〈〉N \S) /N ]]→ CN
/L

Fig. 3 Derivation for *“man [[who likes]]” in !2015b MALC∗b(st) (cf. Morrill (2018b))

N → N

N → N

[N ]→ 〈〉N 〈〉R
S → S

[N ], 〈〉N \S → S
\L

[N ], (〈〉N \S) /N,N → S
/L

[N ;Λ], (〈〉N \S) /N,N → S
!P

N ; [N ;Λ], (〈〉N \S) /N → S
!P

N ; [[Λ]], (〈〉N \S) /N → S
!C

[[Λ]], (〈〉N \S) /N, !N → S
!L

[[Λ]], (〈〉N \S) /N → S/ !N
/R

CN → CN CN → CN

CN,CN \CN → CN
\L

CN, [[[]−1[]−1(CN \CN)]]→ CN
[]−1L

CN, [[([]−1[]−1(CN \CN)) /(S/ !N), [[Λ]], (〈〉N \S) /N ]]→ CN
/L

Fig. 4 Derivation of *“man [[who [[ ]] likes]]” in !2018b MALC∗b(st) (notice the empty
subject island)

weak one. The erroneous phrase *“man who likes,” however, can still be parsed
by !2018b MALC∗b(st), but requires the empty subject island to be explicitly
introduced in the bracketing, see Figure 4.

An easy way of making phrases like *“man who likes” invalid in grammars
based on !2018b MALC∗b(st) is to forbid the user (or an automated bracket-
inducing system) to put empty bracket domains on the original sentence. This
is essentially the idea which motivates the usage of !2018b MALC∗b(st) in
favour of !2015b MALC∗b(st): in !2015b MALC∗b(st), the brackets embracing
an empty island appeared only inside the derivation, while in the newer sys-
tem !2018b MALC∗b(st) they should be provided as an input, which could be
disallowed externally.

A more logically consistent approach, however, requires imposing non-
emptiness restriction systematically for all sequents in derivations. The re-
striction is formulated as follows:

every meta-formula, both the whole antecedent and each bracketed domain,
should be non-empty.

Non-emptiness of a meta-formula means that it is not equal to the empty
one, ∅;Λ. In other words, it should either include a non-empty sequence of
formulae, or have a non-empty stoup.
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The first thing one has to do in order to maintain Lambek’s restriction
is to remove the unit constant 1. The unit essentially means “empty,” and
there is no consistent way of reconciling it with Lambek’s restriction. Indeed,
having the unit, we can put it into any meta-formula, thus making it formally
non-empty. (Unfortunately, it seems that Morrill needs the unit for handling
discontinuity, that is why he does not impose Lambek’s restriction on his
systems.)

Most of the !2018b MALC∗b(st)
′

rules keep this restriction, i.e., if in the
premises all meta-formulae are non-empty, then the same holds for the con-
clusion. Only three rules need specifically imposed restrictions:

– for \R and /R, we require that either Γ 6= Λ or ζ 6= ∅ (this is the original
Lambek’s restriction);

– for the contraction rule, !C ′, we require that either Γ2 6= Λ or ζ ′ 6= ∅.

The latter constraint exactly captures the idea that parasitic gapping into an
empty bracketed island is ungrammatical (cf. the “man that likes” example
above).

We denote the version of !2018b MALC∗b(st)
′
with Lambek’s restriction by

!2018b MALCb(st)
′
.

6 Cut Elimination in Modified Systems

In this section we prove that the cut rule in the following form

ξ;Π → A Ξ(ζ;Γ1, A, Γ2)→ C

Ξ(ξ, ζ;Γ1, Π, Γ2)→ C
cut

is admissible in the following calculi: !2018b MALC∗b(st)
′
, !2018b MALCb(st)

′
,

and !2015b MALC∗b(st)
′
. We show this by a single inductive argument for

!2018b MALC∗b(st)
′
and !2018b MALCb(st)

′
, and then make necessary changes

for !2015b MALC∗b(st)
′
.

Theorem 1 Let sequents ξ;Π → A and Ξ(ζ;Γ1, A, Γ2) → C be derivable
in !2018b MALC∗b(st)

′
or !2018b MALCb(st)

′
. Then Ξ(ξ, ζ;Γ1, Π, Γ2)→ C is

also derivable in !2018b MALC∗b(st)
′

or, respectively, !2018b MALCb(st)
′
.

The proof of cut elimination traditionally goes by nested induction: on the
complexity of the formula being cut, and on the depth of the cut, that is, the
number of rules applied in the derivation above the cut.

For the original Lambek calculus, cut elimination was shown by Lambek
(1958). Moortgat (1996) extended Lambek’s proof to the Lambek calculus
with brackets. The presence of ! and stoups, however, makes cut elimination
more involved. Namely, the principal case for ! moves the active formula being
cut to the stoup:

B;Λ→ A

B;Λ→ !A
!R′

Ξ(ζ,A;Γ1, Γ2)→ C

Ξ(ζ;Γ1, !A,Γ2)→ C
!L

Ξ(ζ,B;Γ1, Γ2)→ C
cut
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Propagating the cut upwards in this situation would require a specific version
of cut for formulae inside the stoup, and eliminate it together with the usual cut
rule by simultaneous induction. Contraction, however, raises yet another issue
with propagating cut. Namely, if we contract the formula A being cut, then
after propagation we get two cut applications, one under another. For the lower
cut, we fail to maintain the decrease of induction parameters, see Kanovich
et al. (2019a).

The standard strategy, going back to Gentzen (1935) and applied to linear
logic with exponentials by Girard (1987) and Lincoln et al. (1992), replaces
the cut rule with a more general rule called mix. Mix is a combination of cut
and contractions, and this more general rule is then eliminated by a straight-
forward inductive argument. In the presence of brackets and stoups, however,
formulating mix becomes an extremely tedious job. In the view of that, we fol-
low another strategy, “deep cut elimination” by Braüner and de Paiva (1996,
1998); see also Braüner (2000); Eades III and de Paiva (2020).

Proof Let ξ;Π → A and Ξ(ζ;Γ1, A, Γ2 → C) have cut-free derivations Dleft

and Dright respectively. We proceed by nested induction on two parameters:
κ, the complexity of the formula A being cut; σ, the total number of rule
applications in the derivations of Dleft and Dright. In each case either κ gets
reduces, or σ gets reduced with the same κ.

We consider the lowermost rules of Dleft and Dright.

We call !P and !C structural rules; all other rules (excluding cut, which is
not allowed in our derivations) are logical ones. Being the lowermost rule of
Dleft or Dright, a logical rule is called principal, if it introduces the formula
A being cut. The axiom Λ → 1 in this proof is considered a principal rule
(with no premises) introducing 1. Structural rules are never principal, since
they operate only inside the stoup, while the formula A being cut is not in the
stoup.

First we list all possible cases, with short comments, and then accurately
consider each of them:

1. The lowermost rule in Dleft is !R and the lowermost rule in Dright is !L
(i.e., the principal case with !). This is actually the most interesting case, in
which deep cut elimination differs from traditional cut elimination schemes.
In this case, we are going to perform a non-local transformation of the Dright

tree, as shown below.
2. Both lowermost rules of Dleft and Dright are principal, and A is not of the

form !A′ (if it is, we are in Case 1). This is the standard principal case for
cut elimination in the Lambek calculus: the tricky part with ! is considered
in Case 1, not here.

3. The lowermost rule in Dleft is a non-principal one. In this case we propagate
cut to the left.

4. The lowermost rule in Dright is a non-principal one. Propagate cut to the
right.

5. One of the premises of cut is an axiom of the form A→ A. Cut disappears.



20 Max Kanovich et al.

Dright

Ξ1(ζ1; Γ
′
1, A,Γ

′′
1) → C1

Ξ1(ζ1, A; Γ
′
1,Γ

′′
1) → C1

!P

Ξ2(ζ2; Γ
′
2, A,Γ

′′
2) → C2

Ξ2(ζ2, A; Γ
′
2,Γ

′′
2) → C2

!P

Ξ3(ζ1; Γ
′
3, A,Γ

′′
3) → C3

Ξ3(ζ3, A; Γ
′
3,Γ

′′
3) → C3

!P

B; Λ → A

B; Λ → !A !R′ Ξ(ζ,A; Γ′,Γ′′) → C

Ξ(ζ; Γ′, !A,Γ′′) → C
!L

Ξ(ζ,B; Γ′,Γ′′) → C
cut

...

Dleft

Fig. 5 Tracing A in the stoup up to !P

Case 1 (deep: principal for !): the lowermost rule in Dleft is !R and the
lowermost rule in Dright is !L. Cut is applied as follows:

B;Λ→ A

B;Λ→ !A
!R

Ξ(ζ,A;Γ ′, Γ ′′)→ C)

Ξ(ζ;Γ ′, !A,Γ ′′)→ C
!L

Ξ(ζ,B;Γ ′, Γ ′′)→ C
cut

Let us trace the designated occurrence of A inside the stoup upwards
along Dright. Each principal !C ′ application branches the trace. The trace
also branches on applications of ∧R and ∨L. Each branch ends at a principal
application of !P (see Figure 5).

Now we perform the deep cut elimination step. In Dright, we replace the
designated occurrences of A in the stoup with B. The applications of !C ′

remain valid. Other rules do not operate A in the stoup and therefore remain
intact. After this replacement applications of !P transform into applications of
cut with B;Λ→ A as the left premise (Figure 6). One trace could go through
several instances of !P with the active A, like Ξ2 and Ξ3 in the example; in
this case we go from top to bottom.
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B; Λ → A Ξ(ζ1; Γ′
1, A,Γ′′

1 ) → C1

Ξ1(ζ1, B; Γ′
1,Γ

′′
1 ) → C1

cut

B; Λ → A Ξ(ζ2; Γ′
2, A,Γ′′

2 ) → C2

Ξ2(ζ2, B; Γ′
2,Γ

′′
2 ) → C2

cut

B; Λ → A Ξ(ζ3; Γ′
3, A,Γ′′

3 ) → C3

Ξ3(ζ3, B; Γ′
3,Γ

′′
3 ) → C3

cut

Ξ(ζ,B; Γ′,Γ′′) → C

...

Dleft

Dleft

Dleft

Fig. 6 Deep cut elimination

The new cuts have lower κ (the cut formula is A instead of !A), and there-
fore they are eliminable by induction hypothesis.

For the case with Lambek’s restriction, notice that in the deep cut elim-
ination step we just changed A to B in the stoups, so Lambek’s restriction
could not get violated.

The figures illustrating deep cut elimination (Figure 5 and Figure 6) are
taken from Kanovich et al. (2017b), with the necessary changes for calculi with
stoups.

Case 2 (principal, but not !). As said before, this case is the standard
principal case for cut elimination in the multiplicative-additive Lambek cal-
culus with brackets (Moortgat, 1996), since ! does not appear in this case.
Adding the stoups makes only a minor difference. All the interesting things
about ! have already happened in the “deep” Case 1.

So, the main connective of A is not !. Consider other possible cases.

Subcase 2.a. A = A1 \A2 or A = A2 /A1 (the latter is of course symmetric
to the former). In this case

ξ;A1, Π → A2

ξ;Π → A1 \A2
\R

ζ1;Γ → A1 Ξ(ζ2;∆1, A2,∆2)→ C

Ξ(ζ1, ζ2;∆1, Γ, A1 \A2,∆2)→ C
\L

Ξ(ξ, ζ1, ζ2;∆1, Γ,Π,∆2)→ C
cut
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transforms into

ζ1;Γ → A1

ξ;A1, Π → A2 Ξ(ζ2;∆1, A2,∆2)→ C

Ξ(ξ, ζ2;∆1, A1, Π,∆2)→ C
cut

Ξ(ξ, ζ1, ζ2;∆1, Γ,Π,∆2)→ C
cut

Both new cuts have a smaller κ parameter (and then we do not care for σ).
Here in the new derivation no new \R instance was added, so Lambek’s

restriction is observed.
Subcase 2.b. A = A1 ·A2. In this case

ξ1;Π1 → A1 ξ2;Π2 → A2

ξ1, ξ2;Π1, Π2 → A1 ·A2
·R

Ξ(ζ;∆1, A1, A2,∆2)→ C

Ξ(ζ;∆1, A1 ·A2,∆2)→ C
·L

Ξ(ξ1, ξ2, ζ;∆1, Π1, Π2,∆2)→ C
cut

transforms into

ξ1;Π1 → A1

ξ2;Π2 → A2 Ξ(ζ;∆1, A1, A2,∆2)→ C

Ξ(ξ2, ζ;∆1, A1, Π2,∆2)→ C
cut

Ξ(ξ1, ξ2, ζ;∆1, Π1, Π2,∆2)→ C
cut

(again κ decreases).
Subcase 2.c. A = 1:

Λ→ 1

Ξ(ζ;∆1,∆2)→ C

Ξ(ζ;∆1,1,∆2)→ C
1L

Ξ(ζ;∆1,∆2)→ C
cut

The goal coincides with the right premise, so we just remove this detour and
arrive at a cut-free proof of Ξ(ζ;∆1, ∆2)→ C.

Subcase 2.d. A = A1 ∨A2:

ξ;Π → Ai

ξ;Π → A1 ∨A2
∨Ri

Ξ(ζ;∆1, A1,∆2)→ C Ξ(ζ;∆1, A2,∆2)→ C

Ξ(ζ;∆1, A1 ∨A2,∆2)→ C
∨L

Ξ(ξ, ζ;∆1, Π,∆2)→ C
cut

transforms into
ξ;Π → Ai Ξ(ζ;∆1, Ai,∆2)→ C

Ξ(ξ, ζ;∆1, Π,∆2)→ C
cut

(κ gets decreased, and the derivation of Π → Aj for j 6= i gets forgotten).
Subcase 2.e. A = A1 ∧A2:

ξ;Π → A1 ξ;Π → A2

ξ;Π → A1 ∧A2
∧R

Ξ(ξ, ζ;∆1, Aj ,∆2)→ C

Ξ(ξ, ζ;∆1, A1 ∧A2,∆2)→ C
∧Lj

Ξ(ξ, ζ;∆1, Π,∆2)→ C
cut

transforms into
ξ;Π → Aj Ξ(ξ, ζ;∆1, Aj ,∆2)→ C

Ξ(ξ, ζ;∆1, Π,∆2)→ C
cut

(κ gets decreased, and the derivation of ξ;Π → Ai for i 6= j gets forgotten).
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Subcase 2.f. A = 〈〉A′. Notice that here ξ is empty, otherwise 〈〉R could not
be applied.

Π → A′

[Π]→ 〈〉A′ 〈〉R
Ξ(ζ;∆1, [A′],∆2)→ C

Ξ(ζ;∆1, 〈〉A′,∆2 → C
〈〉L

Ξ(ζ;∆1, [Π],∆2)→ C
cut

transforms into
Π → A′ Ξ(ζ;∆1, [A′],∆2)→ C

Ξ(ζ;∆1, [Π],∆2)→ C
cut

(κ decreases).
Subcase 2.g. A = []−1A′. In this subcase, notice that the stoup of the meta-

formula including the active []−1A′ is empty, by the []−1L rule; ζ ′ below is the
stoup of a different bracketed domain.

[ξ;Π]→ A′

ξ;Π → []−1A′
[]−1R

Ξ(ζ′;∆1, A′,∆2)→ C

Ξ(ζ′;∆1, [[]−1A′],∆2)→ C
[]−1L

Ξ(ζ′;∆1, [ξ;Π],∆2)→ C
cut

transforms into
[ξ;Π]→ A′ Ξ(ζ′;∆1, A′,∆2)→ C

Ξ(ζ′;∆1, [ξ;Π],∆2)→ C
cut

(κ decreases).
Case 3 (left non-principal). The lowermost rule of Dleft is non-principal

if and only if it is a left rule, i.e., operates in the antecedent.
Subcase 3.a. The lowermost rule in Dleft is one of the one-premise rules, ·L,

1L, ∨L, 〈〉L, []−1L, !L, !P , !C ′. Such rules are called easy rules in Kanovich
et al. (2019a), therefore we denote this rule by ER:

ξ′;Π′ → A

ξ;Π → A
ER

Ξ(ζ;Γ1, A, Γ2)→ C

Ξ(ξ, ζ;Γ1, Π, Γ2)→ C
cut

The easy rule is still valid in a larger context, where Π is put between Γ1 and
Γ2 and ξ is added to ζ, therefore one can reconstruct the derivation as follows:

ξ′;Π′ → A Ξ(ζ;Γ1, A, Γ2)→ C

Ξ(ξ′, ζ;Γ1, Π′, Γ2)→ C
cut

Ξ(ξ, ζ;Γ1, Π, Γ2)→ C
ER

The new cut has a smaller σ with the same κ, and can be eliminated by
induction. Lambek’s restriction on !C ′, if it was imposed, is kept.

Subcase 3.b. The lowermost rule in Dleft is \L or /L. Here

χ;Ψ → E ξ;Π(σ;∆1, F,∆2)→ A

ξ;Π(σ, χ;∆1, Ψ, E \F,∆2)→ A
\L

Ξ(ζ;Γ1, A, Γ2)→ C

Ξ(ξ, ζ;Γ1, Π(σ, χ;∆1, Ψ, E \F,∆2), Γ2)→ C
cut

transforms into

χ;Ψ → E

ξ;Π(σ;∆1, F,∆2)→ A Ξ(ζ;Γ1, A, Γ2)→ C

Ξ(ξ, ζ;Γ1, Π(σ;∆1, F,∆2), Γ2)→ C
cut

Ξ(ξ, ζ;Γ1, Π(σ, χ;∆1, Ψ, E \F,∆2), Γ2)→ C
/L
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In particular, Π could just coincide with the designated meta-formula inside.
In this case σ, χ gets merged with ξ, ζ into one stoup.

The new cut has a smaller σ with the same κ. The / case is symmetric.
Subcase 3.c. The lowermost rule in Dleft is ∨L. Then a derivation of the se-

quent Ξ(ξ, ζ;Γ1, Π(σ;∆1, B1∨B2, ∆2), Γ2)→ C by cut from ξ;Π(σ;∆1, B1∨
B2, ∆2)→ A and Ξ(ζ;Γ1, A, Γ2)→ C is transformed into a derivation by ∨L,
whose premises are derived as follows (i = 1, 2):

ξ;Π(σ;∆1, Bi,∆2)→ A Ξ(ζ;Γ1, A, Γ2)→ C

Ξ(ξ, ζ;Γ1, Π(σ;∆1, Bi,∆2), Γ2)→ C
cut

In particular, Π could just coincide with the designated meta-formula inside.
In this case σ gets merged with ξ, ζ into one stoup.

Now we have two cuts, but each of it has a smaller σ parameter with the
same κ, and they are independent, i.e., derivations of the premises of these
cuts are already cut-free. Thus, we proceed by induction.

Case 4 (right non-principal).
Subcase 4.a. In the right case we also have the notion of easy rule, which

is a one-premise rule that does something in the context (Ξ, ζ, Γ1, Γ2, C)
while keeping the active occurrence of A intact. These rules are non-principal
instances of \R, /R, ·L, 1L, ∧Li, ∨Ri, 〈〉L, 〈〉R, []−1L, []−1R, !L, !P . Contrac-
tion, !C ′, is also essentially an easy rule, but we consider it more accurately
below (Subcase 3.a′). For easy rules, the transformation is as follows:

ξ;Π → A

Ξ′(ζ′;Γ ′1, A, Γ
′
2)→ C′

Ξ(ζ;Γ1, A, Γ2)→ C
ER

Ξ(ξ, ζ;Γ1, Π, Γ2)→ C
cut

transforms into
ξ;Π → A Ξ′(ζ′;Γ ′1, A, Γ

′
2)→ C′

Ξ′(ξ, ζ′;Γ ′1, Π, Γ
′
2)→ C′

cut

Ξ(ξ, ζ;Γ1, Π, Γ2)→ C
ER

which is legal, since the easy rule is still valid with Π substituted for A (recall
that A was not the active formula in the easy rule) and ξ added to the stoup.
Moreover, if the original application of the easy rule, \R or /R, obeyed Lam-
bek’s restriction, so will the new one. The σ parameter decreases, with the
same κ.

Subcase 4.a′. The lowermost rule in Dright is !C ′. The interesting situation
here is when contraction and cut are performed in the same meta-formula;
otherwise !C ′ acts as an easy rule, considered in the previous subcase. Since
!C ′ operates two bracketed domains (the outer domain and the island), we
have two subsituations.

Namely,

ξ;Π → A

Ξ(ζ,B;Γ ′1, A, Γ
′′
1 , [ζ

′, B;Γ2], Γ3)→ C

Ξ(ζ,B;Γ ′1, A, Γ
′′
1 , [[ζ

′;Γ2]], Γ3)→ C
!C′

Ξ(ξ, ζ, B;Γ ′1, Π, Γ
′′
1 , [[ζ

′;Γ2]], Γ3)→ C
cut



MALC with Subexponential and Brackets 25

transforms into

ξ;Π → A Ξ(ζ,B;Γ ′1, A, Γ
′′
1 , [ζ

′, B;Γ2], Γ3)→ C

Ξ(ξ, ζ, B;Γ ′1, Π, Γ
′′
1 , [ζ

′, B;Γ2], Γ3)→ C
cut

Ξ(ξ, ζ, B;Γ ′1, Π, Γ
′′
1 , [[ζ

′;Γ2]], Γ3)→ C
!C′

(the case with A in Γ3 is considered symmetrically), and

ξ;Π → A

Ξ(ζ,B;Γ1, [ζ′, B;Γ ′2, A, Γ
′′
2 ], Γ3)→ C

Ξ(ζ,B;Γ1, [[ζ′;Γ ′2, A, Γ
′′
2 ]], Γ3)→ C

!C′

Ξ(ζ,B;Γ1, [[ξ, ζ′;Γ ′2, Π, Γ
′′
2 ]], Γ3)→ C

cut

transforms into

ξ;Π → A Ξ(ζ,B;Γ1, [ζ′, B;Γ ′2, A, Γ
′′
2 ], Γ3)→ C

Ξ(ζ,B;Γ1, [ξ, ζ′, B;Γ ′2, Π, Γ
′′
2 ], Γ3)→ C

cut

Ξ(ζ,B;Γ1, [[ξ, ζ′;Γ ′2, Π, Γ
′′
2 ]], Γ3)→ C

!C′

The σ parameter decreases, with the same κ. Lambek’s restriction on !C,
if imposed, is kept.

Subcase 4.b (the counterpart of 3.b). The lowermost rule in Dright is a non-
principal instance of \L or /L. We consider \L; /L is symmetric. There are
three possible situations, depending on the relative locations of the active A
of cut and the active E \F of \L.

If the active A goes to the left premise of \L, then

ξ;Π → A

χ;Φ(ζ;Γ1, A, Γ2)→ E Ξ(σ;∆1, F,∆2)→ C

Ξ(χ, σ;∆1, Φ(ζ;Γ1, A, Γ2), E \F,∆2)→ C
\L

Ξ(χ, σ;∆1, Φ(ξ, ζ;Γ1, Π, Γ2), E \F,∆2)→ C
cut

transforms into

ξ;Π → A χ;Φ(ζ;Γ1, A, Γ2)→ E

χ;Φ(ξ, ζ;Γ1, Π, Γ2)→ E
cut

Ξ(σ;∆1, F,∆2)→ C

Ξ(χ, σ;∆1, Φ(ξ, ζ;Γ1, Π, Γ2), E \F,∆2)→ C
\L

In particular, Φ could be just ξ, ζ;Γ1, Π, Γ2, in which case ξ, ζ gets merged
with χ, σ into one stoup.

If the active A goes to the right premise of \L, there are two more cases:

ξ;Π → A

χ;Φ→ E Ξ(σ;∆1(ζ;Γ1, A, Γ2), F,∆2)→ C

Ξ(χ, σ;∆1(ζ;Γ1, A, Γ2), Φ, E \F,∆2)→ C
\L

Ξ(χ, σ;∆1(ξ, ζ;Γ1, Π, Γ2), Φ, E \F,∆2)→ C
cut

transforms into

χ;Φ→ E

ξ;Π → A Ξ(σ;∆1(ζ;Γ1, A, Γ2), F,∆2)→ C

Ξ(σ;∆1(ξ, ζ;Γ1, Π, Γ2), F,∆2)→ C
cut

Ξ(χ, σ;∆1(ξ, ζ;Γ1, Π, Γ2), Φ, E \F,∆2)→ C
\L
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(in particular, ∆1 could be just ξ, ζ;Γ1, Π, Γ2, in which case ξ, ζ gets merged
with χ, σ into one stoup; the ∆2 case is symmetric), and, finally,

ξ;Π → A

χ;Φ→ E Ξ(ζ;Γ1, A, Γ2)(σ;∆1, F,∆2)→ C

Ξ(ζ;Γ1, A, Γ2)(χ, σ;∆1, Φ, E \F,∆2)→ C
\L

Ξ(ξ, ζ;Γ1, Π, Γ2)(χ, σ;∆1, Φ, E \F,∆2)→ C
cut

transforms into

χ;Φ→ E

ξ;Π → A Ξ(ζ;Γ1, A, Γ2)(σ;∆1, F,∆2)→ C

Ξ(ξ, ζ;Γ1, Π, Γ2)(σ;∆1, F,∆2)→ C
cut

Ξ(ξ, ζ;Γ1, Π, Γ2)(χ, σ;∆1, Φ, E \F,∆2)→ C
\L

The notation Ξ(. . .)(. . .) means a meta-formula with two designated sub-meta-
formulae, which are independent (i.e., do not intersect).

The σ parameter decreases, with the same κ.
Subcase 4.c (similar to the previous one). The lowermost rule of Dright is

·R:

ξ;Π → A

σ1;Γ1(ζ;∆1, A,∆2)→ E σ2;Γ2 → F

σ1, σ2;Γ1(ζ;∆1, A,∆2), Γ2 → E · F ·R

σ1, σ2;Γ1(ξ, ζ;∆1, Π,∆2), Γ2 → E · F cut

transforms into

ξ;Π → A σ1;Γ1(ζ;∆1, A,∆2)→ E

σ1;Γ1(ξ, ζ;∆1, Π,∆2)→ E
cut

σ2;Γ2 → F

σ1, σ2;Γ1(ξ, ζ;∆1, Π,∆2), Γ2 → E · F ·R

Again, Γ1 could coincide with its designated part; in this situation, ξ, ζ gets
merged into σ1. The case where A appears in Γ2 is symmetric.

Here σ decreases, with the same κ.
Subcase 4.d (the counterpart of 3.c). The lowermost rule in Dright is ∨L.

Here we have two cases, depending on the mutual location of the active A
of cut and the active B1 ∨ B2 of ∨L. Namely, if they are in different (non-
intersecting) meta-formulae, then

ξ;Π → A

Ξ(ζ;Γ1, A, Γ2)(σ;∆1, B1,∆2)→ C Ξ(ζ;Γ1, A, Γ2)(σ;∆1, B2,∆2)→ C

Ξ(ζ;Γ1, A, Γ2)(σ;∆1, B1 ∨B2,∆2)→ C
∨L

Ξ(ξ, ζ;Γ1, Π, Γ2)(σ;∆1, B1 ∨B2,∆2)→ C
cut

transforms into two cuts (i = 1, 2) with simpler cut formulae:

ξ;Π → A Ξ(ζ;Γ1, A, Γ2)(σ;∆1, Bi,∆2)→ C

Ξ(ξ, ζ;Γ1, Π, Γ2)(σ;∆1, Bi,∆2)→ C
cut

whose goals are then merged by ∨L. and if B1∨B2 is in Γ1 (or, symmetrically,
in Γ2), then

ξ;Π → A

Ξ(ζ;Γ1(σ;∆1, B1,∆2), A, Γ2)→ C Ξ(ζ;Γ1(σ;∆1, B2,∆2), A, Γ2)→ C

Ξ(ζ;Γ1(σ;∆1, B1 ∨B2,∆2), A, Γ2)→ C
∨L

Ξ(ξ, ζ;Γ1(σ;∆1, B1 ∨B2,∆2), Π, Γ2)→ C
cut
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transforms into two cuts (i = 1, 2), whose goals again can be merged by ∨L:

ξ;Π → A Ξ(ζ;Γ1(σ;∆1, B2,∆2), A, Γ2)→ C

Ξ(ξ, ζ;Γ1(σ;∆1, B2,∆2), Π, Γ2)→ C
cut

Again, Γ1 could coincide with its designated sub-meta-formula; in this case, σ
gets merged with ξ, ζ.

In both situations, the two new cuts are independent and have a smaller σ
parameter with the same κ.

Subcase 4.e (similar to the previous one). The lowermost rule in Dright is
∧R:

ξ;Π → A

Ξ(ζ;Γ1, A, Γ2)→ C1 Ξ(ζ;Γ1, A, Γ2)→ C2

Ξ(ζ;Γ1, A, Γ2)→ C1 ∧ C2
∧R

Ξ(ξ, ζ;Γ1, Π, Γ2)→ C1 ∧ C2
cut

transforms into

ξ;Π → A Ξ(ζ;Γ1, A, Γ2)→ C1

Ξ(ξ, ζ;Γ1, Π, Γ2)→ C1
cut

ξ;Π → A Ξ(ζ;Γ1, A, Γ2)→ C2

Ξ(ξ, ζ;Γ1, Π, Γ2)→ C2
cut

Ξ(ξ, ζ;Γ1, Π, Γ2)→ C1 ∧ C2
∧R

Again, the two new cuts have a smaller σ and the same κ.
Case 5 (axiom). One of the sequents is an axiom of the form A → A.

Then cut disappears, since the other premise coincides with the goal. ut

Theorem 2 Let sequents ξ;Π → A and Ξ(ζ;Γ1, A, Γ2 → C) be derivable in
!2015b MALC∗b(st)

′
. Then the sequent Ξ(ξ, ζ;Γ1, Π, Γ2) → C) is also deriv-

able in !2015b MALC∗b(st)
′
.

Proof The !2015b MALC∗b(st)
′

system differs from !2018b MALC∗b(st)
′

only
in two rules: !R′ and !C ′. Thus, we have to reconsider Case 1 and Subcase 4.a′

(in Subcase 3.a, !C ′ still acts as an “easy rule”).
Case 1. The bottom of Dleft now is

ξ;Λ→ A

ξ;Λ→ !A
!R′

with ξ 6= ∅. We perform the same deep cut elimination procedure, as in
Theorem 1. Namely, the lowermost rule application in Dright is

Ξ(ζ,A;Γ ′, Γ ′′)→ C

Ξ(ζ;Γ ′, !A,Γ ′′)→ C
!L

and we trace the A in the stoup upwards until applications of !P . Next, we
replace these occurrences of A with ξ.

The active !P applications,

Ξi(ζi;Γ
′
i , A, Γ

′′
i )→ Ci

Ξi(ζi, A;Γ ′i , Γ
′′
i )→ Ci

!P
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transform into cuts with a smaller κ:

ξ;Λ→ A Ξi(ζi;Γ
′
i , A, Γ

′′
i )→ Ci

Ξi(ζi, ξ;Γ
′
i , Γ

′′
i )→ Ci

cut

Rule applications along the trace remain valid. Notice that the stoup non-
emptiness conditions on !R′ and !C ′ are maintained by non-emptiness of ξ.

Subcase 4.a′. In this case,

ξ;Π → A

Ξ(ζ1, ζ2;Γ ′1, A, Γ
′′
1 , [ζ

′, ζ2;Γ2], Γ3)→ C

Ξ(ζ1, ζ2, ζ
′;Γ ′1, A, Γ

′′
1 , Γ2, Γ3)→ C

!C ′

Ξ(ξ, ζ1, ζ2, ζ
′;Γ ′1, Π, Γ

′′
1 , Γ2, Γ3)→ C

cut

(with ζ2 6= ∅) transforms into

ξ;Π → A Ξ(ζ1, ζ2;Γ ′1, A, Γ
′′
1 , [ζ

′, ζ2;Γ2], Γ3)→ C

Ξ(ξ, ζ1, ζ2;Γ ′1, Π, Γ
′′
1 , [ζ

′, ζ2;Γ2], Γ3)→ C
cut

Ξ(ξ, ζ1, ζ2, ζ
′;Γ ′1, Π, Γ

′′
1 , Γ2, Γ3)→ C

!C ′

(the case with A in Γ3 is considered symmetrically), and

ξ;Π → A

Ξ(ζ1, ζ2;Γ1, [ζ
′, ζ2;Γ ′2, A, Γ

′′
2 ], Γ3)→ C

Ξ(ζ1, ζ2, ζ
′;Γ1, Γ

′
2, A, Γ

′′
2 , Γ3)→ C

!C ′

Ξ(ζ1, ζ2, ξ, ζ
′;Γ1, Γ

′
2, Π, Γ

′′
2 , Γ3)→ C

cut

(again, ζ2 6= ∅) transforms into

ξ;Π → A Ξ(ζ1, ζ2;Γ1, [ζ
′, ζ2;Γ ′2, A, Γ

′′
2 ], Γ3)→ C

Ξ(ζ1, ζ2;Γ1, [ξ, ζ
′, ζ2;Γ ′2, Π, Γ

′′
2 ], Γ3)→ C

cut

Ξ(ζ1, ζ2, ξ, ζ
′;Γ1, Γ

′
2, Π, Γ

′′
2 , Γ3)→ C

!C ′

ut

7 Versions of Modified Morrill’s Systems without Stoups

In this section we provide alternative, in a sense more traditional formu-
lations of !2015b MALC∗b(st)

′
, !2018b MALC∗b(st)

′
, and !2018b MALCb(st)

′

without stoups (like in Morrill and Valent́ın (2015a)). We denote these calculi
by !2015b MALC∗b, !2018b MALC∗b, and !2018b MALCb respectively.

Formulae, meta-formulae, and sequents are defined as in Morrill’s system
(Section 3), but all the stoups are empty now.

We start with !2015b MALC∗b and !2018b MALC∗b. Both calculi are built
on top of MALC∗b, the multiplicative-additive Lambek calculus with brack-
ets (Morrill, 1992; Moortgat, 1996). Axioms and rules of MALC∗b are as
follows:

A→ A
id
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Γ → B Ξ(∆1, C,∆2)→ D

Ξ(∆1, C /B, Γ,∆2)→ D
/L

Γ,B → C

Γ → C /B
/R

Γ → A Ξ(∆1, C,∆2)→ D

Ξ(∆1, Γ, A \C,∆2)→ D
\L A, Γ → C

Γ → A \C \R

Ξ(∆1, A,B,∆2)→ D

Ξ(∆1, A ·B,∆2)→ D
·L ∆→ A Γ → B

∆,Γ → A ·B ·R

Ξ(∆1, ∆2)→ A

Ξ(∆1,1, ∆2)→ A
1L

Λ→ 1
1R

Ξ(∆1, A,∆2)→ B

Ξ(∆1, [[]
−1A], ∆2)→ B

[]−1L
[Ξ]→ A

Ξ → []−1A
[]−1R

Ξ(∆1, [A], ∆2)→ B

Ξ(∆1, 〈〉A,∆2)→ B
〈〉L Ξ → A

[Ξ]→ 〈〉A 〈〉R

The following rules for ! are the same in both systems, !2015b MALC∗b and
!2018b MALC∗b:

Ξ(∆1, A,∆2)→ C

Ξ(∆1, !A,∆2)→ C
!L

Ξ(∆1, !A,Φ,∆2)→ C

Ξ(∆1, Φ, !A,∆2)→ C
!P1

Ξ(∆1, Φ, !A,∆2)→ C

Ξ(∆1, !A,Φ,∆2)→ C
!P2

The difference between !2015b MALC∗b and !2018b MALC∗b is in the !R
and !C rules. In !2015b MALC∗b, they are formulated as follows

!A1, . . . , !An → B

!A1, . . . , !An → !B
!R, n ≥ 1

Ξ(!A1, . . . , !An, Γ1, [!A1, . . . , !An, Γ2], Γ3)→ C

Ξ(!A1, . . . , !An, Γ1, Γ2, Γ3)→ C
!C, n ≥ 1

For !2018b MALC∗b, these rules are formulated as follows:

!A→ B
!A→ !B

!R
Ξ(!A,Γ1, [!A,Γ2], Γ3)→ C

Ξ(!A,Γ1, [[Γ2]], Γ3)→ C
!C

The cut rule of all stoup-free calculi is formulated as follows:

Π → A Ξ(Γ1, A, Γ2)→ C

Ξ(Γ1, Π, Γ2)→ C
cut

In order to obtain !2018b MALCb, we impose Lambek’s restriction on the
rules of !2018b MALC∗b in the following natural way:
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– in \R and /R, we require Γ 6= Λ;
– in !C, we require Γ2 6= Λ.

Proposition 1 Let Ξ → C be a sequent without stoups (in the context of
!2018b MALC∗b(st)

′
we consider it as a sequent with empty stoups). Then the

following are equivalent:

1. Ξ → C is derivable in !2018b MALC∗b without cut;

2. Ξ → C is derivable in !2018b MALC∗b, possibly using cut;

3. Ξ → C is derivable in !2018b MALC∗b(st)
′
, possibly using cut;

4. Ξ → C is derivable in !2018b MALC∗b(st)
′

without cut.

The same holds for the variants with Lambek’s restriction, !2018b MALCb(st)
′

and !2018b MALCb.

Proof We proceed by round-robin implications: 1⇒ 2⇒ 3⇒ 4⇒ 1.
1⇒ 2 Obvious.

2⇒ 3 Consider a derivation of Ξ → C in !2018b MALC∗b (possibly with

cuts) and translate it into !2018b MALC∗b(st). The interesting case concerns
!-operating rules. These rules are simulated using cut, by temporarily moving
the active !-formula to the stoup (which is normally empty):

Ξ(Γ1, Φ, !A,Γ2)→ C

Ξ(Γ1, !A,Φ, Γ2)→ C
!P1  

A;Λ→ !A Ξ(Γ1, Φ, !A,Γ2)→ C

Ξ(A;Γ1, Φ, Γ2)→ C
cut

Ξ(Γ1, !A,Φ, Γ2)→ C
!L

Ξ(!A,Γ1, [!A,Γ2], Γ3)→ C

Ξ(!A,Γ1, [[Γ2]], Γ3)→ C
!C  

A;Λ→ !A

A;Λ→ !A Ξ(!A,Γ1, [!A,Γ2], Γ3)→ C

Ξ(!A,Γ1, [A;Γ2], Γ3)→ C
cut

Ξ(A;Γ1, [A;Γ2], Γ3)→ C
cut

Ξ(A;Γ1, [[Γ2]], Γ3)→ C
!C

Ξ(!A,Γ1, [[Γ2]], Γ3)→ C
!L

!A→ B
!A→ !B

!R  

A;Λ→ !A !A→ B

A;Λ→ B
cut

A;Λ→ !B
!R

!A→ !B
!L

Ξ(Γ1, A, Γ2)→ C

Ξ(Γ1, !A,Γ2)→ C
!L  

Ξ(Γ1, A, Γ2)→ C

Ξ(A;Γ1, Γ2)→ C
!P

Ξ(Γ1, !A,Γ2)→ C
!L

The sequent A;Λ→ !A is derived as follows:

A→ A
A;Λ→ A

!P

A;Λ→ !A
!R

All other rules, including cut, are translated straightforwardly.
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3⇒ 4 This is due to cut elimination (Theorem 1).

4⇒ 1 Consider a cut-free proof of Ξ → C in !2018b MALC∗b(st)
′
. In the

goal sequent, all stoups are empty, but this could be not the case for sequents
inside the derivation. In each sequent, we “flatten” the stoups, replacing each
meta-formula ζ;Γ , where ζ = {A1, . . . , AN}, with !A1, . . . , !AN , Γ . For ζ =
{A1, . . . , AN}, let us denote !A1, . . . , !AN by !ζ.

The rules of !2018b MALC∗b(st)
′
which do not operate the stoup are mapped

to those of !2018b MALC∗b, adding permutations for !-formulae, if necessary.
For example, this is how it is performed for \R and \L:

ζ;B,Γ → C

ζ;Γ → B \C \R
 

!ζ,B, Γ → C

B, !ζ, Γ → C
!P

!ζ, Γ → B \C \R

ζ1;Γ → B Ξ(ζ2;∆1, C,∆2)→ D

Ξ(ζ1, ζ2;∆1, Γ,B \C,∆2)→ D
\L  

!ζ1, Γ → B Ξ(!ζ2,∆1, C,∆2)→ D

Ξ(!ζ2,∆1, !ζ1, Γ,B \C,∆2)→ C
\L

Ξ(!ζ1, !ζ2,∆1, Γ,B \C,∆2)→ D
!P

Notice how Lambek’s restriction is conserved in the \R rule.

Contraction is handled as follows:

Ξ(ζ, A;Γ1, [ζ′, A;Γ2], Γ3)→ B

Ξ(ζ, A;Γ1, [[ζ′;Γ2]], Γ3)→ B
!C′  

Ξ(!ζ, !A,Γ2, [!ζ′, !A,Γ2], Γ3)→ B

Ξ(!A, !ζ, Γ2, [!ζ′, !A,Γ2], Γ3)→ B
!P

Ξ(!A, !ζ, Γ1, [!A, !ζ′, Γ2], Γ3)→ B
!P

Ξ(!A, !ζ, Γ1, [[!ζ′, Γ2]], Γ3)→ B
!C

Ξ(!ζ, !A,Γ1, [[!ζ′, Γ2]], Γ3)→ B
!P

Again, we notice that Lambek’s restriction (!ζ2, Γ2 6= Λ) is conserved.

Finally, !L becomes just permutation, !R′ maps to !R, and the version of
!P in !2018b MALC∗b(st)

′
maps to a combination of permutation and !L of

!2018b MALC∗b. ut

Proposition 2 Let Ξ → C be a sequent without stoups (in the context of
!2015b MALC∗b(st)

′
we consider it as a sequent with empty stoups). Then the

following are equivalent:

1. Ξ → C is derivable in !2015b MALC∗b without cut;

2. Ξ → C is derivable in !2015b MALC∗b, possibly using cut;

3. Ξ → C is derivable in !2015b MALC∗b(st)
′
, possibly using cut;

4. Ξ → C is derivable in !2015b MALC∗b(st)
′

without cut.

Proof 1⇒ 2 Obvious.
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2⇒ 3 The !R and !C rules of !2015b MALC∗b are simulated in the system

!2015b MALC∗b(st)
′

as follows:

!A1, . . . , !An → B

!A1, . . . , !An → !B
!R, n ≥ 1  

A1;Λ→ !A

An;Λ→ !An !A1, . . . , !An → B

...

cut

A2, . . . , An; !A1 → B

A1, . . . , An;Λ→ B
cut

A1, . . . , An;Λ→ !B
!R′, {A1, . . . , An} 6= ∅

!A1, . . . , !An → !B
!L

Ξ(!A1, . . . , !An, Γ1, [!A1, . . . , !An, Γ2], Γ3)→ C

Ξ(!A1, . . . , !An, Γ1, Γ2, Γ3)→ C
!C, n ≥ 1

 

A1;Λ→ !A1

An;Λ→ !An Ξ(!A1, . . . , !An, Γ1, [!A1, . . . , !An, Γ2], Γ3)→ C

...

cut

Ξ(A2, . . . , An; !A1, Γ1, [A1, . . . , An;Γ2], Γ3)→ C

Ξ(A1, . . . , An;Γ1, [A1, . . . , An;Γ2], Γ3)→ C
cut

Ξ(A1, . . . , An;Γ1, Γ2, Γ3)→ C
!C′, {A1, . . . , An} 6= ∅

Ξ(!A1, . . . , !An, Γ1, Γ2, Γ3)→ C
!L

where Ai;Λ→ !Ai (i = 1, . . . , n) is derived as follows:

Ai → Ai

Ai;Λ→ Ai
!P

Ai;Λ→ !Ai
!R, {Ai} 6= ∅

All other rules are translated exactly as in the proof of the 2⇒ 3 implication
of Proposition 1.

3⇒ 4 This is due to cut eliminaton, Theorem 2.

4⇒ 1 The !R′ rule of !2015b MALC∗b(st)
′

maps directly onto the !R rule

of !2015b MALC∗b. Contraction is handled as follows:

Ξ(ζ1, ζ2;Γ1, [ζ′, ζ2;Γ2], Γ3)→ C

Ξ(ζ1, ζ2, ζ′;Γ1, Γ2, Γ3)→ C
!C′, ζ2 6= ∅

transforms into

Ξ(!ζ1, !ζ2, Γ1, [!ζ′, !ζ2, Γ2], Γ3)→ C

Ξ(!ζ2, !ζ1, Γ1, [!ζ2, !ζ′, Γ2], Γ3)→ C
!P

Ξ(!ζ2, !ζ1, Γ1, !ζ′, Γ2, Γ3)→ C
!C, !ζ2 6= Λ

Ξ(!ζ1, !ζ2, !ζ′, Γ1, Γ2, Γ3)→ C
!P

All other rules are translated exactly as in the proof of the 4⇒ 1 implication
of Proposition 1. ut

Finally, for !2018b MALC∗b(st) we prove only one implication, since the
other one does not hold (for counter-example see Section 4).
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Proposition 3 If a sequent without stoups is derivable in !2018b MALC∗b(st),
then it is also derivable in !2018b MALC∗b.

Proof Recall that derivations in !2018b MALC∗b(st) are cut-free by definition.
Thus, this proposition can be proved by modifying the 4 ⇒ 1 implication of
Proposition 1. The rules that are different in !2018b MALC∗b(st), if compared
with !2018b MALC∗b(st)

′
, are !R and !C. Thus, we need to reconsider these

rules. Fortunately, after “flattening” the stoups, !R and !C become identical
to !R′ and !C ′ respectively. ut

8 The π and πq Projections

The calculi presented above are related to the bracket-free system !MALC∗ by
means of so-called bracket-forgetting projections (BFP). The BFPs are going
to be used in the undecidability proofs (Section 9 below), in order to make
use of the standard undecidability proof for !MALC∗ in the undecidability
proofs for more sophisticated sequents with brackets. We define two versions
of BFP, and for simplicity we do this for the syntax without stoups.

Definition 2 The π-projection of a formula is defined in the following recur-
sive way:

π(p) = p for p ∈ Var π(A ·B) = π(A) · π(B)

π(A \B) = π(A) \π(B) π(B /A) = π(B) / π(A)

π(A1 ∧A2) = π(A1) ∧ π(A2) π(A1 ∨A2) = π(A1) ∨ π(A2)

π(!A) = !π(A) π(1) = 1

π([]−1A) = π(A) π(〈〉A) = π(A)

For meta-formulae (tree terms) and sequents without stoups the π-projection
is defined as follows:

π(Γ1, . . . , Γk) = π(Γ1), . . . , π(Γk) π(Λ) = Λ

π([Ξ]) = π(Ξ) π(Ξ → C) = (π(Ξ)→ π(C))

For technical reasons we shall also need the following modification of π-
projection.

Definition 3 Let q be a designated variable. Then the πq-projection is defined
on variables as follows:

πq(p) =

{
p, if p 6= q

1, if p = q

and then propagated to formulae, meta-formulae, and sequents exactly as π.
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The π-projection erases all bracket information from a sequent. Since brack-
ets block some unwanted derivabilities, this projection is only one-way sound,
as formulated in the following definition. The πq-projection additionally makes
the special variable q behave as a unit (this is going to be necessary when han-
dling !2018b MALCb(st), the system with Lambek’s restriction which does not
include a unit constant).

Definition 4 A calculus L is π-sound (πq-sound) in !MALC∗ if for any
sequent derivable in L its π-projection (resp., πq-projection) is derivable in
!MALC∗.

Since the rules of all Morrill’s systems (in the version without stoups), after
applying the π-projection, map to rules of !MALC∗, we automatically get π-
soundness for Morrill’s systems. For πq-soundness, we additionally notice that
the axiom q → q maps to a derivable sequent 1→ 1 (everything else remains
as for the π-projection).

Proposition 4 The following calculi are π-sound and πq-sound in !MALC∗:
!2015b MALC∗b, !2018b MALC∗b, and !2018b MALCb.

Notice that π and πq lose essential information about bracketing, so the
reverse implication, “π-completeness” or “πq-completeness,” does not (and is
not intended to) hold. For example, 〈〉p → p is not derivable in any of the
Morrill’s systems, while its π-projection (and also πq-projection), p→ p, is an
axiom of !MALC∗. More interesting examples arise from the linguistic usage
of brackets (see Linguistic Introduction): e.g., *“the girl whom John loves Mary
and Pete loves” is not assigned type NP (parsed as a valid noun phrase) in
bracketed calculi, but after forgetting the brackets and bracket modalities the
corresponding sequent becomes derivable in !MALC∗.

For fragments without additives, there are analogous notions of π-sound-
ness and πq-soundness of a given calculus in !L∗.

9 Undecidability

In this section we prove algorithmic undecidability of the derivability problems
for systems defined above. In order to make our results stronger, we confine
ourselves to fragments of these systems which include only multiplicative con-
nectives (product and divisions), brackets and bracket modalities, and the
subexponential, but not additive connectives. For the full MALC∗-variants
of the calculi, the corresponding undecidability results follow as corollaries, by
conservativity.

Recall the well-known proof of undecidability for !L∗, the Lambek calculus
(without brackets) enriched with a full-power exponential modality (Lincoln
et al., 1992; Kanazawa, 1999; Kanovich et al., 2019a), via encoding of semi-
Thue systems.

A semi-Thue system (Thue, 1914) is a pair S = 〈A, P 〉, where A is a finite
alphabet and P is a finite set of rewriting rules of the form α ⇒ β, where
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α and β are words (possibly empty) over A. A rule from P can be applied
as follows: η α θ ⇒S η β θ, where (α ⇒ β) ∈ P and η and θ are arbitrary
(possibly empty) words over A. By⇒∗S (rewritability relation in S) we denote
the reflexive-transitive closure of ⇒S .

We use the following classical result by Markov (1947) and Post (1947):

Theorem 3 There exists a semi-Thue system S for which the ⇒∗S relation is
algorithmically undecidable, i.e., there exists no algorithm that, given words γ
and δ, decides whether γ ⇒∗S δ.

Before going into the details of our undecidability proof, we sketch the
ideas. As noticed by Buszkowski (1982, 2005), semi-Thue systems can be en-
coded as finite theories (that is, sets of sequents considered as additional ax-
ioms) over the Lambek calculus. Following Buszkowski (2005), such an encod-
ing can performed in a very natural way, by taking a new axiom y1, . . . , ym →
x1 · . . . ·xk for each rule x1 . . . xk ⇒ y1 . . . ym of the semi-Thue system. (Notice
how the arrows change their direction here.)

Proposition 5 The sequent a1, . . . , an → b1 · . . . · bk is derivable in MALC∗

extended with the set of new axioms produced from rules of a semi-Thue system
S (as explained above) if and only if b1 . . . bk ⇒∗S a1 . . . an.

By Theorem 3, this yields undecidability for the problem of derivability
from finite sets of hypotheses in the Lambek calculus.

In his earlier paper, Buszkowski (1982) provides a much more sophisticated
encoding of semi-Thue derivations using only one division operation (the en-
coding above also uses product). We discuss this encoding later, in Section 11.

Reducing derivability from finite theories to “pure” derivability requires a
sort of deduction theorem, which allows to internalise additional axioms (hy-
potheses) into the sequent being derived. For classical or intuitionistic logic,
for example, this could be implemented as follows: formula ϕ is derivable
from hypotheses ψ1, . . . , ψn if and only if the formula ψ1 → (ψ2 → . . . →
(ψn → ϕ) . . .) is derivable without hypotheses. In the Lambek calculus with-
out (sub)exponentials, however, such a theorem is impossible, due to the sub-
structural nature of the system. This is due to the fact that in derivations from
hypotheses each hypothesis can be used several (but also maybe zero) times,
while in the absence of weakening and contraction the “pure” calculus treats
each formula as a “resource” which should be used exactly once.

The full-power exponential, as in !MALC∗, enables the structural rules of
weakening, contraction, and permutation, and enjoys internalisation of extra
axiom, in the following form.

Proposition 6 A sequent ∆ → D is derivable in !MALC∗ from a set of
sequents {Γ1 → C1, . . . , ΓN → CN} (possibly using cut) if and only if the
sequent !(C1 /

∏
Γ1), . . . , !(CN /

∏
ΓN ), ∆→ D is derivable in !MALC∗.

By
∏
Γ , for Γ = E1, . . . , Ek, we here and further denote the product E1·. . .·Ek.

Theorem 3 and Propositions 5 and 6 together yield undecidability for !L∗.
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Subexponentials, with restricted sets of structural rules, also allow inter-
nalisation, but the !-formulae used in order to obtain it are more complicated.
For !rL∗, this is performed by Kanovich et al. (2019a) (Kanovich et al. (2016b)
use a slightly different strategy). We perform internalisation of finite sets of
hypotheses in Morill’s systems, where ! interacts with brackets.

For our undecidability proofs, it will be convenient to use Chomsky’s type-0
(unrestricted) grammars (Chomsky, 1956), a formalism closely related to semi-
Thue systems. A type-0 grammar G can be defined as a semi-Thue system S
with the following additional features:

– a designated symbol s ∈ A, called the starting symbol;
– a designated subset Σ ⊂ A, called the terminal alphabet;
– left-hand sides of rewriting rules are required to be non-empty.

The language generated by the type-0 grammar G is defined as the set of all
words w over the terminal alphabet Σ, such that s ⇒∗S w, where S is the
rewriting (semi-Thue) system of G. Further we use the notation ⇒∗G instead
of ⇒∗S .

For type-0 grammars, there is the following form of Theorem 3:

Theorem 4 There exists a type-0 grammar G such that the language gener-
ated by G is algorithmically undecidable, i.e., there exists no algorithm that,
given a word w over Σ, decides whether s⇒∗G w.

Wishing to prove undecidability for several closely related calculi, we first
introduce an abstract notion of internalisation of finite theories in a deduction-
theorem style. Then we prove undecidability for an arbitrary calculus L which
enjoys this property and is πq-sound in !L∗. The internalisation property facil-
itates the “forward” direction of the encoding, from a type-0 grammar (semi-
Thue system) to L, and πq-soundness is used for the “backwards” direction,
from derivations in L, via !L∗, back to derivations in the grammar.

For simplicity, we are going to internalise formulae rather than sequents:
recall that Γ → C corresponds to C /

∏
Γ . Further we shall designate two

specific variables, s and q. The s variable is going to be the starting symbol
of the grammar, and q is a fresh variable which should not appear in the
grammar. The q variable will be used in lieu of 1, since the latter could be
unavailable in presence of Lambek’s restriction.

Definition 5 Let A = {A1, . . . , AN} be a finite set of formulae. A meta-
formula Φ internalises A in the calculus L, if the following holds:

1. the sequent Φ, s→ s is derivable in L;
2. the following ‘landing’ rule is admissible in L:

Φ,∆1, Ai, ∆2 → C

Φ,∆1, ∆2 → C
land, Ai ∈ A

3. the sequent !A1, . . . , !AN →
∏
πq(Φ) is derivable in !L∗.
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If for any finite set A of Lambek formulae there exists a meta-formula Φ which
internalises A in L, then we say that L internalises finite sets of Lambek
formulae.

Let G be a type-0 grammar and suppose that all letters of its alphabet are
variables (A ⊂ Var). We also introduce an extra fresh variable q /∈ A. Let

AG = {(x1·. . .·xk) /(y1·. . .·ym) | x1 . . . xk ⇒ y1 . . . ym is a rewriting rule of G}.

By definition of a type-0 grammar, x1 . . . xk is always non-empty. On the
other hand, y1 . . . ym could be empty (m = 0), and in this case we include just
x1 · . . . · xk into BG . Such a rule, with an empty right-hand side, is called an
ε-rule and written as x1 . . . xk ⇒ ε (ε stands for the empty word).

Now we are ready to formulate and prove the key lemma.

Lemma 1 Let L be πq-sound in !L∗ and admit the ·L, ·R, and /L rules. Let
ΦG internalise AG = {A1, . . . , AN} in L in the sense of Definition 5. Then the
following are equivalent:

1. s⇒∗G a1 . . . an;
2. the sequent ΦG , a1, . . . , an → s is derivable in L;
3. there exists such a bracketing ∆ of a1, . . . , an that the sequent ΦG , ∆ → s

is derivable in L;
4. the sequent !A1, . . . , !AN , a1, . . . , an → s is derivable in !L∗.

Proof We prove round-robin implications: 1⇒ 2⇒ 3⇒ 4⇒ 1.

1⇒ 2 Proceed by induction on the number of rewriting steps in ⇒∗G .
The base case is no rewriting steps, s ⇒∗G s, and ΦG , s → s is derivable by
Definition 5, item 1.

Next, let a1 . . . aix1 . . . xmar . . . an ⇒G a1 . . . aiy1 . . . ykar . . . an be the last
rewriting step. By induction hypothesis, since s⇒∗G a1 . . . aix1 . . . xmar . . . an
in fewer rewriting steps, we have ΦG , a1, . . . , ai, x1, . . . , xm, ar, . . . , an. Since
x1 . . . xm ⇒ y1 . . . yk is a rule of G, we have (x1 · . . . · xm) /(y1 · . . . · ym) ∈ AG .
Now the needed sequent ΦG , a1, . . . , ai, y1, . . . , ym, ar, . . . , an → s is derived as
follows, using the ‘landing’ rule provided by Definition 5, item 2:

axioms

y1, . . . , yk → y1 · . . . · yk ·R
ΦG , a1, . . . , ai, x1, . . . , xm, ar, . . . , an → s

ΦG , a1, . . . , ai, x1 · . . . · xm, ar, . . . , an → s
·L

ΦG , a1, . . . , ai, (x1 · . . . · xm) /(y1 · . . . · yk), y1, . . . , yk, ar, . . . , an → s
/L

ΦG , a1, . . . , ai, y1, . . . , yk, ar, . . . , an → s
land

(Here and further double horizontal line means several applications of the
rule.)

2⇒ 3 is obvious, since one just takes the trivial bracketing∆ = a1, . . . , an.

3⇒ 4 Since a1, . . . , an = πq(∆) and L is πq-sound in !L∗, the sequent
πq(ΦG), a1, . . . , an → s is derivable in !L∗. Next, proceed as follows, using
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item 3 of Definition 5:

!B1, . . . , !BN →
∏
πq(ΦG)

πq(ΦG), a1, . . . , an → s∏
πq(ΦG), a1, . . . , an → s

·L

!B1, . . . , !BN , a1, . . . , an → s
cut

4⇒ 1 This part comes directly from the standard undecidability proof
for !L∗, see Kanovich et al. (2019a). Consider the derivation of the sequent
!A1, . . . , !AN , a1, . . . , an → s in !L∗. The cut rule in !L∗ is eliminable (Kanovich
et al., 2019a), so we can suppose that this derivation is cut-free. All formulae
in this derivation are subformulae of the goal sequent, and the only applicable
rules are ·L, ·R, /L, and rules operating ! in the antecedent: !L, !C1,2, !W .

Now let us hide all the formulae which include / or !. This trivialises all
!-operating rules. Next, let us replace all ·’s in the antecedents with commas.
This, in its turn, trivialises ·L. All sequents in our derivation are now of the
form b1, . . . , b` ⇒ C, where ` ≥ 0 and C = c1 · . . . · cr (r ≥ 1) or C = 1. For
the sake of uniformity, we also write C = 1 as C = c1 · . . . · cr with r = 0. The
/L rule reduces to

bi+1, . . . , bj → y1 · . . . · yk b1, . . . , bi, x1, . . . , xm, bj+1, . . . , bs → C

b1, . . . , bi, bi+1, . . . , bj , bj+1, . . . , bs → C

where x1 . . . xm ⇒ y1 . . . yk is a rewriting rule of G. For each ε-rule x1 . . . xm ⇒
ε in G we get the rule

b1, . . . , bi, x1, . . . , xm, bi+1, . . . , bs → C

b1, . . . , bi, bi+1, . . . , bs → C

(which is the reduction of !L for !(x1 · . . . · xm)). Finally, ·R transforms into

b1, . . . , bi → c1 · . . . · cj bi+1, . . . , b` → cj+1 · . . . · cr
b1, . . . , bi, bi+1, . . . , b` → c1 · . . . · cj · cj+1 · . . . · cr

and axioms are of the form a→ a.

Now straightforward induction on derivation establishes the following fact:
if b1, . . . , b` → c1 · . . . ·cr is derivable in the simplified calculus presented above,
then b1 . . . b` is derivable from c1 . . . cr in the type-0 grammar |Gc. This finishes
our proof. ut

Theorem 4 and Lemma 1 immediately yield the following generic undecid-
ability result (“meta-theorem”).

Theorem 5 Let L be πq-sound in !L∗, admit the ·L, ·R, and /L rules, and
internalise finite sets of Lambek formulae. Then the derivability problem in L
is undecidable.



MALC with Subexponential and Brackets 39

Now, in order to prove undecidability, it is sufficient to show that the
calculi considered in this paper internalise finite sets of Lambek formulae. The
easiest example is !L∗, the multiplicative-additive Lambek calculus with a
full-power exponential modality. A set A = {A1, . . . , AN} is internalised in
!L∗ by Φ = !A1, . . . , !AN (cf. Proposition 6). For !rL∗, the situation is a bit
trickier, since in the absence of the weakening rule !A1, . . . , !AN , s→ s (item 1
of Definition 5) is not derivable. This issue is handled by extending Φ with
extra formulae which neutralise !Ai. Namely, Φ = 1 / !A1, !A1, . . .1 / !AN , !AN
internalises A in !rL∗ (Kanovich et al., 2019a). Actually, the 1 constant here
can be replaced by s / s.

For the calculi with brackets, which interact with the contraction rule, we
go further along this line. We still have to add formulae like 1 / !Ai, for item 1
of Definition 5; but now we also need to neutralise the changes which the
contraction rule makes on the bracketing structures. We carry this strategy
out in Propositions 7 and 8 below.

We start with systems without stoups: !2015b L∗b, !2018b L∗b, and !2018b Lb.

Proposition 7 The meta-formula

Φ = !((s / s) / ![]−1A1), ![]−1A1, . . . , !((s / s) / ![]−1AN ), ![]−1AN

internalises {A1, . . . , AN} in !2015b L∗b.

Proof 1. The sequent Φ, s→ s is derived in !2015b L∗b as follows:

![]−1A1 → ![]−1A1 . . . ![]−1AN → ![]−1AN

s→ s

s→ s

s→ s

...

s / s, . . . , s / s, s→ s
/L

s / s, . . . , s / s, s / s, s→ s
/L

(s / s) / ![]−1A1, ![]−1A1, . . . , (s / s) / ![]−1AN , ![]
−1AN , s→ s

/L

!((s / s) / ![]−1A1), ![]−1A1, . . . , !((s / s) / ![]−1AN ), ![]−1AN , s→ s
!L

2. The ‘landing’ rule is derived in !2015b L∗b as follows:

Φ,∆1, Ai,∆2 → C

Φ,∆1, [[]−1Ai],∆2 → C
[]−1L

Φ,∆1, [![]−1Ai],∆2 → C
!L

Φ,∆1,∆2 → C
!C applied to ![]−1Ai

3. Notice that

πq(Φ) = !((s / s) / !A1), !A1, . . . , !((s / s) / !AN ), !AN .

Next, by applying ·R to Λ→ !((s / s) / !A1); !A1 → !A1; . . .Λ→ !((s / s) / !AN );
!A1 → !AN , we get the necessary sequent !B1, . . . , !BN →

∏
πq(Φ).

The sequents Λ→ !((s / s) / !Ai) are derived in !L∗ as follows:
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s→ s

Λ→ s / s

!A1 → s / s

Λ→ (s / s) / !A1

Λ→ !((s / s) / !B1)

ut
Proposition 8 The meta-formula

Φ = !((s / s) / !Z1), !Z1, . . . , !((s / s) / !Zn), !Zn, !((s / s) /〈〉〈〉q), [[q]],
where

Zi = ([]−1(!Ai · 〈〉〈〉q)) / q,
internalises {A1, . . . , An} in !2018b L∗b and !2018b Lb.

Notice that in !2018b Lb we do not need to impose any additional non-
emptiness restriction on the ‘landing’ rule, since Lambek’s restriction is auto-
matically satisfied by non-emptiness of Φ. Thus, for our undecidability proof
!2018b Lb is capable of encoding arbitrary semi-Thue systems, even the ones
which include ε-rules.

For categorial grammars, however, Lambek’s restriction will make a differ-
ence in the expressive power of !2018b Lb as opposed to !2018b L∗b, as explained
in the next section.

Proof 1. The sequent Φ, s→ s is derived in !2018b Lb (and therefore in !2018b L∗b)
as follows:

!Z1 → !Z1 . . . !Zn → !Zn

q → q

[q]→ 〈〉q 〈〉R

[[q]]→ 〈〉〈〉q 〈〉R
s→ s

s→ s

s→ s

...

s / s, . . . , s / s, s→ s
/L

s / s, . . . , s / s, s / s, s→ s
/L

(s / s) / !Z1, !Z1, . . . , (s / s) / !Zn, !Zn, (s / s) /〈〉〈〉q, [[q]], s→ s
/L

!((s / s) / !Z1), !Z1, . . . , !((s / s) / !Zn), !Zn, !((s / s) /〈〉〈〉q), [[q]], s→ s
!L

Notice that all antecedents in this derivation are non-empty, so Lambek’s
restriction is observed.

2. Let Φ′ be (s / s) / !Z1), !Z1, . . . , !((s / s) / !Zn), !Zn, !((s / s) /〈〉〈〉q), that
is, Φ = Φ′, [[q]], and recall that !Zi = !(([]−1(!Ai · 〈〉〈〉q)) / q). Now the ‘landing’
rule is derived in !2018b Lb (and therefore also in !2018b L∗b) as follows.

q → q

Φ′, [[q]],∆1, Ai,∆2 → C

Φ′, [〈〉q],∆1, Ai,∆2 → C
〈〉L

Φ′, 〈〉〈〉q,∆1, Ai,∆2 → C
〈〉L

Φ′, 〈〉〈〉q,∆1, !Ai,∆2 → C
!L

Φ′, !Ai, 〈〉〈〉q,∆1,∆2 → C
!P2

Φ′, !Ai · 〈〉〈〉q,∆1,∆2 → C
·L

Φ′, [[]−1(!Ai · 〈〉〈〉q)],∆1,∆2 → C
[]−1L

Φ′, [([]−1(!Ai · 〈〉〈〉q)) / q, q],∆1,∆2 → C
/L

Φ′, [!(([]−1(!Ai · 〈〉〈〉q)) / q), q],∆1,∆2 → C
!L

Φ′, [[q]],∆1,∆2 → C
!C applied to !Zi
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Again, notice how Lambek’s restriction is maintained by non-emptiness of
Φ′ and by the q in the brackets (when applying !C).

3. Notice that

πq(Φ) = !((s / s) / !(!A1 · 1)) /1, !(!A1 · 1), . . . ,

!((s / s) / !(!An · 1)) /1, !(!An · 1), !((s / s) /1),1.

Next, we enjoy the following derivations in !L∗:

s→ s

Λ→ s / s
/R

!(!Ai · 1)→ s / s
!W

Λ→ (s / s) / !(!Ai · 1)
/R

Λ→ !((s / s) / !(!Ai · 1))
!R

1→ !((s / s) / !(!Ai · 1))
1L

Λ→ !((s / s) / !(!Ai · 1)) /1
/R

!Ai → !Ai Λ→ 1

!Ai → !Ai · 1 ·R

!Ai → !(!Ai · 1)
!R

s→ s

Λ→ s / s
/R

1→ s / s
1L

Λ→ (s / s) /1
/R

Λ→ !((s / s) /1)
!R

Also recall that Λ ` 1 is an axiom of !L∗. Now several applications of ·L yield
!A1, . . . , !An →

∏
πq(Φ). ut

Now by Theorem 5 we get undecidability for the systems without stoups.

Theorem 6 The derivability problems for !2015b L∗b, !2018b L∗b, and !2018b Lb
are undecidable.

For systems with stoups, the situation is as follows. First, concerning
derivability of sequents with empty stoups, !2015b L∗b(st)

′
, !2018b L∗b(st)

′
, and

!2018b Lb(st)
′

just equivalent to !2015b L∗b, !2018b L∗b, and !2018b Lb respectively
(Propositions 1 and 2). This gives undecidability for these systems.

Theorem 7 The derivability problems for !2015b L∗b(st)
′
, !2018b L∗b(st)

′
, and

!2018b Lb(st)
′

are undecidable.

Proving undecidability for original Morrill’s systems, !2015b L∗b(st) and
!2018b L∗b(st) (which we altered in order to gain cut elimination, see Section 4),
requires some extra work. For !2015b L∗b(st) it is easy. The right rule for ! is
never used in the proof of item 1 in Proposition 7. Also, in the landing rule
(item 2) there are no other !-formulae moved into the newly created bracketed
island. Thus, from the point of view of Proposition 7 !2015b L∗b(st) is indis-
tinguishable from !2015b L∗b(st)

′
, and this yields the necessary undecidability

result.

Theorem 8 The derivability problem for !2015b L∗b(st) is undecidable.

The case of !2018b L∗b(st) is trickier. The issue is that the !L rule in this
calculus is not invertible, i.e., derivability of Ξ(ζ;∆1, !A,∆2) → C is not al-
ways equivalent to derivability of Ξ(ζ,A;∆1, ∆2)→ C. In particular, !p→ !p
is derivable, while p;Λ → !p is not. For our construction this issue is cru-
cial. Namely, when proving the ‘landing’ rule (item 2 of Definition 5), in



42 Max Kanovich et al.

!2018b L∗b(st) we would have to move the !-formulae from Φ to the stoup.
Otherwise, we could not operate the contraction rule. This, however, would
cause problems with item 1: the left premises of the derivation (see proof of
Proposition 8) become Zi;Λ → !Zi (instead of !Zi → !Zi), and in general are
not derivable.

Fortunately, this issue is easily resolved by adding an extra ! on Zi (Kanovich
et al., 2019b). Indeed, !Zi;Λ→ !Zi is derivable from !Zi → !Zi by application
of !P . This yields the following internalisation property, where we essentially
use the stoup for !-formulae in Φ (the rightmost [[q]] is kept outside the stoup).

Proposition 9 The meta-formula

Φ = (s / s) / !Z1, !Z1, . . . , (s / s) / !ZN , !ZN , (s / s) /〈〉〈〉q; [[q]],

where
Zi = ([]−1(!Ai · 〈〉〈〉q)) / q,

satisfies items 1 and 2 of Definition 5 for internalisation of {A1, . . . , AN}
in !2018b L∗b(st).

Proof 1. The sequent Φ, s→ s is derived in !2018b L∗b(st) as follows:

!Z1 → !Z1 . . . !ZN → !ZN [[q]]→ 〈〉〈〉q s / s, . . . , s / s, s / s, s→ s

(s / s) / !Z1, !Z1, . . . , (s / s) / !ZN , !ZN , (s / s) /〈〉〈〉q, [[q]], s→ s
/L

(s / s) / !Z1, !Z1, . . . , (s / s) / !ZN , !ZN , (s / s) /〈〉〈〉q; [[q]], s→ s
!P

2. Let ζ be the stoup of Φ, that is, Φ = ζ; [[q]]. Then the “landing” rule is
established as follows:

q → q

ζ; [[q]],∆1, Ai,∆2 → C

ζ; 〈〉〈〉q,∆1, Ai,∆2 → C
〈〉L

ζ,Ai; 〈〉〈〉q,∆1,∆2 → C
!P

ζ; !Ai, 〈〉〈〉q,∆1,∆2 → C
!L

ζ; !Ai · 〈〉〈〉q,∆1,∆2 → C
·L

ζ; [[]−1(!Ai · 〈〉〈〉q)],∆1,∆2 → C
[]−1L

ζ; [([]−1(!Ai · 〈〉〈〉q)) / q, q],∆1,∆2 → C
/L

ζ; [Zi; q],∆1,∆2 → C
!P, Zi = ([]−1(!Ai · 〈〉〈〉q)) / q

ζ; [!Zi, q],∆1,∆2 → C
!L

ζ; [!Zi; q],∆1,∆2 → C
!P

ζ; [[q]],∆1,∆2 → C
!C applied to !Zi in ζ

ut
Now we can finalise our undecidability proof for !2018b L∗b(st).

Lemma 2 Let AG = {A1, . . . , AN} and let Zi = ([]−1(!Ai · 〈〉〈〉q)) / q (i =
1, . . . , N). Then the sequent

!((s / s) / !Z1), !!Z1, . . . , !((s / s) / !Zn), !!Zn, !((s / s) /〈〉〈〉q), [[q]], a1, . . . , an → s

is derivable in !2018b L∗b(st) if and only if s⇒∗G a1 . . . an.
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Proof For the “if” direction, we use Proposition 9 and proceed exactly as in
the 1⇒ 2 implication from the proof of Lemma 1. This gives derivability of

(s / s) / !Z1, !Z1, . . . , (s / s) / !Zn, !Zn, (s / s) /〈〉〈〉q; [[q]], a1, . . . , an → s,

which yields the necessary sequent

!((s / s) / !Z1), !!Z1, . . . , !((s / s) / !Zn), !!Zn, !((s / s) /〈〉〈〉q), [[q]], a1, . . . , an → s

by several applications of !L.
For the “only if” direction, since the sequent in question is derivable in

!2018b L∗b(st), it is also derivable in !2018b L∗b (Proposition 3). By cut with
!Zi → !!Zi (which is derivable in !2018b MALC∗b) we get derivability of

!((s / s) / !Z1), !Z1, . . . , !((s / s) / !Zn), !Zn, !((s / s) /〈〉〈〉q), [[q]], a1, . . . , an → s.

Recall that cut is admissible in !2018b L∗b by Proposition 1. Now we use
Proposition 8 and the 4 ⇒ 1 implication of Lemma 1 and conclude that
s⇒∗G a1 . . . an. ut

Theorem 9 The derivability problem in !2018b L∗b(st) is undecidable.

Proof Immediately by Lemma 2 and Theorem 4. ut

10 Generative Power of Categorial Grammars

Besides undecidability results, Lemma 1 has another corollary: categorial gram-
mars based on the calculi with subexponentials considered throughout this
paper generate exactly the class of all recursively enumerable languages.

The definitions of categorial grammars are given in Section 2 for calculi
without brackets and in Section 3 for bracketed systems. Recall that for the
latter we distinguish two notions of recognition, namely s-recognition and t-
recognition.

Let us briefly survey known results characterising classes of languages gen-
erated by categorial grammars over different extensions of the Lambek calcu-
lus.

For the pure (multiplicative-only) Lambek calculus this class coincides with
the class of context-free languages. The hard part, Lambek to context-free, was
done by Pentus (1993). For the easier direction, context-free to Lambek, we
refer to Gaifman (Bar-Hillel et al., 1960), as the first one who obtained the
result, and Buszkowski (1985), for a modern way of proving it using Greibach
normal form (Greibach, 1965).1

Adding the unit constant, 1, does not extend the class of languages gener-
ated by Lambek grammars—all L1-languages are still context-free (Kuznetsov,
2012b).

1 Methods of Gaifman and Buszkowski work only for context-free languages without the
empty word. The empty word case was handled by Kuznetsov (2012a).
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Grammars based on the Lambek calculus with brackets, Lb∗, also generate
only context-free languages, both in the sense of s- and t-recognition. This was
initially claimed by Jäger (2003), but, as noticed by Fadda and Morrill (2005),
his proof for t-recognition relied on an incorrect lemma by Versmissen (1996).
A correct proof was given by Kanazawa (2018).

Additive connectives, ∨ and ∧, increase the generative power of Lam-
bek grammars. Namely, as noticed by Kanazawa (1992), MALC∗-grammars
an generate finite intersections of context-free languages and, moreover, im-
ages of such intersections under symbol-to-symbol homomorphisms (that is,
homomorphisms h : Σ∗ → Σ∗ that map Σ to Σ). Furthermore, as shown
by Kuznetsov (2013) and Kuznetsov and Okhotin (2017), the class of MALC∗-
languages includes the class of languages generated by conjunctive gram-
mars Okhotin (2013). This latter class is strictly greater than the class of
intersections of context-free languages, but, unless P = NP, is still not closed
under symbol-to-symbol homomorphisms (Kuznetsov and Okhotin, 2017).

In this section we show that adding the (sub)exponential modality, even
constrained by brackets, increases the power of Lambek categorial grammars
to the highest possible level—all recursively enumerable (r.e.) languages.

From many definitions of the class of r.e. languages we choose the one
based on type-0 grammars (see Section 9 above for definition). A language M
over alphabet Σ is r.e. if and only if there exists a type-0 grammar G such
that M = {w ∈ Σ∗ | s⇒∗G w}, i.e., M is the language generated by G.

Obviously, all languages generated by categorial grammars based on calculi
considered in this paper are r.e. The converse statement is non-trivial, and
extends undecidability results of the previous section. For bracketed calculi,
moreover, we have two notions of recognition (s-recognition and t-recognition).

As in the previous section, we provide a generic result. Notice how Lam-
bek’s restriction comes into play here.

Theorem 10 1. Let L satisfy the conditions of Theorem 5 and additionally
admit 〈〉L and \R without Lambek’s restriction. Then any r.e. language
can be generated by a categorial grammar based on L.

2. Let L satisfy the conditions of Theorem 5 and admit 〈〉L and \R with
Lambek’s restriction. Then any r.e. language without the empty word can
be generated by a categorial grammar based on L.

Proof Consider the type-0 grammar G which generates the given r.e. language.
Let ΦG internalise G in L. We are going to prove that the following three
statements are equivalent:

1. a word a1 . . . an belongs to the language generated by G (that is, s ⇒∗G
a1 . . . an);

2. the sequent a1, . . . , an →
∏
ΦG \ s is derivable in L;

3. the sequent ∆ → ∏
ΦG \ s is derivable in L for some bracketing ∆ of

a1, . . . , an.

The meta-formula ΦG could contain brackets; for brackets, we define
∏

as
follows:

∏
[Γ ] = 〈〉(∏Γ ).
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In order to establish 1⇒ 2 , apply Lemma 1. Let s ⇒∗G a1 . . . an. We
get ΦG , a1, . . . , an → s derivable in L. Applying ·L and 〈〉L several times, we
obtain

∏
ΦG , a1, . . . , an → s. Now we apply /R. In Case 1, without Lambek’s

restriction, we always get a1, . . . , an →
∏
ΦG \ s. In Case 2, this is possible

only for n > 0, and in this case we consider only type-0 grammars which do
not generate the empty word.

The 2⇒ 3 implication is established by taking the trivial bracketing ∆ =

a1, . . . , an. Finally, for the backwards 3⇒ 1 implication we use πq-soundness
of L in !L∗ and derive a1, . . . , an →

∏
πq(ΦG) \ s in !L∗.

In !L∗, the \R rule is invertible using cut:

Π → F \E
F → F E → E
F,F \E → E

\L

F,Π → E
cut

Thus, we get
∏
πq(ΦG), a1, . . . , an → s, and by cut with item 3 of Definition 5

we get !A1, . . . , !AN , a1, . . . , an → s. The 4 ⇒ 1 implication of Lemma 1
finishes the job.

Now the necessary categorial grammar is constructed as follows. The lex-
icon B is trivial, just the identity relation: B = {〈a, a〉 | a ∈ Σ}. All the
information is kept in the goal formula H =

∏
πq(ΦG) \ s. By definition, this

grammar generates the same language as G, both in the sense of s-recognition
and t-recognition. ut

Notice that the grammars constructed in Theorem 10 have the property of
unique type assignment: for each letter a there exists exactly one formula A
such that a B A. For the pure Lambek calculus, constructing such grammars
is much harder. However, for each context-free language without the empty
word there exists a Lambek grammar with unique type assignment, as shown
by Safiullin (2007), see also Kuznetsov (2017).

Internalisation properties (Propositions 7, 8, 9) now yield the following
theorems.

Theorem 11 Let M be a recursively enumerable language. Then

1. there exists a !L∗-grammar which generates M ;
2. there exists a !rL∗-grammar which generates M ;
3. for each of the calculi !2015b L∗b(st), !2015b L∗b(st)

′
, !2015b L∗b, !2018b L∗b(st),

!2018b L∗b(st)
′
, !2018b L∗b there exist a grammar which generates M , both

in the sense of s-recognition and t-recognition.

Theorem 12 Let M be a recursively enumerable language without the empty
word. Then for each of the calculi !2018b Lb(st)

′
and !2018b Lb there exists a

grammar which generates M , both in the sense of s-recognition and t-recognition.
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11 Undecidability for One-Division Fragments

In this section we strengthen our complexity lower bounds by restricting our-
selves to the smallest non-trivial fragment of the Lambek calculus with only
one division operation, extended by ! and, in the bracketed case, bracket modal-
ities 〈〉 and []−1. For these one-division systems, we obtain the same complexity
results. Thus, the situation is different from the pure Lambek: while checking
derivability in the Lambek calculus (without additives, brackets, and exponen-
tials) is an NP-complete problem (Pentus, 2006), for the one-division fragment
there exists a polynomial time algorithm (Savateev, 2010; Kuznetsov, 2016).
In contrast, in the presence of ! the one-division fragment is as powerful, as
the whole system, both with and without brackets.

Our construction is based on Buszkowski’s method of encoding type-0
grammars in the one-division fragment of the Lambek calculus extended with
extra (non-logical) axioms (Buszkowski, 1982). Then these non-logical axioms
are internalised using !, in the same way as in Section 9. We present a new, sim-
plified version of Buszkowski’s construction. This version does not require the
type-0 grammar to be translated into binary normal form, and, in particular,
works also for languages with the empty word.

Recall that the one-division fragment of the Lambek calculus uses formulae
constructed from variables using only one division operation, /. We denote
this fragment by L∗(/) (the asterisk means that we do not impose Lambek’s
restriction). Axioms of L∗(/) are of the form A→ A, and its rules of inference
are as follows:

Π → A ∆1, B,∆2 → C

∆1, B /A,Π,∆2 → C
/L

Π,A→ B

Π → B /A
/R

Π → A ∆1, A,∆2 → C

∆1, Π,∆2 → C
cut

Let us call a B-rule (after Buszkowski) an inference rule of the following
form:

∆, q1, . . . , qm → r

p1, . . . , pk, ∆→ t
Bq1,...,qm,r;p1,...,pk,t

In this rule, q1, . . . , qm, p1, . . . , pk, r, and t are concrete variables from Var, not
meta-variables. Each tuple of variables produces an independent B-rule. On
the other hand, ∆ stands for an arbitrary sequence of Lambek formulae (in
the one-division language).

With each rule, we associate the following Gentzen-style rule, which we
call a B′-rule:

Π1 → p1 . . . Πk → pk ∆, q1, . . . , qm → r

Π1, . . . ,Πk, ∆→ t
B′q1,...,qm,r;p1,...,pk,t

and the following B-formula:2

B = (t /(r / q1 . . . qm)) / p1 . . . pk.

2 Here E /F1 . . . Fn is used as a shortcut for (E /Fn) / . . . / F1, thus, B is a one-division
formula.
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For a B-formula B, we introduce the corresponding B-axiom Λ→ B.
B-rules, B-axioms, and B′-rules will be used as extensions of the Lambek

calculus with one division, and each of the three variants has its benefits:

1. with B-rules, a derivation of a sequent without Lambek connectives (i.e.,
of the form z1, . . . , zm → s) is non-branching, which will allow us to encode
it using a ! modality with a restricted version of contraction rule;

2. B-formulae are convenient for incorporating into the main sequent using a
“deduction theorem” with !;

3. finally, the calculus with B′-rules, unlike the first two variants, admits cut
elimination (see Lemma 4 below), which facilitates analysis of derivations.

B-rules, B-axioms, and B′-rules yield equivalent extensions of the Lambek
calculus:

Lemma 3 In the presence of cut, the extensions of L∗(/) with: (1) a set of
B-rules; (2) the corresponding set of B′-rules; (3) the corresponding set of
B-axioms are equivalent, i.e., derive the same set of sequents.

Proof (1)⇒ (2) (modelling B-rules using B′-rules)

p1 → p1 . . . pk → pk ∆, q1, . . . , qm → r

p1, . . . , pk,∆→ t
B′q1,...,qm,r;p1,...,pk,t

(2)⇒ (3) (modelling B′-rules using B-axioms and cut)

Π1 → p1 . . . Πk → pk

∆, q1, . . . , qm → r

∆→ r / q1 . . . qm
/R

t→ t

t /(r / q1 . . . qm),∆→ t
/L

(t /(r / q1 . . . qm)) / p1 . . . pk, Π1, . . . , Πk,∆→ t
/L

Then a cut with the B-axiom Λ→ (t /(r / q1 . . . qm)) / p1 . . . pk yields the goal
sequent Π1, . . . ,Πk, ∆→ t.

(3)⇒ (1) (deriving B-axioms using B-rules)

q1 → q1 . . . qm → qm r → r

r / q1 . . . qm, q1, . . . , qm → r
/L

p1, . . . , pk, r / q1 . . . qm → t
Bq1,...,qm,r;p1,...,pk,t

p1, . . . , pk → t /(r / q1 . . . qm)
/R

Λ→ (t /(r / q1 . . . qm)) / p1 . . . pk
/R

ut

Lemma 4 The one-division Lambek calculus L∗(/), extended with an arbi-
trary finite set of B′-rules, admits cut elimination.

Proof The proof goes via a standard argument, exactly as for the Lambek
calculus itself (Lambek, 1958). The global induction is by the number of cuts
in a derivation. Each cut is eliminated by nested induction, where the outer
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parameter is the complexity of the formula being cut, and the inner one is the
summary derivation depth of the premises of the cut.

The base case is cut with axiom (A → A), which just disappears. For
the induction step, one distinguishes principal and non-principal cut premises.
A premise is called principal, if the last rule in its derivation introduces the
formula being cut. Thus, if the left premise is introduced by a B′-rule, it is
always principal (since this rule introduces the succedent t). The key trick,
however, is that if the right premise of a cut is introduced by a B′-rule, then
it is never principal. This is due to the fact that a B′-rule introduces nothing
to the antecedent: the antecedent of its goal, Π1, . . . ,Πk, ∆, is composed from
antecedents of the premises.

Thus, there are three possible cases.
Case 1: the left premise is non-principal. Cut can be exchanged with the

last rule in the left premise derivation, and propagates upward. The inner
induction parameter gets smaller, while the outer one is intact. Propagation
of cut through non-principal (→ /) and (/ →) is standard and is performed
exactly as in the cut elimination proof of Lambek (1958). As for B′-rules, such
a rule cannot yield a non-principal left premise of cut.

Case 2: the right premise in non-principal. Cut propagates to the right.
This is how cut gets propagated through a B′-rule:

Ψ → A

Π1 → p1 . . . Πk → pk ∆′, A,∆′′, q1, . . . , qm → t

Π1, . . . , Πk,∆
′, A,∆′′ → t

B′

Π1, . . . , Πk,∆
′, Ψ,∆′′ → t

cut

transforms into

Π1 → p1 . . . Πk → pk

Ψ → A ∆′, A,∆′′, q1, . . . , qm → t

∆′, Ψ,∆′′, q1, . . . , qm → t
cut

Π1, . . . , Πk,∆
′, Ψ,∆′′ → t

B′

and

Ψ → A

Π1 → p1 . . . Π′i, A,Π
′′
i → pi . . . Πk → pk ∆, q1, . . . , qm → t

Π1, . . . , Π′i, A,Π
′′
i , . . . , Πk,∆→ t

B′

Π1, . . . , Π′i, Ψ,Π
′′
i , . . . , Πk,∆→ t

cut

transforms into

Π1 → p1 . . .

Ψ → A Π′i, A,Π
′′
i → pi

Π′i, Ψ,Π
′′
i → pi

cut
. . . Πk → pk ∆, q1, . . . , qm → t

Π1, . . . , Π′i, Ψ,Π
′′
i , . . . , Πk,∆→ t

B′

Propagation of cut to the right through non-principal /R and /L is again
due to Lambek.

Case 3: both left and right premises are principal, being introduced by
/R and /L respectively. In this case cut transforms into two cuts of lower
complexity:

Ψ, F → E

Ψ → E /F
/R

Π → F Γ,E,∆→ C

Γ,E /F,Π,∆→ C
/L

Γ, Ψ,Π,∆→ C
cut
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becomes

Π → F

Ψ, F → E Γ,E,∆→ C

Γ, Ψ, F,∆→ C
cut

Γ, Ψ,Π,∆→ C
cut

(This transformation, again, comes from the original Lambek’s proof.) ut

Now we are ready to present the encoding of type-0 grammars. Consider a
grammar G = 〈N,Σ,P, s〉. For each production p = (v1 . . . vm ⇒ w1 . . . wk) ∈
P add ap, bp, cp, dp, ep, fp, and yp, for each y ∈ N ∪Σ, as distinct variables
to Var, and consider the following seven B-rules:

∆→ s
ep, ∆→ ap (1p)

∆, y → bp

yp, ∆→ bp
(4p)

∆, y → ap

yp, ∆→ ap
(2p)

∆, ep → bp

fp, ∆→ cp
(5p)

∆, v1, . . . , vm → ap

wp
1, . . . , w

p
k, ∆→ bp

(3p)
∆, yp → cp

y,∆→ cp
(6p)

∆, fp → cp

∆→ s
(7p)

By BG we denote the set of all B-rules obtained from production rules of
G as shown above; let BG be the corresponding set of B-formulae and B′G be
the corresponding set of B′-rules.

Before going further, let us comment a bit on these B-rules. In the lan-
guage without product, we cannot directly implement the ‘landing’ rule which
replaces one subword with another (that is, applies a semi-Thue transition)
at an arbitrary place of the antecedent. However, if we manage to move the
subword to the right-hand side of the antecedent, it can be indeed replaced
by another one (and moved to the left-hand side) by a B-rule, which is our
main rule (3p). Other rules do the necessary preparations. This idea is essen-
tially due to Buszkowski; here we present it more straightforwardly. First, (1p)
starts the replacement procedure. Second, several applications of (2p) rotate
the antecedent so that the necessary subword is on the right-hand side of the
antecedent. The usage of an alternative alphabet (yp instead of y) and spe-
cial variables in the succedent (ap, ...) here ensures that this process cannot be
aborted, and other rules cannot be applied until we finish. Third, as said above,
(3p) performs the actually semi-Thue transition. Finally, (4p)–(7p) perform the
backwards rotation and quit the procedure. This strategy is formalized in the
proof of the key Lemma 5 below, which is the version of Lemma 1 for encoding
Buszkowski’s rules.

Lemma 5 Let L be πq-sound in !L∗ and admit the /L and /R rules (maybe
with Lambek’s restriction for the latter). Let ΨG internalise BG = {B1, . . . , BN}
in L (see Definition 5). Also let all formulae in ΨG be !-formulae, for which
permutation rules are allowed in L. Then the following are equivalent:



50 Max Kanovich et al.

1. s⇒∗G z1 . . . zn;
2. z1, . . . , zn → s is derivable from axiom s → s, using only rules from BG,

without cut;
3. ΨG , z1, . . . , zn → s is derivable in L.
4. there exists such a bracketing ∆ of z1, . . . , zn that the sequent ΨG is deriv-

able in L;
5. the sequent !B1, . . . , !BN , z1, . . . , zn → s is derivable in !MALC∗;
6. z1, . . . , zn → s is derivable in L∗(/) extended with rules from B′G.

Proof This proof shares much with the proof of Lemma 1.
1⇒ 2 Proceed by induction on the derivation of z1 . . . zn from s in G.

The base case, s ⇒∗G s, corresponds to the s → s axiom. For the induction
step, consider the last production rule p = (v1 . . . vm ⇒ w1 . . . wk) applied in
the derivation:

s⇒∗G z1 . . . ziv1 . . . vmzj . . . zn ⇒G z1 . . . ziw1 . . . wkzj . . . zn.

By induction hypothesis, the sequent z1, . . . , zi, v1, . . . , vm, zj , . . . , zn → s is
derivable. The necessary sequent z1, . . . , zi, w1, . . . , wk, zj , . . . , zn → s is now
derived as follows:

z1, . . . , zi, v1, . . . , vm, zj , . . . , zn → s

ep, z1, . . . , zi, v1, . . . , vm, zj , . . . , zn → ap (1p)

zpj , . . . , z
p
n, e

p, z1, . . . , zi, v1, . . . , vm → ap
(2p)

wp
1, . . . , w

p
k, z

p
j , . . . , z

p
n, e

p, z1, . . . , zi → bp
(3p)

zp1, . . . , z
p
i , w

p
1, . . . , w

p
k, z

p
j , . . . , z

p
n, e

p → bp
(4p)

fp, zp1, . . . , z
p
i , w

p
1, . . . , w

p
k, z

p
j , . . . , z

p
n → cp

(5p)

z1, . . . , zi, w1, . . . , wk, zj , . . . , zn, f
p → cp

(6p)

z1, . . . , zi, w1, . . . , wk, zj , . . . , zn → s (7p)

2⇒ 3 Proceed by induction on derivation. The base case, Φ, s → s, is
derivable by item 1 of Definition 5. The induction step, i.e., application of a
B-rule of the form

∆, q1, . . . , qm → r

p1, . . . , pk, ∆→ t
B

is handled using the ‘landing’ rule (item 2 of Definition 5) as follows:

p1 → p1 . . . pk → pk

ΨG ,∆, q1, . . . , qm → r

ΨG ,∆→ r / q1 . . . qm
/R

t→ t

t /(r / q1 . . . qm), ΨG ,∆→ t
/L

ΨG , t /(r / q1 . . . qm),∆→ t
!P2 applied to formulae of ΨG

ΨG , (t /(r / q1 . . . qm)) / p1 . . . pk, p1, . . . , pk,∆→ t
/L

ΨG , p1, . . . , pk,∆→ t
land

Notice that here we essentially used the permutation rules for formulae of ΨG .
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3⇒ 4 Obvious: take the trivial (empty) bracketing ∆ = z1, . . . , zn.

4⇒ 5 is handled exactly as in Lemma 1.

5⇒ 6 Consider a cut-free derivation of !B1, . . . , !BN , z1, . . . , zn in !MALC∗

and erase all !-formulae from it. Then applications of structural rules for ! be-
come trivial, and !L transforms into

∆1, B,∆2 → A

∆1, ∆2 → A

where B is a B-formula from BG . This is equivalent to cut with the B-axiom
Λ→ B.

Thus, z1, . . . , zn is derivable in L∗(/) extended by the set of B-axioms
obtained from G and, by Lemma 3, in the corresponding extension by B′-rules,
B′G .

6⇒ 1 The extension of the Lambek calculus with B′G , admits cut elim-
ination (Lemma 4), and in the cut-free derivation the only rules that can be
applied are B′-rules.

Proceed by induction on this derivation. The base case is the s → s ax-
iom, and we have s ⇒∗G s. For the induction step, let us go upwards along
the derivation, turning right at each application of a B′-rule, and trace the
succedent:

s
(7′p)

// cp

(6′p)

��

(5′p)

// bp

(4′p)

��

(3′p)

// ap

(2′p)

��

(1′p)

// s

(Since variables ap, bp, and cp could never appear in antecedents, the deriva-
tion cannot stop at an axiom of the form ap → ap or alike.)

Essentially, as we shall see below, once we started with (7′p), we fix the
production rule p and perform, as a whole, the block of B′-rules which emulates
application of p (as the last production rule in the derivation). Then we return
to a sequent of the form ∆→ s, ready to perform our backtracking further.

Variables dp, ep, fp, and yp (y ∈ N∪Σ) are never succedents of conclusions
of rules from B′G . Therefore, left premises of the rules (1′p)–(5′p), which are of
the form Πi → pi, where pi is one of the aforementioned variables, could only
be axioms pi → pi. This means that (1′p)–(5′p) actually transform into the
corresponding B-rules, (1p)–(5p). As for (7′p), it already coincides with (7p).

Thus, the bottom of our derivation looks as follows, where ∆1, . . . ,∆n′ =
z1, . . . , zn:
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∆1 → y1 . . . ∆n′ → yn′

y1, . . . , yi, v1, . . . , vm, yj , . . . , yn′ → s

ep, y1, . . . , yi, v1, . . . , vm, yj , . . . , yn′ → ap (1p)

ypj , . . . , y
p
n′ , ep, y1, . . . , yi, v1, . . . , vm → ap

(2p)

wp
1, . . . , w

p
k, y

p
j , . . . , y

p
n′ , ep, y1, . . . , yi → bp

(3p)

yp1, . . . , y
p
i , w

p
1, . . . , w

p
k, y

p
j , . . . , y

p
n′ , ep → bp

(4p)

fp, yp1, . . . , y
p
i , w

p
1, . . . , w

p
k, y

p
j , . . . , y

p
n′ → cp

(5p)

∆1, . . . ,∆n′ , fp → cp
(6′p)

∆1, . . . ,∆n′ → s
(7p)

Consider sequents of the form ∆i → yi (left premises); w1, . . . , wk are also
y’s. If yi 6= s, then it could not be the succedent of the conclusion of a rule from
B′G , therefore ∆i = yi and this is just an axiom. If yi = s, then by induction
hypothesis we have ∆i derivable from s in G. Thus, in both cases3 G derives
∆i from yi.

By induction hypothesis we have s⇒∗G y1 . . . yiv1 . . . vmyj . . . yn′ , and since
p = (v1 . . . vm ⇒ w1 . . . wk) is a production rule of G (the form of p is taken
from (3p)), s ⇒∗G y1 . . . yiw1 . . . wkyj . . . yn′ . Finally, we recall a well-known
property of derivations in type-0 grammars: if s ⇒∗G y1 . . . yn′ (wi’s are also
part of yj ’s) and yi ⇒∗G ∆i for each i, then s⇒∗G ∆1 . . . ∆n′ = z1 . . . zn. ut

This lemma yields results on complexity and generative power of categorial
grammars for one-division fragments, exactly as Lemma 1 does in the general
case.

Theorem 13 The derivability problems for one-division fragments (that is,
fragments including /, !, brackets and bracket modalities) of !L∗, !rL∗, !2015b L∗b,
!2015b L∗b(st)

′
, and !2015b L∗b(st) are undecidable.

Theorem 14 For any r.e. language M and for each of the calculi mentioned
in the previous theorem there exists a categorial grammar for M based on the
given calculus. For bracketed systems, such a grammar both s-recognises and
t-recognises M .

For !2018b MALC∗b(st)
′′

and !2018b MALCb(st), however, we cannot di-
rectly use the internalisation given by Proposition 8, since the meta-formula
Φ used there includes the product connective. Also, Φ includes [[q]], which is
not a !-formula and does not allow permutation, as required in Lemma 5.

We overcome this issue by slightly modifying the notion of internalisation
and proving a new version of Proposition 8.

3 This part can be simplified a bit by modifying G. Namely, we could introduce a new
starting symbol s′ with a rule s′ ⇒ s. The language generated by G will not change. After
this transformation, the starting symbol s′ will never appear in the derivation, except for
its start, and therefore there would be always yi 6= s′, and ∆i = yi.
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Definition 6 Let B = {B1, . . . , BN} be a finite set of formulae and V ⊆ Var
be a finite set of variables. A meta-formula Ψ V-internalises B in the calculus
L, if the following holds:

1. the sequent Ψ, s→ s is derivable in L;
2. the following ‘t-landing’ rule is admissible in L for any t ∈ V:

Ψ,∆1, ∆2 → t

Ψ,∆1, Bi, ∆2 → t
landt, Bi ∈ B

3. the sequent !B1, . . . , !BN →
∏
πq(Ψ) is derivable in !L∗.

The new notion of V-internalisation differs from the original notion of in-
ternalisation (Definition 5) in item 2. This item is formulated in a weaker form:
we restrict the antecedents of sequents in the ‘landing’ rule by a finite set V of
variables. The key observation is that V-internalisation, where V is the set of
all variables used in B, is already sufficient for Lemma 5. Thus, now we only
have to prove the V-internalisation property for !2018b L∗b(st)

′
.

Proposition 10 Let V = {t1, . . . , tm} be a finite set of variables and B =
{B1, . . . , BN} be a finite set of Lambek formulae. Then the following meta-
formula

ΨB,V = !((s / s) / !Z1,1), !Z1,1, . . . , !((s / s) / !Zm,N ), !Zm,N , !((s / s) /〈〉〈〉q), !〈〉〈〉q,
where

Zi,j = ([]−1(tj /((tj / !Bi) / !〈〉〈〉q))) / q,
V-internalises B in !2018b L∗b and in !2018b Lb.

Proof For short, denote ΨB,V by just Ψ . Item 1 of Definition 6 is checked
exactly as in Proposition 8.

For item 2, let us check the t-landing rule for t = tj ∈ V and Bi ∈ B. Let
Ψ = Ψ ′, !〈〉〈〉q.

q → q

Ψ ′, !〈〉〈〉q,∆1, Bi,∆2 → tj

Ψ ′,∆1, Bi,∆2, !〈〉〈〉q → tj
!P2

Ψ ′,∆1, !Bi,∆2, !〈〉〈〉q → tj
!L

Ψ ′,∆1,∆2, !〈〉〈〉q, !Bi → tj
!P2

Ψ ′,∆1,∆2, !〈〉〈〉q → tj / !Bi
\R

Ψ ′,∆1,∆2 → (tj / !Bi) /(!〈〉〈〉q)
\R

tj → tj

tj /((tj / !Bi) /(!〈〉〈〉q))), Ψ ′,∆1,∆2 → tj
/L

Ψ ′, tj /((tj / !Bi) /(!〈〉〈〉q))),∆1,∆2 → tj
!P1 applied to formulae of Ψ ′

Ψ ′, [[]−1(tj /((tj / !Bi) /(!〈〉〈〉q))))],∆1,∆2 → tj
[]−1L

Ψ ′, [([]−1(tj /((tj / !Bi) /(!〈〉〈〉q)))) / q, q],∆1,∆2 → tj
/L

Ψ ′, [!(([]−1(tj /((tj / !Bi) /(!〈〉〈〉q)))) / q), q],∆1,∆2 → tj
!L

Ψ ′, [[q]],∆1,∆2 → tj
!C applied to !Zi,j

Ψ ′, [〈〉q],∆1,∆2 → tj
〈〉L

Ψ ′, 〈〉〈〉q,∆1,∆2 → tj
〈〉L

Ψ ′, !〈〉〈〉q,∆1,∆2 → tj
!L
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Finally, let us check item 3. The πq-projection of Ψ includes the following
formulae (the order does not matter due to permutation rules):

1. !((s / s) / !πq(Zi,j));
2. !Zi,j = !((tj /((tj / !Bi) / !1))) /1);
3. !((s / s) /1) and !1.

We enjoy the following derivations in !L∗:

s→ s
Λ→ s / s

/R

!πq(Zi,j)→ s / s
!W

Λ→ (s / s) / !πq(Zi,j)
/R

Λ→ !((s / s) / !πq(Zi,j))
!R

s→ s
Λ→ s / s

/R

1→ s / s
1L

Λ→ (s / s) /1
/R

Λ→ !((s / s) /1)
!R

Λ→ 1
Λ→ !1

!R

!Bi → !Bi tj → tj

tj / !Bi, !Bi → tj
/L

!Bi, tj / !Bi → tj
!P

!Bi, (tj / !Bi) / !1→ tj
/L

!Bi → tj /((tj / !Bi) / !1)
/R

!Bi,1→ tj /((tj / !Bi) / !1)
1L

!Bi → (tj /((tj / !Bi) / !1)) /1
/R

!Bi → !((tj /((tj / !Bi) / !1)) /1)
!R

By ·R, we derive !B1, . . . , !BN , . . . , !B1, . . . , !BN →
∏
πq(Ψ) (here !B1, . . . , !BN )

is repeated m times. Permutations and contractions yield the needed sequent
!B1, . . . , !BN →

∏
πq(Ψ). ut

By Proposition 1, we propagate this construction to !2018b L∗b(st)
′

and
!2018b Lb(st)

′
. Finally, for the original Morrill’s system !2018b L∗b(st) we use the

same trick as in Section 9 (Proposition 9), adding an extra ! over Zi,j . In a
whole, this yields the necessary results.

Theorem 15 The derivability problems for one-division fragments (that is,
fragments including /, !, brackets and bracket modalities) of !2018b L∗b, !2018b Lb,
!2018b L∗b(st)

′
, !2018b Lb(st)

′
, and !2018b L∗b(st) are undecidable.

Theorem 16 For any r.e. language M and for each of the calculi mentioned
in the previous theorem there exists a categorial grammar based on the given
calculus which both s-recognises and t-recognises M , for calculi without Lam-
bek’s restriction (!2018b L∗b, !2018b L∗b(st)

′
, and !2018b L∗b(st)), and M − {ε},

in the case with Lambek’s restriction (!2018b Lb and !2018b Lb(st)
′
).
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12 Conclusions and Future Work

In this article, we have performed the logical analysis of two systems in-
troduced by Morrill as a base for the CatLog categorial grammar parser,
!2015b MALC∗b(st) and !2018b MALC∗b(st). We have pointed out issues with
cut elimination in these systems, and provided necessary modification for
which cut elimination is proved. We also discussed how Lambek’s non-empti-
ness restriction can be imposed on !2018b MALC∗b(st). From the algorithmic
point of view, we have proved undecidability for each of Morrill’s systems,
even in the smallest possible language with only one division, brackets and
bracket modalities, and the subexponential. Moreover, we have shown that
categorial grammars based on Morrill’s calculi can generate arbitrary recur-
sively enumerable languages (in the case with Lambek’s restriction—arbitrary
r.e. languages without the empty word).

One of the most interesting questions for future research is as follows.
The undecidability results presented in this article look unfortunate, since the
calculi it is applied to are intended to be used in natural language parsing
software.

Thus, it is an important task to explore fragments of the calculi, guarded by
certain syntactic conditions on applying !, for which the derivability problem is
decidable. For systems without brackets, in particular, !rMALC∗, such an al-
gorithm exists under the condition that ! is applied only to variables (Kanovich
et al., 2016b). The complexity of this algorithm is the same as for the calcu-
lus without !: NP for !rL∗ and PSPACE for !rMALC∗. Moreover, for !L∗

decidability is known for a broader class of formulae allowed under !, namely,
formulae of implication depth 1, that is, of the form p1 . . . pk \ q / r1 . . . rm (Fo-
fanova, 2018). Extending this result to !MALC∗ and !rMALC∗ is still an
open question.

For systems with brackets, the class of formulae for which the derivability
problem becomes decidable appears to be much broader. For Morrill’s first
system, !2015b MALC∗b(st), this class is guarded by so-called bracket non-
negative condition (BNNC) imposed on !-formulae. Under this condition, !
can be applied to any formula which does not include negative occurrences of
〈〉 and does not include positive occurrences of []−1. In particular, ! is allowed
to be applied to any formula which does not include bracket modalities at all,
no matter how complex this formula is. Morrill and Valent́ın (2015a) show that
the derivability problem in !2015b MALC∗b(st) for sequents obeying BNNC is
decidable; Kanovich et al. (2017b) establish an NP upper complexity bound
for its fragment without additives, also with BNNC imposed. We conjecture
that for the full system, including additives, the complexity bound is PSPACE.
These complexity boundaries are tight, since the multiplicative-only Lambek
calculus is already NP-complete (Pentus, 2006) and MALC∗ is PSPACE-
complete (Kanovich, 1994). For Morrill’s second system, !2018b MALC∗b(st),
formulating the corresponding version of BNNC and proving decidability for
the fragment guarded by this new condition is a problem for further investi-
gation.
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Another, potentially simpler but more technical question left for further
research is the question of extending our cut elimination proof to calculi with
discontinuous operations (Morrill and Valent́ın, 2010). We conjecture that the
proof could be obtained as a combination of our proof (using “deep cut elimi-
nation” for !-formulae) presented here and the proof by Morrill and Valent́ın
(2010) for displacement calculus. The notations, however, would become ex-
tremely complicated—thus, a digestable presentation of such a proof becomes
a separate challenge.
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