Skip to main content
Log in

Modal and Intuitionistic Variants of Extended Belnap–Dunn Logic with Classical Negation

  • Published:
Journal of Logic, Language and Information Aims and scope Submit manuscript

Abstract

In this study, we introduce Gentzen-type sequent calculi BDm and BDi for a modal extension and an intuitionistic modification, respectively, of De and Omori’s extended Belnap–Dunn logic BD+ with classical negation. We prove theorems for syntactically and semantically embedding BDm and BDi into Gentzen-type sequent calculi S4 and LJ for normal modal logic and intuitionistic logic, respectively. The cut-elimination, decidability, and completeness theorems for BDm and BDi are obtained using these embedding theorems. Moreover, we prove the Glivenko theorem for embedding BD+ into BDi and the McKinsey–Tarski theorem for embedding BDi into BDm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Negation of this kind, which appears in Belnap–Dunn logic, is also referred to as De Morgan negation.

  2. The name “LK” is from Gentzen’s original sequent calculus LK for first-order classical logic (Gentzen 1969). However, in this paper, the name LK is used for a non-essential modification of the propositional fragment of the original LK.

  3. The name “LJ” is from Gentzen’s original sequent calculus LJ for first-order intuitionistic logic (Gentzen 1969). However, in this paper, the name LJ is used for a non-essential modification of the propositional fragment of the original LJ.

  4. Other issues on paraconsistent negation, see (Wansing and Odintsov 2016; Kamide 2017) and the references therein. For example, an issue on the double negation elimination axiom \({\sim }{\sim }\alpha \leftrightarrow \alpha \) in paraconsistent logics was discussed in (Kamide 2017).

References

  • Almukdad, A., & Nelson, D. (1984). Constructible falsity and inexact predicates. Journal of Symbolic Logic, 49(1), 231–233.

    Article  Google Scholar 

  • Anderson, A. R., & Belnap, N. D. (1975). Entailment: The logic of relevance and necessity (Vol. 1). Princeton: Princeton University Press.

    Google Scholar 

  • Anderson, A. R., Belnap, N. D., & Dunn, J. M. (1992). Entailment: The logic of relevance and necessity (Vol. 2). Princeton: Princeton University Press.

    Google Scholar 

  • Angell, R. (1962). A propositional logics with subjunctive conditionals. Journal of Symbolic Logic, 27, 327–343.

    Article  Google Scholar 

  • Arieli, O., & Avron, A. (1996). Reasoning with logical bilattices. Journal of Logic, Language and Information, 5, 25–63.

    Article  Google Scholar 

  • Arieli, O., & Avron, A. (1998). The value of the four values. Artificial Intelligence, 102(1), 97–141.

    Article  Google Scholar 

  • Belnap, N. D. (1977a). A useful four-valued logic. In G. Epstein & J. M. Dunn (Eds.), Modern uses of multiple-valued logic (pp. 5–37). Dordrecht: Reidel.

    Chapter  Google Scholar 

  • Belnap, N. D. (1977b). How a computer should think. In G. Ryle (Ed.), Contemporary aspects of philosophy (pp. 30–56). Stocksfield: Oriel Press.

    Google Scholar 

  • Béziau, J.-Y. (2011). A new four-valued approach to modal logic. Logique et Analyse, 54(213), 109–121.

    Google Scholar 

  • Bimbó, K. (2015). Proof theory: Sequent calculi and related formalisms. Boca Raton: CRC Press.

    Google Scholar 

  • De, M., & Omori, H. (2015). Classical negation and expansions of Belnap–Dunn logic. Studia Logica, 103(4), 825–851.

    Article  Google Scholar 

  • Dunn, J. M. (1976). Intuitive semantics for first-degree entailment and ‘coupled trees’. Philosophical Studies, 29(3), 149–168.

    Article  Google Scholar 

  • Dunn, J. M. (2000). Partiality and its dual. Studia Logica, 66(1), 5–40.

    Article  Google Scholar 

  • Dunn, J. M. (2019). The Algebra of Intensional Logics, A republication of a PhD thesis, which was originally defended at the University of Pittsburgh in 1966, College Publications, London, UK.

  • Dunn, J. M., & Restall, G. (2002). Relevance logic. In F. Guenthner & D. Gabbay (Eds.), Handbook of philosophical logic (Vol. 6, pp. 1–136). Dordrecht: Kluwer.

    Google Scholar 

  • Fitting, M. (1991). Many-valued modal logics. Fundamenta Informaticae, 15, 235–254.

    Article  Google Scholar 

  • Fitting, M. (1992). Many-valued modal logics II. Fundamenta Informaticae, 17, 55–73.

    Article  Google Scholar 

  • Gentzen, G. (1969). Collected papers of Gerhard Gentzen. In M. E. Szabo (Ed.), Studies in logic and the foundations of mathematics. Amsterdam: North-Holland. (English translation).

    Google Scholar 

  • Grigoriev, O., & Petrukhin, Y. (2019). On a multilattice analogue of a hypersequent S5 calculus. Logic and Logical Philosophy, 28, 683–730.

    Google Scholar 

  • Gurevich, Y. (1977). Intuitionistic logic with strong negation. Studia Logica, 36, 49–59.

    Article  Google Scholar 

  • Kamide, N. (2017). Paraconsistent double negations as classical and intuitionistic negations. Studia Logica, 105(6), 1167–1191.

    Article  Google Scholar 

  • Kamide, N. (2018). Proof theory of paraconsistent quantum logic. Journal of Philosophical Logic, 47(2), 301–324.

    Article  Google Scholar 

  • Kamide, N. (2019). Gentzen-type sequent calculi for extended Belnap–Dunn logics with classical negation: A general framework. Logica Universalis, 13(1), 37–63.

    Article  Google Scholar 

  • Kamide, N., & Omori, H. (2017). An extended first-order Belnap–Dunn logic with classical negation. In Proceedings of the 6th international workshop on logic, rationality, and interaction (LORI 2017), Lecture Notes in Computer Science (Vol. 10455, pp. 79-93).

  • Kamide, N., & Shramko, Y. (2017). Embedding from multilattice logic into classical logic and vice versa. Journal of Logic and Computation, 27(5), 1549–1575.

    Google Scholar 

  • Kamide, N., & Shramko, Y. (2017). Modal multilattice logic. Logica Universalis, 11(3), 317–343.

    Article  Google Scholar 

  • Kamide, N., & Wansing, H. (2012). Proof theory of Nelson’s paraconsistent logic: A uniform perspective. Theoretical Computer Science, 415, 1–38.

    Article  Google Scholar 

  • Kripke, S. A. (1963). Semantical analysis of modal logic I Normal modal propositional calculi. Zeitschrift für mathematische Logik und Grundlagen del Mathematik, 9, 67–96.

    Article  Google Scholar 

  • Kripke, S. A. (1965). Semantical analysis of intuitionistic logic I. Studies in Logic and the Foundations of Mathematics, 40, 92–130.

    Article  Google Scholar 

  • McCall, S. (1966). Connexive implication. Journal of Symbolic Logic, 31, 415–433.

    Article  Google Scholar 

  • Meyer, R. K., & Routley, R. (1973). Classical relevant logics I. Studia Logica, 32(1), 51–68.

    Article  Google Scholar 

  • Meyer, R. K., & Routley, R. (1974). Classical relevant logics II. Studia Logica, 33(2), 183–194.

    Article  Google Scholar 

  • Nelson, D. (1949). Constructible falsity. Journal of Symbolic Logic, 14, 16–26.

    Article  Google Scholar 

  • Odintsov, S. P. (2005). The class of extensions of Nelson paraconsistent logic. Studia Logica, 80, 291–320.

    Article  Google Scholar 

  • Odintsov, S. P., & Latkin, E. I. (2012). BK-lattices. Algebraic semantics for Belnapian modal logics. Studia Logica, 100(1–2), 319–338.

    Article  Google Scholar 

  • Odintsov, S. P., Skurt, D., & Wansing, H. (2019). On definability of connectives and modal logics over FDE. Logic and Logical Philosophy, 28(3), 371–399.

    Google Scholar 

  • Odintsov, S. P., & Speranski, S. (2016). The lattice of Belnapian modal logics: Special extensions and counterparts. Logic and Logical Philosophy, 25, 3–33.

    Google Scholar 

  • Odintsov, S. P., & Wansing, H. (2010). Modal logics with Belnapian truth values. Journal of Applied Non-classical Logics, 20, 279–301.

    Article  Google Scholar 

  • Odintsov, S. P., & Wansing, H. (2017). Disentangling FDE-based paraconsistent modal logics. Studia Logica, 105, 1221–1254.

    Article  Google Scholar 

  • Omori, H., & Wansing, H. (Eds.). (2019). New essays on Belnap–Dunn Logic, Synthese Library 418. Berlin: Springer.

    Google Scholar 

  • Priest, G. (1979). The logic of paradox. Journal of Philosophical Logic, 8(1), 219–241.

    Article  Google Scholar 

  • Priest, G. (2008). Many-valued modal logics: A simple approach. Review of Symbolic Logic, 1(2), 190–203.

    Article  Google Scholar 

  • Rautenberg, W. (1979). Klassische und nicht-klassische Aussagenlogik. Braunschweig: Vieweg.

    Book  Google Scholar 

  • Rivieccio, U., Jung, A., & Jansana, R. (2017). Four-valued modal logic: Kripke semantics and duality. Journal of Logic and Computation, 27, 155–199.

    Article  Google Scholar 

  • Sano, K., & Omori, H. (2014). An expansion of first-order Belnap–Dunn logic. Logic Journal of the IGPL, 22(3), 458–481.

    Article  Google Scholar 

  • Sedlár, I. (2016). Propositional dynamic logic with Belnapian truth values. Advances in Modal Logic, 11, 503–519.

    Google Scholar 

  • Takeuti, G. (2013). Proof theory (2nd ed.). Mineola, NY: Dover Publications Inc.

    Google Scholar 

  • Troelstra, A. S., & Schwichtenberg, H. (2000). Basic Proof Theory (Cambridge Tracts in Theoretical Computer Science 45) (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Vorob’ev, N. N. (1952). A constructive propositional calculus with strong negation. Doklady Akademii Nauk SSSR, 85, 465–468 (in Russian).

  • Wansing, H. (1993a). The logic of information structures., Lecture notes in computer science 681 Berlin: Springer.

    Book  Google Scholar 

  • Wansing, H. (1993b). Informational interpretation of substructural propositional logics. Journal of Logic, Language and Information, 2(4), 285–308.

    Article  Google Scholar 

  • Wansing, H. (2014). Connexive logic. In Stanford encyclopedia of philosophy. http://plato.stanford.edu/entries/logic-connexive/.

  • Wansing, H., & Odintsov, S. P. (2016). On the methodology of paraconsistent logic. In H. Andreas & P. Verdée (Eds.), Logical studies of paraconsistent reasoning in science and mathematics (Vol. 45, pp. 175–204)., Trends in logic book series Berlin: Springer.

    Chapter  Google Scholar 

  • Zaitsev, D. (2012). Generalized relevant logic and models of reasoning. Moscow State Lomonosov University (doctoral dissertation).

Download references

Acknowledgements

We would like to thank the anonymous referees for their valuable comments and suggestions. This work was supported by JSPS KAKENHI Grant Numbers JP18K11171 and JP16KK0007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihiro Kamide.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamide, N. Modal and Intuitionistic Variants of Extended Belnap–Dunn Logic with Classical Negation. J of Log Lang and Inf 30, 491–531 (2021). https://doi.org/10.1007/s10849-021-09330-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10849-021-09330-1

Keywords

Navigation