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Abstract
Coalition announcement logic (CAL) is one of the family of the logics of quan-
tified announcements. It allows us to reason about what a coalition of agents can
achieve by making announcements in the setting where the anti-coalition may have an
announcement of their own to preclude the former from reaching its epistemic goals.
In this paper, we describe a PSPACE-complete model checking algorithm for CAL
that produces winning strategies for coalitions. The algorithm is implemented in a
proof-of-concept model checker.

Keywords Coalition announcement logic · Group announcement logic · Model
checking · Dynamic epistemic logic

1 Introduction

In the multi-agent logic of knowledge we investigate what agents know about their
factual environment and what they know about knowledge of each other (Hintikka
1962). (Truthful) Public announcement logic (PAL) is an extension of the multi-agent
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logic of knowledge with modalities for public announcements. Such modalities model
the event of incorporating trusted information that is similarly observed by all agents
(Plaza 2007). The ‘truthful’ part relates to the trusted aspect of the information: we
assume that the novel information is true.

In Ågotnes and van Ditmarsch (2008) the authors propose two generalisations of
public announcement logic, GAL (group announcement logic) and CAL (coalition
announcement logic). These logics allow for quantification over public announce-
ments made by agents modelled in the system. In particular, the GAL quantifier 〈G〉ϕ
(parametrised by a subsetG of the set of all agents A) says ‘there is a truthful announce-
ment made by the agents in G, after which ϕ (holds)’. Here, the truthful aspect means
that the agents in G only announce what they know: if a in G announces ϕa , this
is interpreted as a public announcement Kaϕa , and a truthful group announcement
by agents in G is a conjunction of such known announcements. The CAL quantifier
〈[G]〉ϕ is motivated by game logic (Pauly 2002; Parikh 1985) and Van Benthem’s
playability operator (van Benthem 2014). Here, the modality means ‘there is a truth-
ful announcement made by the agents in G such that no matter what the agents not
in G simultaneously announce, ϕ holds afterwards’. In (Ågotnes and van Ditmarsch
2008) it is, for example, shown that CAL subsumes game logic.

CAL has been far less investigated than other logics of quantified announcements,
such as APAL (Balbiani et al. 2008) and GAL, although some combined results have
been achieved (Ågotnes et al. 2016; French et al. 2019; van Ditmarsch et al. 2021). In
particular, model checking for CAL, which has potential practical implications, has
not been studied. For example, in CAL it is possible to express that a group of agents
(for instance, a subset of bidders in an auction) can make an announcement such that
nomatter what other agents announce simultaneously, after this announcement certain
knowledge is increased (all agents know that G has won the bid) but certain ignorance
also remains (for example, the maximal amount of money G could have offered). The
main contribution of this paper is a thorough analysis of the model checking problem
for CAL and a description of an implemented open source model checker for CAL
and GAL formulas.

This paper is a revised and extended version of Galimullin et al. (2018), with
detailed proofs and a new section on the implementation of the model-checking algo-
rithm, which also contains a large worked example. The structure of the paper is
as follows. Section 2 provides the necessary background on GAL and CAL, and in
Sect. 3 we use distinguishing formulas to make a shift from an infinite number of
agents’ announcements to a finite number of strategies available to them. The model
checking algorithm is given in Section 4. The algorithm presented here differs from
the one presented in Galimullin et al. (2018) in several respects. Instead of iterating
over an explicit list of strategies, it generates and tests strategies one at a time, so that it
only uses polynomial space. Instead of returning true and false, the version presented
here returns a set of states satisfying the formula; for true formulas starting with a
GAL or CAL modality, it also outputs a strategy. The model checking algorithm and
the proof of PSPACE-completeness build on those for GAL (Ågotnes et al. 2010), but
the algorithm for CAL requires some modifications; in particular the algorithms in
Ågotnes et al. (2010) runs in APTIME by ‘guessing’ strategies while our algorithm
is deterministic. We also describe an efficient (PTIME) special case. The algorithm is
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Fig. 1 Initial model M15a5b 5a5b 5a10b 5a15b

10a5b 10a10b 10a15b

15a5b 15a10b 15a15b

a a

a a

b b b

a a

b b b

implemented in a proof of concept model checkerMCCAL available on https://github.
com/Twelvelines/MCCAL. The implementation and its performance are described in
detail in Wang (2019), and briefly in Sect. 5 of this paper.

2 Background

2.1 Introductory Example

Two agents, a and b, want to buy the same item, and whoever offers the greatest sum,
gets it. Agents may have 5, 10, or 15 pounds, and they do not know which sum the
opponent has. Let agent a have 15 pounds, and agent b have 5 pounds. This situation
is presented in Fig. 1.

In this model (let us call it M), state names denote money distribution. Thus, 10a5b
means that agent a has 10 pounds, and agent b has 5 pounds. Labelled edges connect
the states that a corresponding agent cannot distinguish. For example, in the actual
state (boxed), agent a knows that she has 15 pounds, but she does not know howmuch
money agent b has. Formally, M15a5b |� Ka15a ∧¬(Ka5b ∨ Ka10b ∨ Ka15b) (which
means M15a5b satisfies the formula, where Kiϕ stands for ‘agent i knows that ϕ’, ∧ is
logical ‘and’,¬ is ‘not’, and∨ is ‘or’). Note that edges represent equivalence relations,
and in the figure we omit transitive and reflexive transitions.

Next, suppose that agents bid in order to buy the item. Once one of the agents,
let us say a, announces her bid, she also wants the other agent to remain ignorant
of the total sum at her disposal. Formally, we can express this goal as formula ϕ :=
Kb(10a ∨15a)∧¬(Kb10a ∨Kb15a) (for bid 10 by agent a). Informally, if a commits
to pay 10 pounds, agent b knows that a has 10 or more pounds, but b does not know the
exact amount. If agent b does not participate in announcing (bidding), a can achieve the
target formulaϕ byannouncing Ka10a∨Ka15a . In otherwords, agenta commits to pay
10 pounds, which denotes that she has at least that sum at her disposal. In general, this
means that there is an announcement by a such that after this announcements ϕ holds.
Formally, M15a5b |� 〈a〉ϕ. The updated model MKa10a∨Ka15a

15a5b
, which is a restriction

of the original model to the states where Ka10a ∨ Ka15a holds, is presented in Fig. 2.
Indeed, in the updated model agent b knows that a has at least 10 pounds, but not

the exact sum. The same holds if agent b announces her bid simultaneously with a in
the initial situation. Moreover, a can achieve ϕ no matter what agent b announces, e.g.
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Fig. 2 Updated model

MKa10a∨Ka15a
15a5b

10a5b 10a10b 10a15b

15a5b 15a10b 15a15b

a a

a a

b b b

Kb5b, Kb(5b ∨ 10b), or Kb(5b ∨ 10b ∨ 15b), since all their announcements made in
the conjunction with a’s announcement Ka10a ∨ Ka15a result in the updated models
satisfying ϕ. Formally, M15a5b |� 〈[a]〉ϕ.

2.2 Syntax and Semantics of CAL

Let A denote a finite set of agents, and P denote a countable set of propositional
variables.

Definition 1 The language of coalition announcement logic LCAL is defined by the
following BNF:

ϕ,ψ ::=p | ¬ϕ | (ϕ ∧ ψ) | Kaϕ | [ψ]ϕ | [〈G〉]ϕ,

where p ∈ P , a ∈ A,G ⊆ A, and all the usual abbreviations of propositional logic and
conventions for deleting parentheses hold. The dual operators are defined as follows:
̂Kaϕ := ¬Ka¬ϕ, 〈ψ〉ϕ := ¬[ψ]¬ϕ, and 〈[G]〉ϕ := ¬[〈G〉]¬ϕ. The language of
group announcement logic LGAL is obtained by replacing [〈G〉]ϕ with [G]ϕ (the dual
is written as 〈G〉ϕ). Language LPAL is the language without the operator [〈G〉]ϕ, and
LEL is the pure epistemic language without the operators [ψ]ϕ and [〈G〉]ϕ. Formulas
of CAL are interpreted in epistemic models.

Definition 2 An epistemic model is a triple M = (W ,∼, V ), whereW is a non-empty
set of states, ∼: A → P(W × W ) assigns an equivalence relation to each agent, and
V : P → P(W ) assigns a set of states to each propositional variable. If necessary, we
refer to the elements of the model as WM , ∼M , and V M .

Epistemic model M is called finite ifW is finite. A pair Mw with w ∈ W is called a
pointedmodel. Also, wewriteM ⊆ N ifWM ⊆ WN , and∼M and V M are restrictions
of ∼N and V N to WM , and then call M a submodel of N .

Definition 3 For a model M = (W ,∼, V ) and X ⊆ W , an updated model MX
w is the

tuple (WX ,∼X , V X ), where X ⊆ W , w ∈ X , WX = X , ∼X
a = ∼a ∩ (X × X) for all

a ∈ A, and V X (p) = V (p) ∩ X .

Let LG
EL denote the set of formulas of the form

∧

i∈G Kiϕi , where for every i ∈ G
it holds that ϕi ∈ LEL .
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Definition 4 Let Mw be a pointed epistemic model. The semantics is inductively
defined as follows:

Mw |� p iff w ∈ V M (p)
Mw |� ¬ϕ iff Mw �|� ϕ

Mw |� ϕ ∧ ψ iff Mw |� ϕ and Mw |� ψ

Mw |� Kaϕ iff ∀v ∈ W : w ∼M
a v implies Mv |� ϕ

Mw |� [ϕ]ψ iff Mw |� ϕ implies MX
w |� ψ, where X = {v ∈ W | Mv |� ϕ}

Mw |� [〈G〉]ϕ iff ∀ψ∈LG
EL ∃χ∈LA\G

EL : Mw |� ψ → 〈ψ ∧ χ〉ϕ

For clarity, we will write Mϕ
w = (Wϕ,∼ϕ, V ϕ) for MX

w = (WX ,∼X , V X ) when-
ever X = {v ∈ W | Mv |� ϕ}. Also note that, in order to avoid circularity,
quantification in the condition for coalition announcements is restricted to formulas
of epistemic logic.

Since in themodel checking procedurewewill also be consideringGALmodalities,
we provide a truth definition for [G]ϕ:

Mw |� [G]ϕ iff ∀ψ∈LG
EL : Mw |� [ψ]ϕ

Formula [G]ϕ is read as ‘whatever agents from G announce, ϕ holds.’ The operator
for coalition announcements [〈G〉]ϕ is read as ‘whatever agents from G announce,
there is a simultaneous announcement by agents from A \ G such that ϕ holds.’

The semantics for the ‘diamond’ versions of group/strategic announcement opera-
tors is as follows:

Mw |� 〈G〉ϕ iff ∃ψ∈LG
EL : Mw |� 〈ψ〉ϕ

Mw |� 〈[G]〉ϕ iff ∃ψ∈LG
EL ∀χ∈LA\G

EL : Mw |� ψ ∧ [ψ ∧ χ ]ϕ

They are read as ‘there is a combined simultaneous announcements by agents from
G, such that ϕ holds,’ and ‘there is an announcement by agents from G, such that
whatever agents from A \ G announce at the same time, ϕ holds’ correspondingly.

Definition 5 We call formula ϕ a validity if and only if for any pointed model Mw it
holds that Mw |� ϕ. Given Mw and ϕ, we say that ϕ is satisfied in Mw if and only if
Mw |� ϕ.

2.3 Bisimulation

The notion of bisimulation (Blackburn et al. 2001, Chapter 2) plays a significant role
in the paper.

Definition 6 Let M = (WM ,∼M , V M ) and N = (WN , ∼N , V N ) be two models. A
non-empty binary relation Z ⊆ WM × WN is called a bisimulation if and only if for
all w ∈ WM and t ∈ WN with (w, t) ∈ Z :
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Atoms for all p ∈ P , w ∈ V M (p) if and only if t ∈ V N (p);
Forth for all a ∈ A and all v ∈ WM : if w ∼M

a v, then there is a u ∈ WN such
that t ∼N

a u and (v, u) ∈ Z ;
Back for all a ∈ A and all u ∈ WN : if t ∼N

a u, then there is a v ∈ WM such that
w ∼M

a v and (v, u) ∈ Z .

If there is a bisimulation between models M and N linking states w and t , we say that
Mw and Nt are bisimilar, and write Mw � Nt .

Next, we show an extension of the well-known result that bisimulation between
states implies that these states satisfy the same formulas.

Proposition 1 Let M = (WM ,∼M , V M ) and N = (WN ,∼N , V N ) be epistemic
models such that Mw � Nv for some w ∈ WM and v ∈ WN . Then for all ϕ ∈
LGAL ∪ LCAL , Mw |� ϕ if and only if Nv |� ϕ.

Proof The proof is by induction on the structure of ϕ. Note that it is straightforward
to define a size relation between formulas in such a way that the quantifier depth of
formulas is considered before the modal depth and subformula relation.

The boolean cases are immediate, and the proof for the case of public announce-
ments can be found, for example, in vanDitmarschandFrench (2020). Here we prove
only the case for coalition announcements, since the case for group announcements is
similar (and simpler).

Induction hypothesis. For all ϕ,ψ ∈ LGAL ∪ LCAL such that size(ϕ) < size(ψ),
and all w′ ∈ WM , v′ ∈ WN : Mw′ |� ϕ if and only if Nv′ |� ϕ.

Case 〈[G]〉ϕ.⇒: LetMw |� 〈[G]〉ϕ. By the definition of semantics, this is equivalent
to ∃ψ∈LG

EL ∀χ∈LA\G
EL : Mw |� ψ ∧ [ψ ∧ χ ]ϕ. Because the quantifier depth of

〈[G]〉ϕ is greater than the quantifier depth of ψ or [ψ ∧ χ ]ϕ, we have that size(ψ) <

size(〈[G]〉ϕ) and size([ψ ∧ χ ]ϕ) < size(〈[G]〉ϕ). By the induction hypothesis, we
have that for all formulas ψ ∈ LG

EL , Mw |� ψ if and only if Nv |� ψ , and for all

ψ ∈ LG
EL and χ ∈ LA\G

EL , Mw |� [ψ ∧ χ ]ϕ if and only if Nv |� [ψ ∧ χ ]ϕ. Hence,
∃ψ∈LG

EL ∀χ∈LA\G
EL : Nv |� ψ ∧ [ψ ∧ χ ]ϕ which is equivalent to Nv |� 〈[G]〉ϕ by

the semantics. ��
The bisimulation contraction of a model is, informally, the most compact represen-

tation of that model.

Definition 7 Let M = (W ,∼, V ) be a model. The bisimulation contraction of M is
the model ‖M‖ = (‖W‖, ‖∼‖, ‖V ‖), where ‖W‖ = {[w] | w ∈ W } and [w] =
{v ∈ W | Mw � Mv}, [w]‖∼‖a[v] if and only if ∃w′ ∈ [w], ∃v′ ∈ [v] such that
w′ ∼a v′, and [w] ∈ ‖V ‖(p) if and only ifw ∈ V (p).We call amodelM bisimulation
contracted if M is isomorphic to ‖M‖.

It is a standard result that Mw � ‖M‖[w] (see, for example, (Goranko and Otto
2007)).

Corollary 1 For all ϕ ∈ LGAL ∪ LCAL , ‖M‖[w] |� ϕ if and only if Mw |� ϕ.
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3 Strategies of Groups of Agents on Finite Models

3.1 Distinguishing Formulas

In this section we introduce distinguishing formulas that are satisfied in only one (up
to bisimulation) state in a finite model. The discussion is based on van Ditmarsch et al.
(2014). Although agents know and can possibly announce an infinite number of for-
mulas, using distinguishing formulas allows us to consider only finitelymany different
announcements. This is done by associating strategies of agents with corresponding
distinguishing formulas,where a strategy of agenta is a union ofa-equivalence classes.

Without loss of generality, we assume that the set of propositional variables P is
finite. This is justified by the fact that in a finite epistemicmodelM = (W ,∼, V ) there
are 2|W | unique truth assignments for a propositional variable, and a truth assignment
for any p2|W |+1 will repeat one from p1, ..., p2|W | .

We continue with the formal definition of distinguishing formulas.

Definition 8 Let a finite epistemic model M = (W ,∼, V ) be given. Formula δS,S′ is
called distinguishing for S, S′ ⊆ W if S ⊆ W δS,S′ and S′ ∩ W δS,S′ = ∅. If a formula
distinguishes state w from all other non-bisimilar states in M , we abuse the notation
and write δw.

Proposition 2 ( vanBenthem (1998), vanDitmarsch et al. (2014)) Let M = (W ,∼, V )

be a finite epistemicmodel. Every statew in M has a distinguishing formula δw ∈ LEL .

Proof The construction and proof are found in van Ditmarsch et al. (2014, Lemma
8.1), that in its turn copies the argument found in van Benthem (1998, Section 3.1).
Instead of technical detail we sketch the argument.

Let Mw be a finite pointed epistemic model. Without loss of generality we assume
that M is bisimulation contracted. A distinguishing formula δw is constructed recur-
sively as follows, where k ∈ N:

δ0w := ∧

w∈V (p) p ∧ ∧

w/∈V (p) ¬p
δk+1
w := δ0w ∧ ∧

a∈A(
∧

w∼av
̂Kaδ

k
v ∧ Ka

∨

w∼av
δkv)

δw := δ
|W |2
w

Conjuncts δ0w,
∧

w∼av
̂Kaδ

k
v , and Ka

∨

w∼av
δkv respectively emulate conditions

Atoms, Forth, and Back of the definition of bisimulation. Indeed, it is then easy
to see that the binary relation Z on W defined by:

For all w, v ∈ W , (w, v) ∈ Z iff for all k ∈ N, Mw |� δkv ,

is a bisimulation on finite models. Therefore, for each w ∈ W that is not bisimilar
to v there is a max ∈ N such that Mw �|� δmax

v . One can take max = |W |2, as also
observed in van Benthem (1998, Section 5). ��

Assumptions regarding some given model being finite and bisimulation contracted
are of vital importance for the construction of distinguishing formulas. If the model
is infinite, then we may either need an infinite amount of propositional variables to
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describe the given state, or there may be infinite branches of accessibility relations. If
themodel is not bisimulation contracted, i.e. there are bisimilar states in themodel, then
distinguishing formulas cease to be unique—the same formula describes all bisimilar
states in themodel. This becomes a problem if wewant to switch from agents announc-
ing formulas to agents ‘choosing’ a definable submodel: in the latter case agents may
distinguish between bisimilar states.

Having defined distinguishing formulas for states, we can define distinguishing
formulas for sets of states.

Definition 9 Let Mw be a finite model and S be a set of states in M . A distinguishing
formula for S is

δS :=
∨

w∈S
δw.

Let us recall the bidding example from Sect. 2.1, and construct the distinguishing
formula δ15a5b . Note that for this particular example it is enough to construct distin-
guishing formulas of depth 0 only. This is due to the fact that each state in the example
has a unique valuation of propositional variables. We, however, proceed with the full
construction for illustrative purposes.

First, we start with the propositional description of the state:

δ015a5b := 15a ∧ 5b ∧ ¬10a ∧ ¬5a ∧ ¬10b ∧ ¬15b.

Let us assume that we calculated δ0’s in the same fashion for all other states. Next,
we proceed with the first iteration of δ15a5b :

δ115a5b := δ015a5b ∧
∧

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

̂Kaδ
0
15a5b

∧ ̂Kaδ
0
15a10b

∧ ̂Kaδ
0
15a15b

∧ Ka

⎛

⎜

⎝

∨

δ015a5b
δ015a10b
δ015a15b

⎞

⎟

⎠

̂Kbδ
0
15a5b

∧ ̂Kbδ
0
10a5b

∧ ̂Kbδ
0
5a5b

∧ Kb

⎛

⎜

⎝

∨

δ015a5b
δ010a5b
δ05a5b

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The process continues for |W |2 iterations. Informally, each iteration of a distin-
guishing formula construction adds one layer for each state in a model. Hence, in our
example with 9 states distinguishing formula δ15a5b looks as follows (assuming that
all previous δk15a5b

’s with k ≤ |W |2 − 1 have been calculated):

δk+1
15a5b

:= δ015a5b ∧
∧

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

̂Kaδ
k
15a5b

∧ ̂Kaδ
k
15a10b

∧ ̂Kaδ
k
15a15b

∧ Ka

⎛

⎜

⎝

∨

δk15a5b
δk15a10b
δk15a15b

⎞

⎟

⎠

̂Kbδ
k
15a5b

∧ ̂Kbδ
k
10a5b

∧ ̂Kbδ
k
5a5b

∧ Kb

⎛

⎜

⎝

∨

δk15a5b
δk10a5b
δk5a5b

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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Note that since models we are dealing with in this paper are finite, distinguishing
formulas always exist.

3.2 Strategies

In this section we introduce strategies and connect them to public announcements
using distinguishing formulas. In the setting of GAL, strategies are sets of states that
agents can ensure to be in the updated model by announcing a formula that holds in
those states. For CAL, however, this is not always true, as the anti-coalition may have
a counter-strategy to reduce the set initially chosen by the coalition. Still, we use word
‘strategy’ in both contexts. The formal definition of a strategy is presented below.

Definition 10 A strategy for an agent a in a finite model Mw is a union of equivalence
classes of a containing the a-equivalence class of w. Let S(a, w) be the set of all
strategies for agent a in Mw. A strategy for group G is defined as

⋂

i∈G Xi such that
for all i ∈ G, Xi ∈ S(i, w). The set of available strategies for a group of agents G in
Mw is denoted by S(G, w).

Strategies are implemented by agents, and generally public announcements do
not correspond to strategies. Consider model M15a5b in Fig. 1 and formula ϕ :=
(15a ∧ 5b) ∨ (15a ∧ 10b) ∨ (10a ∧ 5b). It is easy to see that public announcement of
ϕ does not correspond to any strategy of a and b, that is Wϕ /∈ S({a, b}, 15a5b).

Note that for any Mw and G ⊆ A, S(G, w) is not empty, since the trivial strategy
that includes all the states of the current model is available to all agents. We denote
the trivial strategy by X�.

Proposition 3 In a finite model Mw, for any G ⊆ A, S(G, w) is finite.

Proof This is due to the fact that in a finitemodel there is a finite number of equivalence
classes for each agent. ��

Thus, in Fig. 1 there are three a-equivalence classes: {15a5b, 15a10b, 15a15b},
{10a5b, 10a10b, 10a15b}, and {5a5b, 5a10b, 5a15b}. Let us designate them by the
first element of a corresponding set, printed in typewriter font, i.e. 15a5b, 10a5b,
and 5a5b. The set of all available strategies of agent a in M15a5b is {15a5b,15a5b ∪
10a5b,15a5b ∪ 5a5b,15a5b ∪ 10a5b ∪ 5a5b}. Similarly, the set of all avail-
able strategies of agent b in M15a5b is {15a5b,15a5b ∪ 15a10b,15a5b ∪
15a15b,15a5b ∪ 15a10b ∪ 15a15b}. Finally, all possible intersections of a’s and
b’s strategies from the set of all available strategies of group {a, b}. For example,
there is a group strategy for agents a and b that contains only two states – 15a5b and
10a5b. This strategy is an intersection of a’s 15a5b ∪ 10a5b and b’s 15a5b, that is
{15a5b, 15a10b, 15a15b, 10a5b, 10a10b, 10a15b}∩ {15a5b, 10a5b, 5a5b}.

Now we tie together announcements and strategies. Each of infinitely many possi-
ble announcements by agents in a finite model corresponds to a set of states where it is
true (a strategy). In a finite bisimulation contracted model, each strategy is definable
by a distinguishing formula, hence it corresponds to an announcement. This allows
us to consider finitely many strategies instead of considering infinitely many possi-
ble announcements: there are only finitely many non-equivalent (in terms of model
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updates) announcements for each finite model, and each of them has a corresponding
distinguishing formula of some strategy.

Given a finite and bisimulation contracted model Mw and strategy X ∈ S(G, w), a
distinguishing formula δX for X can be obtained from Definition 9 as

∨

v∈X δv .
Next, we show that agents know their strategies and thus can make corresponding

announcements.

Proposition 4 Let Mw be a finite bisimulation contracted model, and X ∈ S(a, w).
Then Mw |� KaδX . Also, let XG := ⋂

i∈G Xi , where for all i ∈ G, Xi ∈ S(i, w), be
a group strategy, then Mw |� ∧

i∈G KiδXi .

Proof Weshow just the first part of the proposition, since the second part follows easily.
By the definition of a strategy, X = [w1]a ∪ ...∪[wn]a , where [w1]a, ..., [wn]a belong
to the set of a-equivalence classes. Since Mw is bisimulation contracted, for every
equivalence class [wi ]a there is a corresponding distinguishing formula δ[wi ]a . From
the fact that for all v ∈ [wi ]a , Mv |� δ[wi ]a (by Proposition 2 and Definition 9), we
have that Mv |� Kaδ[wi ]a . The same holds for other equivalence classes of a including
the one with w, and we have Mw |� (Kaδ[w1]a ∨ ... ∨ Kaδ[wn ]a ), which implies
Mw |� Ka(δ[w1]a ∨ ... ∨ δ[wn ]a ). Note that δ[w1]a ∨ ... ∨ δ[wn ]a is a distinguishing
formula of strategy X , so we can write Mw |� KaδX . Finally, having defined K jδX j

for all j ∈ G, such that X j ∈ S( j, w), the group strategy XG = ⋂

j∈G X j in Mw

corresponds to Mw |� ∧

j∈G K jδX j . ��
The following proposition states that given a strategy, the corresponding public

announcement yields exactly the model with states specified by the strategy.

Proposition 5 Given a finite bisimulation contracted model M = (W ,∼, V ) and a
strategy X ∈ S(a, w), W KaδX = X. More generally, W

∧

i∈G Ki δXi = XG, where
XG := ⋂

i∈G Xi such that for all i ∈ G, Xi ∈ S(i, w).

Proof In order to prove that WKaδX = X for X ∈ S(a, w), we need to show that for
all v ∈ W , v ∈ WKaδX if and only if v ∈ X .

⇒: Let for some arbitrary v ∈ W , v ∈ WKaδX . By the definition of WKaδX , this
means that Mv |� KaδX . Expanding δX , we get Mv |� Ka

∨

u∈X δu . Since ∼a is an
equivalence relation, the latter implies that Mv |� ∨

u∈X δu . Due to the fact that M is
bisimulation contracted, Mv |� ∨

u∈X δu if and only if δv is one of δu’s, i.e. Mv |� δv

and v ∈ X .
⇐: Let for some arbitrary v ∈ W , v ∈ X . Since X is a strategy, by Proposition 4

we have that Mw |� Ka
∨

u∈X δu . Due to the fact that M is bisimulation contracted
and v ∈ X , v also satisfies Ka

∨

u∈X δu . Hence, v ∈ WKa
∨

u∈X δu , or, equivalently,
v ∈ WKaδX .

Finally, let us consider the case of group G. It is clear that W
∧

i∈G Ki δXi =
⋂

i∈G WKi δXi , where for all i ∈ G, Xi ∈ S(i, w). Each WKi δXi is equal to Xi for
all i ∈ G. Hence,

⋂

i∈G WKi δXi = ⋂

i∈G Xi . The latter is equivalent to XG by the
definition of a group strategy. ��

We also show that true group announcements correspond to group strategies.
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Proposition 6 Let Mw be a finite bisimulation contracted epistemic model, and ψ ∈
LG
EL such that Mw |� ψ . Then there is a strategy X ∈ S(G, w) such that X = Wψ .

Proof Assume that Mw |� ψ . Formula ψ is an abbreviation for
∧

i∈G Kiψi , where
ψi ∈ LEL . Let us consider some particular Kaψa . By the semantics we have that
Mw |� Kaψa holds if and only if for all v reachable from w via a, Mv |� ψa .
Note that all states reachable from the given one via a form an a-equivalence class
[w]a . In the same way, Kaψa may be true in other a-equivalence classes [u]a, ...[t]a .
Hence, formula Kaψa holds in the union of these equivalence classes, i.e. it holds in
WKaψa = [w]a ∪ ... ∪ [t]a . By Definition 10, [w]a ∪ ... ∪ [t]a is a strategy X of agent
a in Mw.

Now assume that we have defined strategies Xi in Mw of all i ∈ G in this fash-
ion. From the fact that W

∧

i∈G Kiψi = ⋂

i∈G WKiψi we have that W
∧

i∈G Kiψi =
⋂

i∈G WKiψi = ⋂

i∈G Xi , and the latter is a group strategy X ∈ S(G, w). ��
Now, let us reformulate semantics for the group and coalition announcement oper-

ators in terms of strategies.

Proposition 7 For a finite bisimulation contracted model Mw we have that

Mw |� 〈G〉ϕ iff ∃X ∈ S(G, w) : MX
w |� ϕ,

Mw |� 〈[G]〉ϕ iff ∃X ∈ S(G, w) ∀Y ∈ S(A \ G, w) : MX∩Y
w |� ϕ.

Proof Case 〈G〉ϕ.⇒: Assume that for some pointedmodel we have thatMw |� 〈G〉ϕ.
By the semantics this means that ∃ψ ∈ LG

EL : Mw |� 〈ψ〉ϕ. The latter is equivalent
to Mw |� ψ and Mψ

w |� ϕ. By Definition 3 and Proposition 6, this implies MX
w |� ϕ

for some X ∈ S(G, w).
⇐: Let X ∈ S(G, w) be a group strategy such that MX

w |� ϕ. Then, by Propo-
sitions 4 and 5 , there is an announcement of distinguishing formulas by agents
from G such that X = W

∧

i∈G Ki δXi , where Xi ∈ S(i, w) for all i ∈ G. Hence

M
∧

i∈G Ki δXi
w |� ϕ and Mw |� ∧

i∈G KiδXi . The latter is equivalent to Mw |� 〈G〉ϕ
by the semantics.

Case 〈[G]〉ϕ. ⇒: Suppose that for some Mw it holds that Mw |� 〈[G]〉ϕ. By the
definition of semantics this is equivalent to ∃ψ ∈ LG

EL ,∀χ ∈ LA\G
EL : Mw |� ψ ∧[ψ ∧

χ ]ϕ.
Let LA\G

Mw
= {χ ∈ LA\G

EL | Mw |� χ} be the set of truthful announcements by

A \ G in Mw. Since LA\G
Mw

⊂ LA\G
EL , we have that ∃ψ ∈ LG

EL ,∀χ ∈ LA\G
EL : Mw |�

ψ ∧[ψ ∧χ ]ϕ implies ∃ψ ∈ LG
EL ,∀χ ∈ LA\G

Mw
: Mw |� ψ ∧χ and Mψ∧χ

w |� ϕ. Hence,

by Proposition 6,we haveMX∩Y
w |� ϕ for some X ∈ S(G, w) and allY ∈ S(A\G, w).

⇐: Assume that there is some strategy X ∈ S(G, w) such that for all strategies
Y ∈ S(A \ G, w) it holds that MX∩Y

w |� ϕ. We need to show that

∃ψ ∈ LG
EL ,∀χ ∈ LA\G

EL : Mw |� ψ ∧ [ψ ∧ χ ]ϕ.

Let ψ = ∧

i∈G KiδXi (assuming X = ⋂

i∈G Xi ). By Proposition 4, Mw |� ψ ,

and by Proposition 5, Wψ = X . Take an arbitrary χ ∈ LA\G
EL . If Mw �|� χ , then
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trivially Mw |� ψ ∧ [ψ ∧ χ ]ϕ holds. If Mw |� χ , then by Proposition 6, for some
Y ∈ S(A \ G, w), Y = Wχ . Since for all Y ∈ S(A \ G, w), MX∩Y

w |� ϕ, we have

that Mψ∧χ
w |� ϕ, hence Mw |� ψ ∧ [ψ ∧ χ ]ϕ holds for all χ ∈ LA\G

EL . The latter is
equivalent to Mw |� 〈[G]〉ϕ by the semantics. ��

Sometimes we may be interested in situations where it is beneficial for agents to
be as informative as possible (or, equivalently, leave as little uncertainty as possible).
We recall the Maxim of Quantity postulated by Grice (1975; 1989):

Make your contribution as informative as is required.

However, he also adds

Do not make your contribution more informative than is required.

What is as informative as required depends on the goal of the communication. So, in
terms of epistemic logic, it depends on the epistemic goal to be satisfied in the model
restriction resulting from the announcement, or from the sequence of announcements
(as in a conversation consisting of various statements by different people, exactly the
CAL setting). If the epistemic goal is full information on the value of all propositional
variables, then the most informative announcement is the adequate announcement.
However, there are other settings wherein the most informative announcement is not
adequate. Typical settings of that kind are security protocols wherein the communicat-
ing principals want to be as informative as required (namely satisfying the information
goal) but not more than that. They should guarantee safety: the eavesdropper should
not be able to learn the information. The most informative announcement may then
backfire. For example, a Bridge player had better not declare that she has the Queen
of Hearts. This is very informative for her partner, but equally informative for the
opposing team.

The type of announcements that fulfill the requirement that they are as informative
as possible is defined in Definition 11.

Definition 11 Let Mw be a finite bisimulation contracted model. A maximally infor-
mative announcement by G is a formula ψ ∈ LG

EL such that w ∈ Wψ and for all
χ ∈ LG

EL such that w ∈ Wχ it holds that Wψ ⊆ Wχ . For finite models such an
announcement always exists Ågotnes and van Ditmarsch (2011). We will call the
corresponding strategy X ∈ S(G, w) the strongest strategy on a given model.

Intuitively, the strongest strategy is the smallest available strategy. Note that in
a bisimulation contracted model Mw, the strongest strategy of agents G is X =
⋂

i∈G [w]i , that is agents’ strategies consist of the single equivalence classes that
include the current state.

In model M15a5b in Fig. 1 a’s strongest strategy is {15a5b, 15a10b, 15a15b},
and b’s strongest strategy is {15a5b, 10a5b, 5a5b}. So, the strongest strategy of
group {a, b} is the intersection of strongest strategies of agents from the group:
{15a5b, 15a10b15a15b}∩ {15a5b, 10a5b, 5a5b} = {15a5b}. Corresponding announce-
ments are, respectively, Ka(δ15a5b ∨ δ15a10b ∨ δ15a15b), Kb(δ15a5b ∨ δ10a5b ∨ δ5a5b),
and Ka(δ15a5b ∨ δ15a10b ∨ δ15a15b ) ∧ Kb(δ15a5b ∨ δ10a5b ∨ δ5a5b ).
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4 Model Checking for CAL

Employing strategies allows for a rather simple model checking algorithm for CAL.
We switch from quantification over an infinite number of epistemic formulas to quan-
tification over a finite set of strategies (Sect. 4.1). Moreover, we show that if the
target formula is a positive PAL formula, then model checking is even more effective
(Sect. 4.2).

4.1 General Case

First, let us define the model checking problem.

Definition 12 Let Mw be a finite epistemic model, and ϕ ∈ LCAL ∪LGAL . The model
checking problem is the problem to determine whether ϕ is satisfied in Mw.

We are going to solve this problem by providing an algorithm mc that, given a
finite epistemic model M = (W ,∼, V ) and some formula ϕ, computes Wϕ . Then
the answer to the model checking problem for Mw will be yes if w ∈ Wϕ , and no
otherwise.

As a side effect, for formulas of the form 〈G〉ψ or 〈[G]〉ψ and for each state in
Wϕ , mc also writes out a strategy of G (a set of states) that ensures ψ . We could
have defined mc to return a pair consisting of Wϕ and a strategy (or an empty set,
for formulas that are not of form 〈G〉ϕ or 〈[G]〉ϕ) but we have decided to output the
strategy as a side effect for ease of presentation.

Algorithm 1 takes a finite model M and ϕ0 ∈ LCAL ∪ LGAL as an input, and
returnsWϕ0 , while also writing out a list of ‘witness’ strategies for group and coalition
announcement operators. The case forGALmodalities is treated similarly to themodel
checking algorithm introduced in Ågotnes et al. (2010), apart from also printing out
the witness strategy. The case for CAL modalities requires checking each strategy
against all possible strategies by the opponents. Unlike the algorithm in Ågotnes et al.
(2010) which runs in APTIME, we state a deterministic PSPACE algorithm.

But before providing the algorithm, we first need to introduce a function
next(G, M, w, X), that given a group of agents G, a model M , a statew and a strategy
X , returns the next strategy X ′ in S(G, w).

We assume that in the input M = (W ,∼, V ), ∼a for each a is given as a set of
equivalence classes of states, and that for each agent a there are na such classes (clearly
na ≤ |W |; observe also that this way of specifying the equivalence relation is linear
rather than quadratic in |W |). Each strategy in S({a}, w) should include the equivalence
class [w]a . There are 2na−1 subsets of the set of the remaining∼a-equivalence classes,
and hence |S({a}, w)| = 2na−1.

The set S(G, w) can be ordered using the order on the set of agents A and on the
equivalence classes of each agent a in G. For example, if an agent a has equivalence
classes e1, . . . , em in M , and e1 contains w,1 then the order on S({a}, w) by shortest
first and then lexicographically on S({a}, w) is:

1 Clearly, w could belong to an equivalence class other than e1, e.g. to e3, but the point remains that the
remaining unions of equivalence classes can be ordered in the same way.
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e1 = [w]a
e1 ∪ e2
e1 ∪ e3
. . .

e1 ∪ em
e1 ∪ e2 ∪ e3
e1 ∪ e2 ∪ e4
. . .

e1 ∪ e2 . . . ∪ em = W

Note that the first and the last strategies of a can be computed in time and space at most
linear in the size of the model. Given an arbitrary element X in this order, the next
one in the order (the function next({a}, M, w, X)) can be computed in time and space
polynomial in the size of the model. For a union of length j , we first check whether
the last element can be ‘incremented’ (whether it is not e1 or em) and if yes, increment
it. If it cannot be incremented, then we check if the element j − 1 can be incremented
(if it is not e1 or em−1). If it can be incremented to the next equivalence class e′, we
increment j − 1 and change j to e′′ where e′′ follows e′ in the order of equivalence
classes. If it cannot be incremented, we repeat until we either produce the next union
of length j or we produce the first union of length j + 1 which is e1 ∪ e2 ∪ . . .∪ e j+1.

Similarly, given the order on agents in G, say a1, . . . , ak , each agent’s strategies,
si1, . . . , s

i
Ni
, where Ni = 2ni−1, the set S(G, w) can be ordered lexicographically

(below, Ni = 2ni−1, and siNi
= W is the last strategy of agent i):

s11 ∩ . . . ∩ sk1 = ⋂

i∈G [w]i
s11 ∩ . . . ∩ sk−1

1 ∩ sk2
. . .

s1N1
∩ . . . ∩ skNk

= W

Again, the first and the last strategies of G can be computed in time at most linear in
the size of the model, and the next element in time and space polynomial in the size
of the model. Similarly to the single agent case, if the kth agent’s strategy X is not
W , we increment it by calling next({ak}, M, w, X), else we attempt to increment the
strategy of ak−1 and reset the strategy of ak to its first strategy [w]ak , etc.

For a group G of k agents, each with 2nai −1 strategies, we have that |S(G, w)| =
2�knai −1 ≤ 2|W |−1. Hence the size of S(G, w) is bounded by the exponential in the
size of the model (although not in |G|). A straightforward model-checking algorithm
would generate S(G, w) (and S(A \ G, w) for coalition announcements) and iterate
over it to check if the group or coalition announcement formula is satisfied. However
generating S(G, w) explicitly requires exponential amount of space. Instead of use
the function next(G,M,w,X) to generate the strategy that follows X in the ordering
of S(G, w). Generating and testing strategies one at a time only requires polynomial
amount of space. For technical convenience, we also define

next(G, M, w,∅) =
⋂

i∈G
si1
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(the first strategy in S(G, w) follows ∅) and

next(G, M, w,
⋂

i∈G
siNi

) = ∅

(calling next on the last strategy returns ∅). Note that ∅ /∈ S(G, w).

Algorithm 1 mc(M, ϕ0)

1: function mc(M, ϕ0)
2: case ϕ0 = p
3: return V (p)

4: case ϕ0 = ¬ϕ

5: return (W \ mc(M, ϕ))

6: case ϕ0 = ϕ ∧ ψ

7: return mc(M, ϕ) ∩ mc(M, ψ)

8: case ϕ0 = Kaϕ

9: return {w | [w]a ⊆ mc(M, ϕ)}
10: case ϕ0 = [ψ]ϕ
11: return (W \ mc(M, ψ)) ∪ mc(Mψ, ϕ)

12: case ϕ0 = 〈G〉ϕ
13: compute the bisimulation contraction ‖M‖ = (‖W‖, ‖∼‖, ‖V ‖)
14: ρ ← ∅
15: for w ∈ W do
16: X ← ∅
17: found ← false
18: while next(G, ‖M‖, [w], X) �= ∅ ∧ found = false do
19: X ← next(G, ‖M‖, [w], X)

20: if [w] ∈ mc(‖M‖X , ϕ) then
21: found ← true
22: ρ ← ρ ∪ {w}
23: print(〈G〉ϕ, ‖M‖, [w], X)

24: return ρ

25: case ϕ0 = 〈[G]〉ϕ
26: compute the bisimulation contraction ‖M‖ = (‖W‖, ‖∼‖, ‖V ‖)
27: ρ ← ∅
28: for w ∈ W do
29: X ← ∅
30: found ← false
31: while next(G, ‖M‖, [w], X) �= ∅ ∧ found = false do
32: X ← next(G, ‖M‖, [w], X)

33: check ← true
34: Y ← ∅
35: while next(A \ G, ‖M‖, [w], Y ) �= ∅ do
36: Y ← next(A \ G, ‖M‖, [w], Y )

37: check ← check ∧ ([w] ∈ mc(‖M‖X∩Y , ϕ))

38: if check then
39: ρ ← ρ ∪ {w}
40: print(〈[G]〉ϕ, ‖M‖, [w], X)

41: found ← true

42: return ρ

123



686 N. Alechina et al.

Now we show the correctness of the algorithm.

Proposition 8 Let Mw be a finite epistemic model, and ϕ ∈ LCAL ∪ LGAL . Then
w ∈ mc(M, ϕ) if and only if Mw |� ϕ.

Proof The proof is by induction on the complexity of ϕ. Boolean cases are straightfor-
ward and we omit them. In the proofs for cases 〈G〉ϕ and 〈[G]〉ϕ, we use Proposition 7.

Case [ψ]ϕ. Let w ∈ mc(M, [ψ]ϕ). This is equivalent to w ∈ (W \ mc(M, ψ)) ∪
mc(Mψ, ϕ) by line 11 of the algorithm. The latter is equivalent to Mw |� ¬ψ or
Mψ

w |� ϕ by the induction hypothesis. This is equivalent to Mw |� [ψ]ϕ by the
semantics.

Case 〈G〉ϕ. ⇒: Suppose w ∈ mc(M, 〈G〉ϕ). By lines 18-22 this means that for
some strategy X ∈ S(G, [w]), [w] ∈ mc(‖M‖X , ϕ). By the induction hypothesis,
‖M‖X[w] |� ϕ, and ‖M‖[w] |� 〈G〉ϕ by the semantics. The latter implies Mw |� 〈G〉ϕ.

⇐: Let Mw |� 〈G〉ϕ, which is equivalent to ‖M‖[w] |� 〈G〉ϕ, and means that there
is some strategy X ∈ S(G, [w]), such that ‖M‖X[w] |� ϕ. By the induction hypothesis,

the latter holds if and only if [w] ∈ mc(‖M‖X , ϕ). By lines 18-22, we have that
w ∈ mc(M, 〈G〉ϕ).

Case 〈[G]〉ϕ.⇒: Supposew ∈ mc(M, 〈[G]〉ϕ). By lines 32-39, this means that there
exists strategy X ∈ S(G, [w]) such that for all strategies Y ∈ S(A \ G, [w]), [w] ∈
mc(‖M‖X∩Y , ϕ). By the induction hypothesis, ∃X ∈ S(G, [w]),∀Y ∈ S(A\G, [w]) :
‖M‖X∩Y[w] |� ϕ, which is ‖M‖[w] |� 〈[G]〉ϕ by Proposition 7. The latter is equivalent
to Mw |� 〈[G]〉ϕ by Corollary 1.

⇐: Let Mw |� 〈[G]〉ϕ, which is equivalent to ‖M‖[w] |� 〈[G]〉ϕ by Corollary
1. According to Proposition 7, this in turn is equivalent to ∃X ∈ S(G, [w]), ∀Y ∈
S(A\G, [w]) : ‖M‖X∩Y[w] |� ϕ. By the induction hypothesis, the latter holds if and only

if there is X ∈ S(G, [w]) such that for all Y ∈ S(A\G, [w]), [w] ∈ mc(‖M‖X∩Y , ϕ).
By lines 32-39, we have that w ∈ mc(M, 〈[G]〉ϕ). ��
Proposition 9 Model checking for CAL is PSPACE-complete.

Proof All the cases of the model checking algorithm apart from the case for 〈[G]〉 (and
〈G〉 for GAL) require polynomial time, both in the size of the model and the size of
the formula (hence, polynomial space as a consequence).

The cases for 〈G〉 and 〈[G]〉 generate and test exponentially many strategies. The
running time of the algorithm is therefore exponential in the size of the model (but
polynomial in the size of the formula).

However the cases for 〈G〉 and 〈[G]〉 use only polynomial amount of space. Observe
that next(G, M, w, X) can be implemented to generate and return the successor strat-
egy of X in time and space polynomial in M andG. Each check of a particular strategy
can be computed using only polynomial amount of space to represent ‖M‖[w] (which
contains at most the same number of states as the input modelM , and can be computed
in polynomial time (see Appendix A)) and the result of the update (which at most the
size of ‖M‖[w]) and make a recursive call to check whether ϕ holds in the update.

Hardness can be obtained by a slight modification of the proof of PSPACE-
hardness of the model-checking problem for GAL in Ågotnes et al. (2010). The proof
encodes satisfiability of a quantified boolean formula (QBF) as a problem whether
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Fig. 3 Model M that corresponds to a QBF

a particular GAL formula is true in a model corresponding to the QBF. We high-
light just some parts of the proof from Ågotnes et al. (2010). Given some QBF
Ψ := Q1x1...Qnxn	(x1, ..., xn), the authors construct a model that depends on the
number of variables in the formula. We have depicted the model in Fig. 3, wherein
those variables possibly indexed with 0 or 1 have become the names of the states.

Apart from agent i , whose relation is universal, there is also agent g, whose relation
is the identity. Next, the authors define properties q j ‘only one of x0j and x1j is in

the model’ and r j ‘both x0j and x1j are in the model’. These properties are used to
recursively define a GAL formula ψ(Ψ ) that will be then evaluated in model Mx |�
ψ(Ψ ). An example of a corresponding GAL formula for the given QBF ∀x1∃x2∀x3 :
	(x1, x2, x3) is Ki [g](q1 ∧ r2 ∧ r3 → ̂Ki 〈g〉(q1 ∧ q2 ∧ r3 ∧ Ki [g](q1 ∧ q2 ∧ q3 →
	(̂Ki p

+
1 , ̂Ki p

+
2 , ̂Ki p

+
3 )))).

For our proof, however, it is enough to notice the following. Since the encoding uses
only two agents: an omniscient g and a universal i , we can replace [g] and 〈g〉 with
[〈g〉] and 〈[g]〉 (since i’s only strategy is equivalent to � and no other GAL operators
are used in the encoding) and obtain a CAL encoding. ��

4.2 Positive Case

In this section we demonstrate the following result: if in a given formula the subfor-
mulas within the scope of coalition and group announcement operators are positive
PAL formulas, then complexity of model checking is polynomial.

Allowing coalition announcement modalities to bind only positive formulas is a
natural restriction. Positive formulas have a special property: if the sum of knowledge
of agents in G (their distributed knowledge) includes a positive formula ϕ, then ϕ can
bemade commonknowledgeby agroupor coalition announcement byG. Formally, for
a positive ϕ, Mw |� DGϕ implies Mw |� 〈[G]〉CGϕ, where DG stands for distributed
knowledge which is interpreted by the intersection of all ∼a relations, and CG stands
for common knowledge which is interpreted by the transitive closure of the union of
all ∼a relations. See van Ditmarsch and Kooi (2006), and also Ågotnes and Wáng
(2017) where the process of making distributed knowledge common knowledge is
called resolving distributed knowledge. In other words, positive epistemic formulas
can always be resolved by cooperative communication.
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Negative formulas do not have this property. For example, it can be distributed
knowledge of agents a and b that p and ¬Kb p: D{a,b}(p ∧ ¬Kb p). However it
is impossible to achieve common knowledge of this formula: C{a,b}(p ∧ ¬Kb p) is
inconsistent, since it implies both Kb p and ¬Kb p. Going back to the example in
Sect. 2.1, it is distributed knowledge of a and b that Ka15a and Kb5b. Both formulas
are positive and can be made common knowledge if a and b honestly report the
amount of money they have. However it is also distributed knowledge that¬Ka5b and
¬Kb15a . The conjunction

Ka15a ∧ Kb5b ∧ ¬Ka5b ∧ ¬Kb15a

is distributed knowledge, but it cannot be made common knowledge for the same
reasons as above.

We should also observe that positive formulas aremaybe not as rare as it may appear
on first sight. In the first place, in models where all states have different valuations,
every announcement is equivalent to the disjunction of the characteristic formulas of
depth 0 in the states in the denotation of the announcement. In particular, this is the
case for the model in Fig. 1.

However, in the second place, there are still other caseswhere announcement formu-
las are equivalent to positive formulas on some given model. This is not well-explored
territory. A very relevant result by Van Benthem is that on finite models any epistemic
formula ψ is equivalent to a formula ϕ that remains true after being announced. Such
formulas ϕ are now often known as successful formulas (van Benthem 2006; van
Ditmarsch and Kooi 2006) (the term employed in van Benthem (2006) is persistent).

The formula constructed in Van Benthem’s proof is a disjunction of characteristic
formulas of states in the original and in the restricted models. This successful formula
contains diamonds ̂Ki and may not be positive (another problematic issue is that it
also contains common knowledge modalities). The standard example of a successful
formula that is not positive is the formula ¬Ka p. However, this and similar construc-
tions may well lead to expand the use of the positive fragment. It is further relevant
to observe that such positive formulas are a good candidate to characterise what are
known as the preserved formulas (those that remain true after any update, see Defini-
tion 13 below), which is also shown in van Benthem (2006), but for the slightly smaller
positive fragment excluding the clause [¬ψ]ϕ for announcements given below.

The positive formulas are also relevant in an entirely different way for logics with
quantification over announcements, namely in the logic called APAL+ wherein the
quantification is over positive formulas only (in contrast to the situation investigated
in this section, as the CAL quantifier is over all known formulas, which need not be
positive, whereas the formula bound by the CAL quantifier must be positive). This
logic is investigated in van Ditmarsch et al. (2020). It is incomparable in expressivity
to APAL, and it is also reputed to be decidable. No version of CAL quantifying over
known positive formulas has been investigated to our knowledge.
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Definition 13 The language LPAL+ of the positive fragment of public announcement
logic PAL is defined by the following BNF:

ϕ,ψ ::=p | ¬p | (ϕ ∧ ψ) | (ϕ ∨ ψ) | Kaϕ | [¬ψ]ϕ,

where p ∈ P and a ∈ A.

Definition 14 Formula ϕ is preserved under submodels if for any models M and N ,
N ⊆ M and Mw |� ϕ implies Nw |� ϕ.

A known result that we use in this section states that formulas of LPAL+ are pre-
served under submodels (van Ditmarsch and Kooi 2006).

Proposition 10 Let Mw be a finite epistemic model, and let ϕ ∈ LCAL ∪ LGAL be
a formula such that for all its subformulas of form 〈[G]〉ψ and 〈G〉ψ , ψ belongs to
the positive fragment LPAL+ . It is possible to decide by means of a deterministic
algorithm working in polynomial time whether Mw |� ϕ.

Proof For positive formulas, we can replace Algorithm 1 by Algorithm 2.

Algorithm 2Model checking for positive formulas
1: function mcp(M, ϕ0)
2: case ϕ0 = p, ¬ϕ, ϕ ∧ ψ, Kaϕ, [ψ]ϕ
3: as Algorithm 1

13: case ϕ0 = 〈G〉ϕ
14: compute the bisimulation contraction ‖M‖ = (‖W‖, ‖∼‖, ‖V ‖)
15: ρ ← ∅
16: for w ∈ W do
17: X ← the strongest strategy of G in [w]
18: if [w] ∈ mcp(‖M‖X , ϕ) then
19: ρ ← ρ ∪ {w}
20: print(〈G〉ϕ, ‖M‖, [w], X)

21: return ρ

22: case ϕ0 = 〈[G]〉ϕ
23: compute the bisimulation contraction ‖M‖ = (‖W‖, ‖∼‖, ‖V ‖)
24: ρ ← ∅
25: for w ∈ W do
26: X ← the strongest strategy of G in [w]
27: if [w] ∈ mcp(‖M‖X , ϕ) then
28: ρ ← ρ ∪ {w}
29: print(〈[G]〉ϕ, ‖M‖, [w], X)

30: return ρ

For all subformulas of ϕ0, the algorithm runs in polynomial time. Consider the
modified call for 〈G〉ϕ and 〈[G]〉ϕ. Instead of checking all possible strategies as in the
general case, it requires constructing a single update model given a single (strongest)
strategy, which is a simple case of restricting the input model to the set of states in
the strategy. This can be done in polynomial time. Then we call the algorithm on the
updated model for ϕ, which by assumption requires polynomial time. ��
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Observe that the cases of CAL and GAL modalities for the positive fragment are
treated in an identical way: we check whether the strongest strategy of G can be used
to make the goal formula true. Intuitively, this is because every positive formula that
can be made true with any strategy, can be made true with the strongest strategy. And
in the case of CAL, the announcement by the opponents does not matter, since 〈[G]〉ϕ
implies 〈G〉ϕ, and any further restrictions of a model do not change the valuation of
positive ϕ.

Now, let us show that Algorithm 2 is correct.

Proposition 11 Let Mw be a finite epistemic model, and ϕ ∈ LPAL+ . Then w ∈
mcp(M, ϕ) if and only if Mw |� ϕ.

Proof The proof is by induction on the size of ϕ.
Case 〈G〉ϕ. ⇒: Suppose that w ∈ mcp(M, 〈G〉ϕ). This means that [w] ∈

mcp(‖M‖X , ϕ), where X is the strongest strategy of G in [w]. By the induction
hypothesis, we have that ‖M‖X[w] |� ϕ, hence by Proposition 7 ‖M‖[w] |� 〈G〉ϕ.
Since ‖M‖[w] is bisimilar to Mw, Mw |� 〈G〉ϕ.

⇐: Let Mw |� 〈G〉ϕ. By Corollary 1 this is equivalent to ‖M‖[w] |� 〈G〉ϕ, and
by Proposition 7 the latter is equivalent to ∃X ∈ S(G, [w]) : ‖M‖X[w] |� ϕ. Since

ϕ is positive and hence preserved under submodels, ∃X ∈ S(G, [w]) : ‖M‖X[w] |�
ϕ implies ‖M‖Y[w] |� ϕ, where Y is the strongest strategy of G. By the induction

hypothesis we have that [w] ∈ mcp(‖M‖Y , ϕ). And by lines 17-19 of Algorithm 2,
we conclude that w ∈ mcp(M, 〈G〉ϕ).

Case 〈[G]〉ϕ. ⇒: Suppose that w ∈ mcp(M, 〈[G]〉ϕ). This means that [w] ∈
mcp(‖M‖X ,ϕ), where X is the strongest strategy ofG in [w]. By the induction hypoth-
esis, we have that ‖M‖X[w] |� ϕ. Since ϕ is positive, for all stronger updates X ∩ Y ,

where Y ∈ S(A \ G, [w]), it holds that ‖M‖X∩Y[w] |� ϕ, which is ‖M‖[w] |� 〈[G]〉ϕ by
Proposition 7. Finally, the latter model is bisimilar to Mw and hence Mw |� 〈[G]〉ϕ.

⇐: Let Mw |� 〈[G]〉ϕ. By Corollary 1 this is equivalent to ‖M‖[w] |� 〈[G]〉ϕ, and
by Proposition 7 the latter is equivalent to ∃X ∈ S(G, [w]), ∀Y ∈ S(A \ G, [w]):
‖M‖X∩Y[w] |� ϕ. Note that the trivial strategy Y� ∈ S(A \ G, [w]). Hence,

∃X ∈ S(G, [w]), ∀Y ∈ S(A \ G, [w]): ‖M‖X∩Y[w] |� ϕ implies ∃X ∈ S(G, [w]):
‖M‖X∩Y�

[w] |� ϕ, which is equivalent to ‖M‖X[w] |� ϕ. Since ϕ is positive and hence

preserved under submodels, ‖M‖Z[w] |� ϕ, where Z is the strongest strategy of G in

[w]. By the induction hypothesis, we have that [w] ∈ mcp(‖M‖Z , ϕ). And by lines
26-28 of Algorithm 2, we conclude that w ∈ mcp(M, 〈[G]〉ϕ). ��

5 Implementation and Experimental Results

There are severalmodel checking tools for epistemic logic and its extensions.MCMAS
(Lomuscio et al. 2009) and MCK (Gammie and van der Meyden 2004) can be used
for verifying properties of epistemic temporal and strategy logics. DEMO (van Eijck
2007) can be used to verify PAL properties, and SMDEL (van Benthem et al. 2018)
to symbolically verify DEL properties. Recently DEMO has been used by Hagland
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(Hagland 2018) to check for the existence of group strategies in the Russian Cards
problem vanDitmarsch (2003). There are no general purposemodel checkers for GAL
and CAL.

The model checker MCCAL is implemented in Java by Wang (2019). The code is
available on https://github.com/Twelvelines/MCCAL. The model checker implemen-
tation is not optimised and is intended as a proof of concept. A non-trivial example
from Galimullin (2019) is presented in the next section.

5.1 Households and Burglars: An Example

In the city of N2 the local authorities have decided to gather information about, and
publish statistics on, electricity consumption in each neighbourhood. Consumption
information is submitted by each neighbourhood in the city, indicating the total number
of households that have been using electricity in the last month. Data about neigh-
bourhoods is public, and data about individual households is private, i.e., particular
users of electricity are not revealed, but the total number of such users in the area is
common knowledge. And there is a reason for such a requirement.

A group of local burglars is also interested in the public report on electricity con-
sumption: they hope to deduce which households have not used electricity recently
since it is an indication that property occupiers are not in their houses (most probably,
they are on vacation). However, the burglars want to be certain that a house is empty,
and will not risk burglary unless they know for sure that the property occupiers are
away. They are also very reluctant to lurk around a neighbourhood trying to learn who
is away, as such behaviour is very suspicious. Therefore, the only way to know about
‘vacant’ households is through the public energy consumption report.

In N, there is a small neighbourhood of only four houses: a, b, c, and d. They are
situated around a park in a circular fashion such that neighbours on the left and on the
right are equidistant. The park is quite large and the occupants of each house knows
only their immediate neighbours on the left and on the right. Thus, for example, the
occupant of c knows the occupants of b and d, and about their plans, but she is unaware
of the plans of the occupants of a.

The epistemic model TES describing the neighbourhood containing a, b, c, and
d is shown in Fig. 4. In the model, the names of states indicate who is at home; for
instance, 1001 means that the occupants of a and d are at home, and that the occupants
of b and c are not. Burglars v (for ‘villains’) do not have any information regarding
occupancy, and their epistemic relation is universal. We do not present the v-relation
in the figure, for readability. We will refer to the occupant of house i as agent i .

Let the actual state be 0101, and let 0101 also abbreviate¬pa∧pb∧¬pc∧pd , where
pi stands for ‘agent i is at home.’ Note that neither burglars nor the householders pos-
sess the full information about the neighbourhood: TES0101 |� ¬(Ka0101∨Kb0101∨
Kc0101∨Kd0101∨Kv0101). Also note that householders are aware of their own state
and of the states of their left- and right-hand-side neighbours, but not about the state
of the furthest house. E.g. TES0101 |� Kc¬pc ∧ Kc pb ∧ Kc pd ∧ ¬(Kc¬pa ∨ Kc pa).

2 The work on the model checking of CAL started when three authors were based in Nottingham, and the
fourth author was in Nancy. Moreover, city N is a well-known fictional location in Russian literature.
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Fig. 4 Model TES0101

The information that agents a, b, c and d want to submit is ‘two households in our
neighbourhood have been using electricity.’ This sentence, however, should conform
to the requirement that exact households remain unknown to the public outside the
neighbourhood. We can express this goal as the formula

sofa := Kv

∨

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

pa ∧ pb ∧ ¬pc ∧ ¬pd
pa ∧ ¬pb ∧ pc ∧ ¬pd
pa ∧ ¬pb ∧ ¬pc ∧ pd
¬pa ∧ pb ∧ pc ∧ ¬pd
¬pa ∧ pb ∧ ¬pc ∧ pd
¬pa ∧ ¬pb ∧ pc ∧ pd

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∧ ¬
∨

⎛

⎜

⎜

⎝

Kv pa ∨ Kv¬pa
Kv pb ∨ Kv¬pb
Kv pc ∨ Kv¬pc
Kv pd ∨ Kv¬pd

⎞

⎟

⎟

⎠

,

where sofa stands for ‘the state of affairs.’ A group announcement by agents to achieve
this goal is when everyone announces ‘I know that if I have not been using electricity
recently, then at least one of my neighbours on the left and on the right has, and if I
have been using it, then one of the neighbours must be on vacation’. Formally, such
an announcement can be expressed by the following formula

mis :=
∧

⎛

⎜

⎜

⎝

Ka((¬pa → (pd ∨ pb)) ∧ (pa → ¬(pd ∧ pb)))
Kb((¬pb → (pa ∨ pc)) ∧ (pb → ¬(pa ∧ pc)))
Kc((¬pc → (pb ∨ pd)) ∧ (pc → ¬(pb ∧ pd)))
Kd((¬pd → (pc ∨ pa)) ∧ (pd → ¬(pc ∧ pa)))

⎞

⎟

⎟

⎠

,
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Fig. 5 Model TESmis0101
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where mis stands for ‘mutual informative statement.’
Thus we have that TES0101 |� 〈mis〉sofa. Since mis is an announcement of agents’

knowledge, we can conclude that there is an announcement by a, b, c and d such that
sofa holds in the resulting model, i.e. TES0101 |� 〈{a, b, c, d}〉sofa. Result of updating
TES0101 with mis is presented in Fig. 5.

All the relations in themodel are v equivalence relations. Hence, indeed, in TESmis0101
exactly two households have been using electricity recently, and although the public
(andburglars aswell) knows that fact, it cannot nameparticular houses that are ‘vacant’.
A ‘side-effect’ of group announcement mis is that all residents in the neighbourhood
know exactly who is on vacation, and it is common knowledge.

Note that we can state a fact stronger than TES0101 |� 〈{a, b, c, d}〉sofa. Since v’s
relation is universal, they cannot prevent the group to make sofa true whatever they
(i.e. v) announce. In other words, TES0101 |� 〈[{a, b, c, d}]〉sofa.

Interestingly, in this particular example even two agents canmake an announcement
such that sofa holds in the resulting model. Consider the following announcement by
agents a and b:

misa,b := Ka((pa → ¬pd) ∧ (¬pa → pd)) ∧ Kb((pb → ¬pc) ∧ (¬pb → pc)).

The resulting updated model is shown in Fig. 6 (all the relations are v-relations).
The reader can verify that TES

misa,b
0101 |� sofa, and hence TES0101 |� 〈{a, b}〉sofa.

Note that compared to model TESmis0101 (Fig. 5), model TES
misa,b
0101 has fewer states. This

means that householders gave a bit more information than necessary, but they still
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managed to inform authorities that exactly two households have been using electricity
while not revealing the exact state of affairs.

Even though two householders can make a successful announcement, they must
ensure that none of the other agents has been conspiring with burglars. For assume
this is the case that agent c, for example, decides to reveal to burglars which houses
are empty. She can pass the following information with a’s and b’s submission:
Kc(¬pc ∧ pb ∧ pd). This announcement made in conjunction with misa,b results
in a singleton model with 0101 as the only state. Moreover, whatever a and b
announce, c always has an announcement to make sofa false in the resulting model
(and, alas, to let the burglars know that she is on vacation). Formally, we have that
TES0101 |� ¬〈[{a, b}]〉sofa, or, equivalently, TES0101 |� [〈{a, b}〉]¬sofa. Hence, in this
particular example, property householders should always cooperate if they want to
inform authorities about electricity consumption and keep the burglars away.

We have seen that an announcement by two householders is enough to make sofa
true. What about the single-agent case? As householders possess information about
themselves and two closest neighbours, they do not know the actual state of the world,
i.e. they do not have enough information about their furthest neighbour. However, it
is possible for some agents to make an announcement such that it informs the public
that at least two of the households have been using electricity recently, and particular
users and non-users remain incognito. Formally, such a target formula is as follows:

sofa1 := Kv

∨

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

pa ∧ pb ∧ ¬pc ∧ ¬pd
pa ∧ ¬pb ∧ pc ∧ ¬pd
pa ∧ ¬pb ∧ ¬pc ∧ pd
¬pa ∧ pb ∧ pc ∧ ¬pd
¬pa ∧ pb ∧ ¬pc ∧ pd
¬pa ∧ ¬pb ∧ pc ∧ pd
pa ∧ pb ∧ pc ∧ ¬pd
pa ∧ pb ∧ ¬pc ∧ pd
pa ∧ ¬pb ∧ pc ∧ pd
¬pa ∧ pb ∧ pc ∧ pd
pa ∧ pb ∧ pc ∧ pd

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∧ ¬
∨

⎛

⎜

⎜

⎝

Kv pa ∨ Kv¬pa
Kv pb ∨ Kv¬pb
Kv pc ∨ Kv¬pc
Kv pd ∨ Kv¬pd

⎞

⎟

⎟

⎠

.

Agent a, for instance, can make sofa1 true in TES0101 by announcing

misa := Ka((¬pa → (pb ∧ pd)) ∧ (pa → (pb ∨ pd))).

The result of such an announcement is presented in Fig. 7 (relation v is universal) .
It easy to verify that TESmisa0101 |� sofa1. Hence, it also holds that TES0101 |�

〈{a}〉sofa1, and, obviously, TES0101 |� ¬〈[{a}]〉sofa1.

5.2 Experiments

For trivial examples with two or three agents and two or three states, the running time
of MCCAL is less than the time needed to print the output to the screen.
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Fig. 7 Model TESmisa0101 11101001
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Table 1 Formulas and average
runtime of MCCAL

Formula Runtime

[mis]sofa 4ms

〈{a, b, c, d}〉sofa 41s137ms

〈[{a, b, c, d}]〉sofa 37s883ms

〈{a, b}〉sofa 496ms

¬〈[{a, b}]〉sofa 3s475ms

〈{a}〉sofa1 211ms

¬〈[{a}]〉sofa1 1s907ms

To have more interesting examples, we have checked the following formulas on the
TES0101 model:

1. [mis]sofa
2. 〈{a, b, c, d}〉sofa
3. 〈[{a, b, c, d}]〉sofa
4. 〈{a, b}〉sofa
5. ¬〈[{a, b}]〉sofa
6. 〈{a}〉sofa1
7. ¬〈[{a}]〉sofa1
The experiment was carried out on a quad-core 64-bit Processor running at 2.2 GHz

with 16GB of memory. The results of model checking these formulas and the average
runtime (including outputting lists of strategies) of 10 computations is presented in
Table 1. The times taken to check 〈{a, b, c, d}〉sofa and 〈[{a, b, c, d}]〉sofa are signif-
icantly longer because the current implementation explicitly computes the set of all
strategies for {a, b, c, d}, and this set is larger than the set of {a, b} and {a} strategies.
However, the set of strategies does not grow exponentially with the size of the group.
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Table 2 Formulas and generated strategies

Formula Group strategy
〈{a, b, c, d}〉sofa {0101, 1001, 1010}

a {1010, 1011, 1110, 1000, 1001, 0110, 1100, 0111, 0100, 0101}
b {1010, 1000, 1110, 1011, 1001, 1111, 0000, 0110, 1100, 0100, 0001, 0111, 1101, 0101}
c {1010, 1000, 0010, 1011, 1111, 1001, 0000, 1100, 0011, 1101, 0111, 0001, 0100, 0101}
d {1010, 1110, 1001, 0001, 1101, 0101}

〈[{a, b, c, d}]〉sofa {0101, 1001, 1010}
a {1010, 1011, 1110, 1000, 1001, 0110, 1100, 0111, 0100, 0101}
b {1010, 1000, 1110, 1011, 1001, 1111, 0000, 0110, 1100, 0100, 0001, 0111, 1101, 0101}
c {1010, 1000, 0010, 1011, 1111, 1001, 0000, 1100, 0011, 1101, 0111, 0001, 0100, 0101}
d {1010, 1110, 1001, 0001, 1101, 0101}

〈{a, b}〉sofa {0101, 1010}
a {1010, 0010, 1000, 0011, 0000, 0111, 0101}
b {1010, 1110, 1101, 1111, 0100, 0101}

〈{a}〉sofa1 {1011, 1110, 1001, 1100, 0111, 0101}
a {1011, 1110, 1001, 1100, 0111, 0101}

For formulas with the outermost occurrence of diamond versions of GAL and CAL
modalities (formulas 2, 3, 4, and 6), MCCAL returns the corresponding group and
individual strategies. The output of the model checker for state 0101 is presented in
Table 2.

The reader can verify that strategies for formulas 〈{a, b, c, d}〉sofa and
〈[{a, b, c, d}]〉sofa are identical. Indeed, the only agent outside of group {a, b, c, d}
is v, whose relation is universal. For formula 〈[{a}]〉sofa1, strategy of the group con-
sisting of a single agent coincides with the agent’s individual strategy. Strategies in the
table differ from the ones presented in Sect. 5.1. Our algorithm can be easily modified
to return all successful strategies.

6 Concluding Remarks

We have shown that the model checking problem for CAL is PSPACE-complete, just
like the one for GAL (Ågotnes et al. 2010) and APAL (Balbiani et al. 2008). We also
presented a model checker for both CAL and GAL formulas. An interesting direction
for future work is to optimise the performance of MCCAL.

In the special case when formulas within scopes of coalition modalities are positive
PAL formulas, the model checking problem is in P. The same result would apply to
GAL and APAL; in fact, in those cases the formulas in the scope of group and arbi-
trary announcement modalities can belong to a larger positive fragment (the positive
fragment of GAL and of APAL, respectively, rather than of PAL). The latter is due
to the fact that GAL and APAL operators are purely universal, while CAL operators
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combine universal and existential quantification, and CAL does not appear to have a
non-trivial positive fragment extending that of PAL.

An interesting special case we would like to consider in the future is the case of
models where each state has a different assignment of propositional variables such
that the models are already bisimulation contracted.
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Appendix: Bisimulation Contraction Algorithm

To state the bisimulation contraction algorithm, we need the following operations:

– for two sets X and Y ,

spli t(X ,Y ) =
{ {X ∩ Y , X ∩ Y } if X ∩ Y �= ∅, X ∩ Y �= ∅

{X} otherwise

We will refer to Y as a splitter of X if spli t(X ,Y ) = {X ∩ Y , X ∩ Y }.
– If Q is a set of sets, and Y a set, then

spli t(Q,Y ) =
⋃

X∈Q
spli t(X ,Y )

We will refer to Y as a splitter of Q if for some X ∈ Q, spli t(X ,Y ) = {X ∩
Y , X ∩ Y }.

– If Y is a set of states, and∼a an indistinguishability relation,∼a(Y ) = {x | ∃y ∈ Y
such that x ∼a y} (the preimage of Y with respect to ∼a). Clearly,

∼a(Y ) =
⋃

y∈Y
[y]a .

The algorithm below is essentially the naive version of the relational coarsest par-
tition algorithm by Paige and Tarjan (1987). It starts with all states placed in a single
block of the partition, and repeatedly splits the blocks until the states in the same block
are bisimilar (that is, until the blocks correspond to bisimulation equivalence classes).

123

http://creativecommons.org/licenses/by/4.0/


698 N. Alechina et al.

The first loop of the algorithm makes sure that the states in the same block satisfy
the same propositional variables. In this loop, each set V (p) is used as a (potential)
splitter. This enforces the Atoms condition of the bisimulation relation.

The second loop enforces the property that the Paige-Tarjan relational coarsest
partition algorithm was designed to achieve: for every indistinguishability relation
∼a , and every pair of blocks X , Y , either X ⊆ ∼a(Y ), or X ∩ ∼a(Y ) = ∅. This
ensures that either every element of X has an a-successor in Y , or none do (the Back
and Forth conditions of bisimulation relation).3 We repeatedly use splitters of the
form ∼a(Y ) until the partition does not change.

The algorithm returns a partition ofW into bisimulation equivalence classes, which
corresponds to ‖W‖.

Algorithm 3 Computing ‖W‖ given M = (W ,∼, V )

1: function rcp(M)
2: Q = {W }
3: for p ∈ P do
4: Q ← spli t(Q, V (p))

5: repeat
6: pick Y ∈ Q and a ∈ A such that ∼a(Y ) is a splitter for Q
7: Q ← spli t(Q, ∼a(Y ))

8: until there is no change to Q
9: return Q

The algorithm runs in time polynomial in |W |, |P| and |∼|.
The first loop in the algorithm iterates over |P| and in the worst case terminates

when every block in Q is a singleton set, that is, the size of Q at the end of the loop is
at most |W |, so at most |W | splits are performed. This means that the time complexity
of the first loop is O(|W | × |P|).

If sets [w]a are given as part of themodel, then computing the splitters is O(|∼|), and
the number of times the splits are performed is O(|W |) again. So the time complexity
of the second loop is O(|W | × |∼|).

The total time complexity of the algorithm is O(|W | × (|P| + |∼|)). A more
efficient (logarithmic in |W |) version is possible as shown by Paige and Tarjan (1987),
but here we state the simplest polynomial algorithm which is implemented in the
model-checking tool.
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