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Abstract

This paper studies the multi-solution phenomenon for the perspective four point

(P4P) problem from geometric and algebraic aspects. We give a pure geometric

proof that the P4P problem could have up to five solutions. We also give a clear

picture on how these five solutions could be realized. We prove that with probability

one, the P4P problem has a unique solution which can be represented by a set of

rational functions in the parameters. The simulant experiments show that to solve

the P4P problem with the rational functions is stable and accurate.

Keywords: Camera calibration, pose determination, perspective four point prob-

lem, P4P, probability, number of solutions.

1 Introduction

One of the fundamental goals of computer vision is to discover properties that are intrinsic

to a scene by one or several images of this scene[3, 7, 14]. Within this paradigm, an

essential process is the determination of the position and orientation of the sensing device

(the camera) with respect to objects in the scene [2]. This problem is known as the

perspective n point (PnP) problem and has many applications in automation, image

∗Partially supported by a National Key Basic Research Project of China and by a USA NSF grant
CCR-0201253.
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analysis, automated cartography, photogrammetry, robotics and model based machine

vision system. Fishler and Bolles [3] summarized the problem as follows:

“Given the relative spatial locations of n control points, and given the angle

to every pair of control points from an additional point called the Center of

Perspective (CP ), find the lengths of the line segments joining CP to each of

the control points.”

One of the major concerns of the PnP problem is its multi-solution phenomenon. The

reason is that if the solution is not unique then we need further determine which solution

is the one we want. Unfortunately, all PnP problems for n ≤ 5 have multiple solutions. It

is well-known that the P3P problem could have one to four essentially different solutions

[1, 3, 5, 12, 21, 20, 18].

In order to obtain a unique solution, one natural way is to add one more control point

to consider a P4P problem. In [15, 16], the P4P problem was reduced to a system of

polynomial equations and then a set of solutions was found under the assumption that

there exists one solution for the P4P problem in normal circumstances. Algorithms for

solving the P4P problem were proposed in [9, 17] without considering the number of

solutions. When the control points are coplanar, the P4P problem has a unique solution

[1]. If the control points are not coplanar, the P4P problem could have up to five solutions

[10]. It is proved that the P5P problem could have two solutions [11]. For n ≥ 6, the

PnP problem has one solution and can be solved with the DLT method [4].

For the P4P problem, we first give a pure geometric proof that the P4P problem has

up to five solutions. This proof gives a clear picture on how the five solutions could be

achieved. Previous work makes the assumption that in the general case the P4P problem

has a unique solution [10, 15, 16]. In [10], this fact is also supported by the computation

of a large set of data. In this paper, we give a proof that the probability for the P4P

problem to have a unique solution is one. This result provides a theoretical support for

the algorithms for solving P4P problems, which are based on the assumption that the

P4P problem generally has one solution. To show this property, it is not enough to say

that adding more constraints to the P3P problem will lead to constraints among the

parameters. Geometrically, we need to prove the following fact. Let N be the set of

parameters where the P4P problem has solutions, and M the set of parameters where the

P4P problem has more than one solutions. Then M must be of less dimension than that

of N . In certain sense, this is to say that M is a subset of N with zero “volume”. We

further show that this unique solution could be represented by a set of rational functions

in the parameters, and to solve the P4P problem with the rational functions is stable and

accurate. Similar results are also true for the P5P problem.
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The rest of the paper is organized as follows. In Section 2, give a geometric proof

that the P4P problem has up to five solutions. In Section 3, we prove the main result

about the P4P problem. In Section 4, conclusions are presented. The proof for the main

theorem is given in the appendix.

2 Number of solutions for P4P problem

Lemma 2.1 If the four control points of the P4P problem are not on the same plane then

it could only have a finite number of solutions.

Proof. Let the four control points be A,B,C and D. The P3P problem with center of

perspective P and control points A,B,C has an infinite number of solutions if and only

if P is on the circumscribed circle of triangle ABC [5]. Thus, the P4P problem has an

infinite number of solutions if and only if point P is on the circumscribed circles of triangles

ABC, ABD, ACD, BCD, which could happen if and only if points A,B,C,D and P are

on the same circle. This contradicts to the fact that A,B,C,D are not co-planar.

Lemma 2.2 Let P and Q be solutions of the P4P problem with non-planar control points

A,B,C and D. If P and Q are symmetric with respect to plane ABC, then D must be

on line PQ.

Proof. Since the angles between line PD and the lines PA, PB and PC are given, PD is

the intersection line of three cones with PA, PB and PC as the central axes respectively.

PD is the unique intersection line of the three cones since points A,B,C are not collinear.

Similarly, QD is also the unique intersection line of three cones QA, QB, QC with QA, QB,

QC as central axes. Suppose that D is not on line PQ. Let line PD meet plane ABC at

point D̄. Since A,B,C,D are not co-planar, D̄ 6= D. Since D is not on the line PQ, QD

and QD̄ are different lines. Because P and Q are symmetric with plane ABC, we have

∠AQD̄ = ∠APD̄ = ∠APD = ∠AQD. Similarly, ∠BQD̄ = ∠BQD, ∠CQD̄ = ∠CQD.

In other words, QD̄ is also the intersection of the three cones QA, QB, QC . This contradicts

to the uniqueness of the intersection line. Therefore, D must be on line PQ.

Theorem 2.3 The P4P problem with non co-planar control points A,B,C,D could have

up to five solutions. If it has five solutions, then there exists one pair of solutions which

are symmetric with one of the planes ABC, ABD, ACD or BCS and among the other

three solutions there exist no two which are symmetric with this plane.
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Proof. By Lemma 2.1, the P4P problem could only have a finite number of solutions.

There are at most eight solutions for the P3P problem with control points A, B and C,

of which four solutions are above the plane ABC and four are under the plane ABC

symmetrically. The solutions of the P4P problem must be from these eight solutions. By

Lemma 2.2, if two solutions P and Q, symmetric with respect to plane ABC, are both

solutions of the P4P problem, then D is on line PQ. It is clear that no other solutions

can be on line PQ. It is impossible for another pair of solutions symmetric with plane

ABC of the P3P problem to be the solutions of the P4P problem, since point D is already

on line PQ. Then the P4P problem could have at most one pair of solutions symmetric

with plane ABC. As a consequence, the P4P problem has at most five solutions. In the

following table, we give a concrete P4P problem which has five solutions (Fig. 1 and Fig.

2). Therefore, the P4P problem could have up to five solutions.

Parameter |AB| |AC| |BC| |AD| |CD| |BD|
value 1 1 1

√
13
6

√
13
6

√
13
6

Parameter cos ∠BPC cos ∠APC cos ∠APB cos ∠CPD cos ∠APD cos ∠BPD

value 5
8

5
8

5
8

√
3

2

√
3

2

√
3

2

Table 1. Parametric values for which the P4P problem has 5 solutions

B

A

C

D

P2

P1

Figure 1: Two solutions symmetric with
plane ABC

B

A

C

D

P3

P4

P5

Figure 2: Three other solutions

3 Solving the P4P problem

3.1 Probabilities for the number of solutions

Let P be the center of perspective, and A, B, C, D the control points. Let |PA| =

X, |PB| = Y, |PC| = L, |PD| = Z, l1 = |AB|2, l2 = |AC|2, l3 = |BC|2, l4 = |AD|2, l5 =

|CD|2, l6 = |BD|2, p = 2 cos ∠(BPC), q = 2 cos ∠(APC), r = 2 cos ∠(APB),
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s = 2 cos ∠(CPD), t = 2∠(APD), u = 2 cos ∠(BPD). The P4P equation system is:





p1 = X2 + Y 2 −XY r − l1 = 0
p2 = X2 + L2 −XLq − l2 = 0
p3 = Y 2 + L2 − Y Lp− l3 = 0
p4 = X2 + Z2 −XZs− l4 = 0
p5 = Z2 + L2 − ZLt− l5 = 0
p6 = Y 2 + Z2 − Y Zu− l6 = 0

(1)

We will explain that the solutions of the P4P problem for four non-coplanar points

A,B,C,D correspond to the positive solutions of equation system (1) for X,Y, Z, and

L. It is clear that the solutions of the P4P problem must be solutions of the P3P problem

with points A,B,C. As shown by Theorem 2.3, if two of the solutions P1 and P2 are on

different sides of plane ABC, then points P1, P2, D are collinear. Since A,B,C,D are

not co-planar, this guarantees that P1 and P2 are different solutions of equation system

(1). Therefore, we did not miss any solution with equation system (1).

Let l1 = awL2, l2 = bwL2, l3 = wL2, l4 = cwL2, l5 = dwL2, l6 = ewL2, X = xL,

Y = yL, Z = zL. Equation system (1) becomes the following equation system





q1 = x2 + y2 − xyr − aw = 0
q2 = y2 + 1− yp− bw = 0
q3 = x2 + 1− xq − w = 0
q4 = x2 + z2 − xzs− cw = 0
q5 = z2 + 1− zt− dw = 0
q6 = y2 + z2 − yzu− ew = 0

(2)

We assume the “reality conditions” (See [5]) for the P3P problems with perspective cen-

ter P and control points A,B,C; A,B,D; A,C,D; and B, C, D respectively. Basically

speaking, we assume that each of the above triangles is proper and P is not on the planes

determined by these triangles.

Lemma 3.1 For a set of values of the parameters V = {l1, l2, l3, l4, l5, l6, p, q, r, s, t, u},
the number of positive solutions of equation system (1) is the same as that of (2).

Proof. Since |q| = |2 cos(∠APC)| < 2, we have w = x2+1−xq = (x−q/2)2+1−q2/4 > 0.

We thus may establish the following one to one correspondence between the positive

solutions of (1) and (2)

(X,Y, L, Z)
x=X/L,y=Y/L,z=Z/L,w=l3/L2

−→ (x, y, z, w)
L=
√

l3/w,X=xL,Y =yL,Z=zL−→ (X,Y, L, Z).

Definition 3.2 A set of parametric values for U = {a, b, c, d, e, p, q, r, s, t, u} is called

physical if equation system (2) has at least one set of positive solution.
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Let P be the set of physical parametric values for parameters U . For U0 ∈ P, let ZU0

be the set of positive solutions of equation system (2) for parametric values U0.

Theorem 3.3 Use the notations introduced above.

1. For all U0 ∈ P, the probability for |ZU0 | = 1 is one. In other words, for physical

parameters, the probability for the P4P problem to have a unique solution is one.

2. We may find rational functions P,Q, R in the parameters such that with a probability

one for all physical parameters, the solutions for the P4P problem can be obtained

as follows x = P, y = Q, z = R.

To explain the above theorem, we need some concepts which may be found in [8, 19].

Here we use examples to illustrate the concepts. For a set of polynomials PS and a

polynomial D, we use Zero(PS) to denote the set of real solutions for equations PS = 0

and Zero(PS/D) = Zero(PS)− Zero(D). Zero(PS/D) is called a quasi-variety. We may

add inequalities to a quasi-variety to obtain semi-algebraic sets. The dimension of a quasi

variety or a semi algebraic set is the number of variables that can take arbitrary values.

For instance, the half unit sphere H = Zero({x2 + y2 + z2 − 1}) ∩ {(x, y, z) | z ≥ 0} is

a semi-algebraic set of dimension two; the unit circle C = Zero({x2 + y2 − 1, z}) is a

quasi-variety of dimension one. Since the dimension for C is one, its area is zero. While

the area for H is 2π. Then the probability for a random point P ∈ H belongs to C is

zero and the probability for a point P ∈ H belongs to H − C is one.

For the P4P problem, let P be the set of physical parametric values for parameters

U and T a set of parametric values such that the P4P has one solution in P − T. We

will prove that P is of dimension nine and T is of lower dimension than that of P. Since

P and T are quasi-algebraic sets, inside any sufficiently large finite box B, B ∩ P has a

positive volume as a nine-dimensional manifold and B ∩ T has a zero volume. Since B

can be of any size, we may conclude that the probability for a random parametric point

from P lies in P − T is one. With these concepts, Theorem 3.3 is a consequence of the

following result.

Theorem 3.4 The physical parameter set P for the P4P problem is a semi-algebraic set

of dimension nine in R11. We may find a subset T of P with dimension less than nine

and rational functions P,Q, R in the parameters U such that for U0 ∈ P−T, the equation

system (2) has one solution which can be given by x = P, y = Q, z = R.

The proof can be found in the appendix. In what below, we will show how to compute

the three rational functions P,Q, R and give a sketch of the proof.
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For polynomials f and g, let r = Res(f, g, x) be the resultant of f and g with variable

x [13]. Eliminating w from (2) with q3 = 0, we have the following equivalent equations:




h1 = x2 + y2 − xyr − a(x2 + 1− xq) = 0
h2 = y2 + 1− yp− b(x2 + 1− xq) = 0
h3 = x2 + z2 − xzs− c(x2 + 1− xq) = 0
h4 = z2 + 1− zt− d(x2 + 1− xq) = 0
h5 = y2 + z2 − yzu− e(x2 + 1− xq) = 0

(3)

Let f1 = h1 − h2, f2 = Res(f1, h1, y), f3 = h3 − h4, f4 = Res(f3, h3, z). Then




f1 = (p− rx)y + (1− a + b)x2 + (qa− bq)x− a + b− 1
f2 = a0x

4 + a1x
3 + a2x

2 + a3x + a4

f3 = (t− sx)z + (d− c + 1)x2 + (cq − dq)x− c + d− 1
f4 = b0x

4 + b1x
3 + b2x

2 + b3x + b4

(4)

where



a0 = b2 + a2 − br2 − 2ab + 2b + 1− 2a
a1 = −2a2q + (4bq + pr + 2q)a− pr + prb− 2b2q − 2bq + bqr2

a2 = (2 + q2)a2 + (−prq − p2 − 4b− 2q2b)a− 2 + 2b2 − br2 + b2q2 + r2 − prbq + p2

a3 = −2a2q + (p2q + pr − 2q + 4bq)a− pr − 2b2q + 2bq + prb
a4 = 1 + 2a− 2b + b2 + a2 − 2ab− p2a
b0 = d2 + c2 − 2cd + 2d− ds2 − 2c + 1
b1 = −2d2q + (−2q + qs2 + 4cq + ts)d + 2cq − 2c2q − ts + tsc
b2 = (2 + q2)d2 + (−tsq − 2cq2 − s2 − 4c)d + 2c2 + c2q2 + s2 − t2c− 2 + t2 − tscq
b3 = −2d2q + (ts + 2q + 4cq)d + t2cq − 2cq − 2c2q − ts + tsc
b4 = 1− t2c− 2d + 2c + c2 − 2cd + d2

(5)

Compute the subresultant sequence[13] for f2 and f4 with respect to x. Let the final

two polynomials in the sequence be f5 and f6 respectively. We have

f5 = i5x− u5, f6 = i6a
8 − u6 (6)

where i5, u5, i6, u6 are polynomials in the parameters U and u6 is of degree less than eight

in a; These polynomials can be found at http://www.mmrc.iss.ac.cn/˜ xgao/paper/gao-

pnpa.pdf. Substituting x by u5/i5 in f1 and f3 and clear denominators, we have

f7 = i7y − u7, f8 = i8z − u8 (7)

where u7 = (1 − a + b)u2
5 + (qa − bq)u5i5 + i25(−a + b − 1), i7 = ru5i5 − pi25, u8 =

(d − c + 1)u2
5 + (cq − dq)u5i5 + (−c + d − 1)i25, i8 = su5i5 − ti25. From f5 = f7 = f8 = 0,

we may represent x, y and z as rational functions in the parameters U .

x = u5

i5
, y = u7

i7
, z = u8

i8
. (8)

Substituting x, y, z by u5

i5
, u7

i7
, u8

i8
in h5 and clear the denominators, we have

f9 = i9e− u9 (9)

where u9 = −i25i
2
3u

2
2 − i25i

2
2u

2
3 + ui25i2i3u2u3 and i9 = −i22i

2
3u

2
5 − i25i

2
2i

2
3 + qi5i

2
2i

2
3u5.
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Lemma 3.5 For a set of parametric values, if f6 = 0, f9 = 0, i5i6i7i8i9 6= 0, then equation

system (2) has one set of solutions which can be computed with (8) and w = x2 + 1− xq.

The proof will be given in the Appendix.

The following is a sketch of the proof for Theorem 3.4. From the computation process,

the physical parameters must satisfy two equations f6 = 0, f9 = 0. There are eleven

parameters in U and equations f6 = 0, f9 = 0 will reduce the number of free parameters

by two. Intuitively speaking, the set of physical parameters P should be of dimension

nine. Let I = Zero(i5i6i7i8i9). For a U0 ∈ P− I, x, y, z can be solved with (8). We need

only to show that the dimension of P ∩ I is less than that of P.

3.2 Experimental Result

We give the following procedure to solve the P4P problem. By Lemma 3.5, if the para-

meters are from real observations, that is, the P4P problem has at least one solution for

these parameters, then the procedure will solve the P4P problem with probability one.

• Compute the l1, l2, l3, l4, l5, l6 and p, q, r, s, t, u from the control points, the image

points and the camera calibration matrix.

• Compute the a, b, c, d, e as follows. a = l1
l3
, b = l2

l3
, c = l4

l3
, d = l5

l3
, e = l6

l3
.

• Compute (x, y, z, w) as follows. x = u5

i5
, y = u7

i7
, z = u8

i8
, w =

u2
5+i25−qu5i5

i25
where

i5, u5, i7, i8, u7, u8 may be computed with the formulas given after equations (6) and

(7). If i5i7i8 = 0, the computation fails.

• Compute X,Y, L, Z as follows: L =
√

l3/w, X = xL,Y = yL, Z = zL. By Lemma

3.5, X,Y, L, Z are a set of solutions to the P4P problem.

We will discuss the accuracy and the stability of the algorithm. The following experi-

ments are done with Maple.

The optical center is located at the origin and the matrix of camera’s intrinsic parame-

ters is assumed to be the identity matrix. At each trial, four non-coplanar controls points

are generated at random within a cube centered at (0, 0, 50) and of dimension 60×60×60.

In the first experiment, we test the accuracy of our algorithm with a large set of data.

For a set of solutions obtained with the algorithm, we substitute them into (2) and check

whether the substituted values are zero or not. We take 1000 sets of parameters randomly.

The maximal substituted value into (2) is 0.1 ∗ 10−9, which is satisfactory.
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In the second experiment, we test the stability of our algorithm with a larger set of

data. One hundred trials are carried out and one hundred sets of parameters are computed

for each trial. For each set of parametric values, two sets of solutions are computed: one

with the original control points denoted by S = (X,Y, L, Z); the other with the control

points perturbed by random noises denoted by Ŝ = (X̂, Ŷ , L̂, Ẑ). Similar to [10], if

max(|X − X̂|, |Y − Ŷ |, |L− L̂|, |Z − Ẑ|) < 1.5, then S and Ŝ are considered as the same

solution. In trial i, let ni be the number of the parametric values such that the two

results are the same. Let ñ = (
∑100

i=1 ni)/100, ‖100−ñ‖
100

the absolute error, and
P100

i=1
eXi

100
the

relative error where X̃i is the maximal value of max( |X−X̂|
|X| , |Y−Ŷ |

|Y | , |L−L̂|
|L| , |Z−Ẑ|

|Z| ) for the one

hundred sets of parametric values in the i-th trial. The experimental results are listed

in the following table, from which we can observe that the algorithm yields very graceful

degradation with increasing noises and is, therefore very stable.

Noise Level 0.001 0.01 0.1 0.5 1.0 2.0 3.0 4.0
Absolute error 0 0 0 0 0.09 0.55 0.81 0.91
Relative error 1.2 ∗ 10−5 1.2 ∗ 10−4 0.0012 0.0061 0.012 0.025 0.035 0.046

Table 2. Error for the Algorithm

4 Conclusion

For the P4P problem, we proved that the probability for them to have a unique solution is

one. We further show that the unique solution to the P4P problem could be represented

by a set of rational functions in the parameters and to solve these problems with the

rational functions is quite stable and accurate.

Theoretically, we may obtain the explicit conditions for the P4P problem to have one,

two, . . . solutions. But, these conditions will be quite complicated and are computationally

very difficult to get. On the other hand, the probabilities obtained in this paper give clear

information on the distribution of the solutions for the P4P problems and may be used

as a guidance on the number of solutions during the solving process.

5 Appendix: Proof for Theorem 3.4

We need several concepts from algebraic geometry which may be found in [8, 13, 19].

Proof for Lemma 3.5. Continue with the computation in Section 3.2. Note that f6

in (6) is free of e, then the following is an irreducible ascending chain [13, 19] under the
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variable order b < c < d < p < q < r < s < t < u < a < e < x < y < z < w.

{
f6 = i6a

8 − u6, f9 = i9e− u9

f5 = i5x− u5, f7 = i7y − u7, f8 = i8z − u8, q2 = −w + x2 + 1− xq
(10)

We may check that the pseudo-remainders of the polynomials in (2) with respect to (10)

are zero. Hence, we have the following remainder formulas (see [19, 13] for definition)

Jsiqi = bi,1f6 + bi,2f9 + bi,3f5 + bi,4f7 + bi,5f8 + bi,6q2, i = 1, . . . , 6 (11)

where J = i5i6i7i8i9, si, i = 1, . . . , 6 are non-negative integers, and bi,j are polynomials.

From equations (11), we have

Zero((2)) = Zero((10)/J) ∪ Zero((2) ∪ {J}). (12)

Let S0 = Zero({f6, f9}/J). Then S0 is a quasi-variety for parameters U with dimension

nine. For a set of values η ∈ S0, since J(η) 6= 0, we may solve x, y, z, w with f5 = f7 =

f8 = q2 = 0 in (10). Let the solutions be x0, y0, z0, w0. Substitute η, x0, y0, z0, w0 into (11).

Since J(η) 6= 0, we have qi(η, x0, y0, z0, w0) = 0, i = 1, . . . , 6. Then η, x0, y0, z0, w0 consist

of a set of solutions to (2). By the computation procedure, the polynomials in (10) are

linear combinations of qi. Then this is the only solution to (2).

Proof for Theorem 3.4. Use the notations introduced in the proof of Lemma 3.5.

Since w = x2 + 1 − xq > 0, we have Zero((2)) = Zero((2)/w). Under the variable order

x < y < z < p < q < r < u < t < w < a < b < c < d < e, (2) is an irreducible

ascending chain [19, 13]. The initial of the polynomials in (2) is w. Then Zero((2)/w)

is an irreducible quasi variety whose dimension is the number of the variables minus the

number of polynomials in (2), which is 15− 6 = 9. Since the pseudo-remainder of J with

respect to (2) is not zero, J does not vanish on Zero((2)/w). By the affine dimension

theorem [8], Z0 = Zero((2) ∪ {J}/w) is of lower dimension than nine. Applying Wu-Ritt

Zero decomposition [13, 19], we have

Zero((2) ∪ {J}) = ∪d
j=1Zero(Ci/Jj)

where Cj are irreducible ascending chains [13, 19] and Jj are the products of initials of

the polynomials in Cj. Since Z0 is of dimension less that nine, we have |Cj| > 6. Let

Aj = Cj ∩Q[U ]. By Lemma 2.1, the P4P problem has a finite number of solutions. Then

each Cj contains four polynomials with leading variables x, y, z, w. As a consequence,

|Aj| > 2. We may assume that Jj are polynomials free of x, y, z, w [19]. Let Sj =

Zero(Aj/Jj), j = 1, . . . , d. Since |Aj| > 2, Sj is of dimension less than nine. Then S is

the set of the parametric values for which the x, y, z, w have complex solutions. S0 is of

dimension nine and Sj, j > 0 are of dimension lower than nine.
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The physical parametric set could be obtained as follows

P = ∪d
j=0S

′
i

where S′j is a semi-algebraic set obtained by adding some inequalities to Si so that x, y, z, w

have positive solutions [5]. Let

T = ∪d
j=1S

′
i.

Since S′i ⊂ Si, the dimension of T is less than nine. By Lemma 3.5, for parametric

values in P − T, we may solve x, y, z with (8). We now need only to show that the

dimension of P is nine. Let N be the semi-algebraic set of dimension nine defined in R9

by x > 0, y > 0, z > 0, |p| < 2, |q| < 2, |r| < 2, |s| < 2, |t| < 2, |u| < 2. We know that

w = x2 + 1 − xq > 0. Since |r| < 2, a = (x−y)2+(2−r)xy
w

> 0 for values from N. Similarly,

b, c, d, e are also positive. Then we may define a rational map from N to P as follows:

p = p, q = q, r = r, s = s, t = t, u = u,

a = x2+y2−xyr
x2+1−xq

, b = y2+1−yp
x2+1−xq

, c = x2+z2−xzs
x2+1−xq

, d = z2+1−zt
x2+1−xq

, e = y2+z2−yzu
x2+1−xq

(13)

We may also define a rational map from P to N as follows.

p = p, q = q, r = r, s = s, t = t, u = u, x = u5

i5
, y = u7

i7
, z = u8

i8
(14)

For J 6= 0, map (14) has meanings. We may prove that (13) and (14) are inversion maps

and thus are biratiobal maps between N and P. Therefore, P is of dimension nine.
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