Skip to main content
Log in

Generalized Fourier Descriptors with Applications to Objects Recognition in SVM Context

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

This paper is about generalized Fourier descriptors, and their application to the research of invariants under group actions. A general methodology is developed, crucially related to Pontryagin’s, Tannaka’s, Chu’s and Tatsuuma’s dualities, from abstract harmonic analysis. Application to motion groups provides a general methodology for pattern recognition. This methodology generalizes the classical basic method of Fourier-invariants of contours of objects. In the paper, we use the results of this theory, inside a Support-Vector-Machine context, for 3D objects-recognition. As usual in practice, we classify 3D objects starting from 2D information. However our method is rather general and could be applied directly to 3D data, in other contexts.

Our applications and comparisons with other methods are about human-face recognition, but also we provide tests and comparisons based upon standard data-bases such as the COIL data-base. Our methodology looks extremely efficient, and effective computations are rather simple and low cost.

The paper is divided in two parts: first, the part relative to applications and computations, in a SVM environment. The second part is devoted to the development of the general theory of generalized Fourier-descriptors, with several new results, about their completeness in particular. These results lead to simple formulas for motion-invariants of images, that are “complete” in a certain sense, and that are used in the first part of the paper. The computation of these invariants requires only standard FFT estimations, and one dimensional integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R., Robbin, J.: Transversal Mappings and Flows. Benjamin, Elmsford (1967)

    MATH  Google Scholar 

  2. Auslander, L., Tolimieri, R.: Is computing with the finite Fourier transform pure or applied mathematics? Bull. Am. Math. Soc. (N.S.) 1(6), 847–897 (1979)

    MATH  MathSciNet  Google Scholar 

  3. Barut, A.O., Raczka, R.: Theory of Group Representations and Applications, 2nd edn. World Scientific, Singapore (1986)

    MATH  Google Scholar 

  4. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  5. Boser, B.E., Guyon, I.M., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proceedings orf the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. ACM, New York (1992)

    Chapter  Google Scholar 

  6. Chong, C.-W., Raveendran, P., Mukundan, R.: Translation invariants of Zernike moments. Pattern Recognit. 36, 1765–1773 (2003)

    Article  MATH  Google Scholar 

  7. Chen, S.: A new vision system and the Fourier descriptors method by group representations. In: IEEE CDC Conference, Las Vegas, USA (1985)

  8. Chirikjian, G.S., Kyatkin, A.B.: Engineering Applications of Noncommutative Harmonic Analysis. with Emphasis on Rotation and Motion Groups. CRC Press, Boca Raton (2001)

    MATH  Google Scholar 

  9. Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm (2001)

  10. Chu, H.: Compactification and duality of topological groups. Trans. Am. Math. Soc. 123, 310–324 (1966)

    Article  MATH  Google Scholar 

  11. http://www.cs.columbia.edu/CAV

  12. Dixmier, J.: Les C *-algèbres et leurs représentations. Gauthier-Villars, Paris (1969)

    Google Scholar 

  13. Fonga, H.: Analyse harmonique sur les groupes et reconnaissance de formes. PhD thesis, Université de Grenoble (1992)

  14. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, New York (1990)

    MATH  Google Scholar 

  15. Gauthier, J.P., Bornard, G., Silbermann, M.: Harmonic analysis on motion groups and their homogeneous spaces. IEEE Trans. Syst. Man Cybern. 21 (1991)

  16. Geller, D., Kra, I., Popescu, S., Simanca, S.: On circulant matrices. Preprint, Stony Brook University

  17. Ghorbel, F.: A complete invariant description for grey level images by the harmonic analysis approach. Pattern Recognit. Lett. 15 (1994)

  18. Gourd, F.: Quelques méthodes d’analyse harmonique en théorie de la détection et de la reconnaissance de formes. PhD thesis, Université de Grenoble (1990)

  19. Gourd, F., Gauthier, J.P., Younes, H.: Une méthode d’invariants de l’analyse harmonique en reconnaissance de formes. Traitement Signal 6(3) (1989)

  20. Guo, G.-D., Li, S., Chan, K.: Face recognition by support vector machines. In: Proceedings of International Conference on Automatic Face and Gesture Recognition, pp. 196–201 (2000)

  21. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis. Springer, Berlin (1963)

    MATH  Google Scholar 

  22. Heyer, H.: Dualität über Lokal Kompakter Gruppen. Springer, Berlin (1970)

    Google Scholar 

  23. Hjelmas, E.: Face detection: a survey. Comput. Vis. Image Underst. 83, 236–274 (2001)

    Article  MATH  Google Scholar 

  24. Huang, R., Pavlovic, V., Metxas, D.N.: A hybrid face recognition method using Markov random fields. In: Proceedings of ICPR, pp. 157–160 (2004)

  25. Joyal, A., Street, R.: An introduction to Tannaka duality and quantum groups. In: Lecture Notes in Mathematics, vol. 1488, pp. 411–492. Springer, Berlin (1991)

    Google Scholar 

  26. Kadir, T., Zisserman, A., Brady, M.: An affine invariant salient region detector. In: ECCV, pp. 404–416 (2004)

  27. Kanatani, K.: Group Theoretical Methods in Image Understanding. Springer, Berlin (1990)

    MATH  Google Scholar 

  28. Kanatani, K., Chou, T.: Shape from texture: general principle. Artif. Intell. 38(1), 1–48 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  29. Khotanzad, A., Yaw, H.H.: Invariant image recognition by Zernike moments. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 489–497 (1990)

    Article  Google Scholar 

  30. Kyatkin, A.B., Chirikjian, G.S.: Pattern matching as a correlation on the discrete motion group. Comput. Vis. Image Underst. 74(1), 22–35 (1999)

    Article  Google Scholar 

  31. Kyatkin, A.B., Chirikjian, G.S.: Algorithms for fast convolution on motion groups. Appl. Comput. Harmon. Anal. 9, 220–241 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional neural network approach. IEEE Trans. Neural Netw. 8, 98–113 (1997)

    Article  Google Scholar 

  33. Leduc, J.P.: A group-theoretic construction with spatiotemporal wavelets for the analysis of rotational motion. J. Math. Imaging Vis. 17(3), 207–236 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lowe, D.: Distinctive image features from scale invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  35. Martinez, A.M.: Recognition of partially occluded and/or imprecisely localized faces using probabilistic approach. In: Proceedings of IEEE Computer Vision and Pattern Recognition, CVPR’2000, pp. 712–717 (2000)

  36. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: BMVC, pp. 384–393 (2002)

  37. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)

    Article  Google Scholar 

  38. Mukundan, R., Ramakrishnan, K.R.: Moment Functions in Image Analysis-Theory and Applications. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  39. Mukundan, R., Ramakrishnan, K.R.: Fast computation of Legendre and Zernike moments. Pattern Recognit. 28(9), 1433–1442 (1995)

    Article  MathSciNet  Google Scholar 

  40. Murase, H., Nayar, S.K.: Visual learning and recognition of 3D objects from appearance. Int. J. Comput. Vis. 14(1), 5–24 (1995)

    Article  Google Scholar 

  41. Murenzi, R.: Wavelet transform associated to the n-dimensional Euclidean group with dilations: signals in more than one dimension. In: Combes, J.M., Grossmann, A., Tchamitchian, P. (eds.) Wavelets: Time-Frequency Methods in Phase Space, pp. 239–246 (1990)

  42. Obrzalek, S., Matas, J.: Object recognition using local affine frames on distinguished regions. In: Electronic Proceeding of the 13th British Machine Vision Conference, University of Cardiff, pp. 113–122 (2002)

  43. ORL face database, AT&T Laboratories, Cambridge, U.K. http://www.cam-orl.co.uk/facedatabase.html

  44. http://www.pascal-network.org/challenges/VOC/

  45. Persoon, O., King, S.F.: Shape discrimination using Fourier descriptors, IEEE Syst. Man Cybern. 7(3) (1977)

  46. Rockmore, D.N.: Recent progress and applications in group FFTs. In: Computational noncommutative algebra and applications. NATO Sci. Ser. II Math. Phys. Chem., vol. 136, pp. 227–254. Kluwer Academic, Dordrecht (2004)

    Chapter  Google Scholar 

  47. Samaria, F.S., Harter, A.C.: Parametrization of a stochastic model for human face identification. In: Proceedings of the 2nd IEEE Workshop on Applications of Computer Vision (1994)

  48. Segman, J., Zeevi, Y.: Image analysis by wavelet type transforms: group theoretical approach. J. Math. Imaging Vis. 3, 51–77 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  49. Tatsuuma, N.: A duality theorem for locally compact groups. J. Math. Kyoto Univ. 6, 187–293 (1967)

    MathSciNet  Google Scholar 

  50. Tuytelaars, T., Van Gool, L.: Matching widely separated views based on affine invariant regions. Int. J. Comput. Vis. 59(1), 61–85 (2004)

    Article  Google Scholar 

  51. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  52. Turski, J.: Geometric Fourier analysis of the conformal camera for active vision. SIAM Rev. 46(1) (2004)

  53. Vapnik, V.N.: The Statistical Learning Theory. Springer, Berlin (1998)

    Google Scholar 

  54. Vapnik, V.N., Chervonenkis, A.J.: On the uniform convergences of relative frequencies of events to their probabilities. Theory Probab. Appl. 16, 264–280 (1971)

    Article  MATH  Google Scholar 

  55. Vilenkin, N.: Fonctions spéciales et théorie de la représentation des groupes. Dunod, Paris (1969)

    MATH  Google Scholar 

  56. Warner, G.: Harmonic Analysis on Semi-Simple Lie Groups. Springer, Berlin (1972)

    Google Scholar 

  57. Weil, A.: L’intégration dans les groupes topologiques et ses applications. Hermann, Paris (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fethi Smach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smach, F., Lemaître, C., Gauthier, JP. et al. Generalized Fourier Descriptors with Applications to Objects Recognition in SVM Context. J Math Imaging Vis 30, 43–71 (2008). https://doi.org/10.1007/s10851-007-0036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-007-0036-3

Keywords

Navigation