Skip to main content
Log in

Cramér-Rao Bounds for Estimating the Position and Width of 3D Tubular Structures and Analysis of Thin Structures with Application to Vascular Images

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this work we derive analytic lower bounds for estimating the position and width of 3D tubular structures. Based on a continuous image model comprising blur and noise introduced by an imaging system we analyze three different intensity models of 3D tubular structures with increasing complexity. The derived formulas indicate that quantification of 3D tubular structures can be performed with very high precision under certain assumptions. We also determine conditions under which the model parameters are coupled or uncoupled. For uncoupled parameters the lower bounds are independent of prior knowledge about other parameters, and the derivation of the bounds is simplified. The theoretical results are substantiated by experimental investigations based on discretized and quantized 3D image data. Moreover, we study limits on estimating the width of thin tubular structures in 3D images. We use the derived lower bound of the width estimate as a benchmark and compare it with three previously proposed accuracy limits for vessel width estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbey, C.K., Clarkson, E., Barrett, H.H., Müller, S.P., Rybicki, F.J.: A method for approximating the density of maximum-likelihood and maximum a posteriori estimates under a Gaussian noise model. Med. Image Anal. 2(4), 395–403 (1998)

    Article  Google Scholar 

  2. Abramowitz, M., Stegun, I.A.: Pocketbook of Mathematical Functions. Harri Deutsch, Thun und Frankfurt/Main (1984)

    MATH  Google Scholar 

  3. Bouma, H., Vilanova, A., van Vliet, L.J., Gerritsen, F.A.: Correction for the dislocation of curved surfaces caused by the PSF in 2D and 3D CT images. IEEE Trans. Pattern Anal. Mach. Intell. 27(9), 1501–1507 (2005)

    Article  Google Scholar 

  4. Chan, Y.T., Thomas, S.M.: Cramer–Rao lower bounds for estimation of a circular arc center and its radius. Graph. Mod. Image Process. 57(6), 527–532 (1995)

    Article  MATH  Google Scholar 

  5. Dougherty, G., Newman, D.: Measurement of thickness and density of thin structures by computed tomography: a simulation study. Med. Phys. 26(7), 1341–1348 (1999)

    Article  Google Scholar 

  6. Drewniok, C., Rohr, K.: Model-Based Detection and localization of circular landmarks in aerial images. Int. J. Comput. Vis. 24(3), 187–217 (1997)

    Article  Google Scholar 

  7. Grosche, G., Ziegler, V., Ziegler, D., Zeidlereds, E.: Teubner-Taschenbuch der Mathematik, Teil I, 1st edn. Teubner, Stuttgart (1996)

    Google Scholar 

  8. Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magn. Reson. Med. 34(6), 910–914 (1995)

    Article  Google Scholar 

  9. Holtzman-Gazit, M., Kimmel, R., Peled, N., Goldsher, D.: Segmentation of thin structures in volumetric medical images. IEEE Trans. Image Process. 15(2), 354–363 (2006)

    Article  Google Scholar 

  10. Hoogeveen, R.M., Bakker, C.J.G., Viergever, M.A.: Limits to the accuracy of vessel diameter measurement in MR angiography. J. Magn. Reson. Imaging 8(6), 1228–1239 (1998)

    Article  Google Scholar 

  11. Hoogeveen, R.M., Bakker, C.J.G., Viergever, M.A.: MR phase-contrast flow measurement with limited spatial resolution in small vessels: value of model-based image analysis. Magn. Reson. Med. 41(3), 520–528 (1999)

    Article  Google Scholar 

  12. Kakarala, R., Hero, A.O.: On achievable accuracy in edge localization. IEEE Trans. Pattern Anal. Mach. Intell. 14(7), 777–781 (1992)

    Article  Google Scholar 

  13. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. Ser. D 82, 35–45 (1960)

    Google Scholar 

  14. Kanatani, K.: Cramer–Rao lower bounds for curve fitting. Graph. Mod. Image Process. 60(2), 93–99 (1998)

    Article  Google Scholar 

  15. Kirbas, C., Quek, F.K.H.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 36(2), 81–121 (2004)

    Article  Google Scholar 

  16. Mendonça, P.R.S., Padfield, D., Miller, J., Turek, M.: Bias in the localization of curved edges. In: Pajdla, T., Matas, J. (eds.) Proc. 8th European Conference on Computer Vision (ECCV04), Part II, Prague, Czech Republic. Lecture Notes in Computer Science, vol. 3022, pp. 554–565. Springer, Berlin (2004)

    Google Scholar 

  17. Noordmans, H.J., Smeulders, A.W.M.: High accuracy tracking of 2D/3D curved line structures by consecutive cross-section matching. Pattern Recognit. Lett. 19(1), 97–111 (1998)

    Article  MATH  Google Scholar 

  18. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  19. Prevrhal, S., Engelke, K., Kalender, W.A.: Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. Phys. Med. Biol. 44(3), 751–764 (1999)

    Article  Google Scholar 

  20. Rohr, K.: On the precision in estimating the location of edges and corners. J. Math. Imaging Vis. 7(1), 7–22 (1997)

    Article  MathSciNet  Google Scholar 

  21. Rohr, K.: Fundamental limits in 3D Landmark localization. In: Christensen, G.E., Sonka, M. (eds.) Proc. 19th International Conference on Information Processing in Medical Imaging (IPMI’05), Glenwood Springs, CO/USA, July 2005. Lecture Notes in Computer Science, vol. 3565, pp. 286–298. Springer, Berlin (2005)

    Google Scholar 

  22. Rohr, K., Wörz, S.: High-precision localization and quantificiation of 3d tubular structures. In: Kovac̆ević, J., Meijering, E. (eds.) Proc. IEEE Int. Symposium on Biomedical Imaging: from Nano to Macro (ISBI’06), Arlington, VA/USA, April 2006, pp. 1160–1163 (2006)

  23. Sato, Y., Tanaka, H., Nishii, T., Nakanishi, K., Sugano, N., Kubota, T., Nakamura, H., Yoshikawa, H., Ochi, T., Tamura, S.: Limits on the accuracy of 3-D thickness measurement in magnetic resonance images—effects of voxel anisotropy. IEEE Trans. Med. Imaging 22(9), 1076–1088 (2003)

    Article  Google Scholar 

  24. Sato, Y., Yamamoto, S., Tamura, S.: Accurate quantification of small-diameter tubular structures in isotropic CT volume data based on multiscale line filter responses. In: Barillot, C., Haynor, S.R., Hellier, P. (eds.) Proc. Seventh International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI’04), Rennes/Saint-Malo, France, September 2004. Lecture Notes in Computer Science, vol. 3216, pp. 508–515. Springer, Berlin (2004)

    Google Scholar 

  25. Sonka, M., Reddy, G.K., Winniford, M.D., Collins, S.M.: Adaptive approach to accurate analysis of small-diameter vessels in cineangiograms. IEEE Trans. Med. Imaging 16(1), 87–95 (1997)

    Article  Google Scholar 

  26. van Trees, H.L.: Detection, Estimation, and Modulation Theory, Part I. Wiley, New York (1968)

    MATH  Google Scholar 

  27. Wörz, S., Rohr, K.: A new 3D parametric intensity model for accurate segmentation and quantification of human vessels. In: Barillot, C., Haynor, S.R., Hellier, P. (eds.) Proc. Seventh International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI’04), Rennes/Saint-Malo, France, September 2004. Lecture Notes in Computer Science, vol. 3216, pp. 491–499. Springer, Berlin (2004)

    Google Scholar 

  28. Wörz, S., Rohr, K.: Limits on estimating the width of thin tubular structures in 3d images. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) Proc. Ninth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI’06), Copenhagen, Denmark, October 2006. Lecture Notes in Computer Science, vol. 4190, pp. 215–222. Springer, Berlin (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Wörz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wörz, S., Rohr, K. Cramér-Rao Bounds for Estimating the Position and Width of 3D Tubular Structures and Analysis of Thin Structures with Application to Vascular Images. J Math Imaging Vis 30, 167–180 (2008). https://doi.org/10.1007/s10851-007-0041-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-007-0041-6

Keywords

Navigation