Skip to main content
Log in

The Structure of Visual Spaces

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The “visual space” of an optical observer situated at a single, fixed viewpoint is necessarily very ambiguous. Although the structure of the “visual field” (the lateral dimensions, i.e., the “image”) is well defined, the “depth” dimension has to be inferred from the image on the basis of “monocular depth cues” such as occlusion, shading, etc. Such cues are in no way “given”, but are guesses on the basis of prior knowledge about the generic structure of the world and the laws of optics. Thus such a guess is like a hallucination that is used to tentatively interpret image structures as depth cues. The guesses are successful if they lead to a coherent interpretation. Such “controlled hallucination” (in psychological terminology) is similar to the “analysis by synthesis” of computer vision. Although highly ambiguous, visual spaces do have geometrical structure. The group of ambiguities left open by the cues (e.g., the well known bas-relief ambiguity in the case of shape from shading) may be interpreted as the group of congruences (proper motions) of the space. The general structure of visual spaces for different visual fields is explored in the paper. Applications include improved viewing systems for optical man-machine interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbot, E., Flatland, E.: A Romance of Many Dimensions. Buccaneer Books, Cutchogue (1976) (first edition 1884)

    Google Scholar 

  2. Adelson, E.H., Bergen, J.R.: The plenoptic function and the elements of early vision. In: Landy, M., Movshon, J.A. (eds.) Computational Models of Visual Processing, pp. 3–20. MIT Press, Cambridge (1991)

    Google Scholar 

  3. Ames, A. Jr.: The illusion of depth from single pictures. J. Opt. Soc. Am. 10, 137–148 (1925)

    Google Scholar 

  4. Alexander, H.G. (ed.): The Leibniz-Clarke Correspondence. Manchester University Press, Manchester (1956)

    MATH  Google Scholar 

  5. Barre, A., Flocon, A.: La Perspective Curviligne, de l’Espace Visuel à Limage Construite. Flammarion, Paris (1968)

    Google Scholar 

  6. Belhumeur, P.N., Kriegman, D.J., Yuille, A.L.: The bas-relief ambiguity. Int. J. Comput. Vis. 35, 33–44 (1999)

    Article  Google Scholar 

  7. Bell, J.L.A.: Primer of Infinitesimal Analysis. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  8. Berkeley, G.: An essay towards a new theory of vision (1709). In: Theory of Vision and Other Writing by Bishop Berkeley. Dent and Sons, New York (1925)

    Google Scholar 

  9. Blank, A.A.: The Luneburg theory of visual space. J. Opt. Soc. Am. 43, 717–727 (1953)

    Article  MathSciNet  Google Scholar 

  10. Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  11. Brentano, F.: Psychology from Empirical Standpoint. Routledge, London (1995) (original 1874)

    Google Scholar 

  12. Brown, J.W.: Fundamentals of process neuropsychology. Brain Cogn. 38, 234 (1998)

    Article  Google Scholar 

  13. Carrol, L.: Alice’s Adventures in Wonderland. Macmillan, London (1865)

    Google Scholar 

  14. Cayley, A.: Sixth memoir upon the quantics. Philos. Trans. Rcmillan, R. Soc. Lond. 149, 61–70 (1859)

    Article  Google Scholar 

  15. Cornish, V.: Scenery and the Sense of Sight. Cambridge University Press, London (1935)

    Google Scholar 

  16. Coxeter, H.S.M.: Introduction to Geometry. Wiley Classics Library Series, New York (1989)

    Google Scholar 

  17. Denis, M.: Manifesto of symbolism. Revue Art et Critique (1890)

  18. Destombes, M.: Guillaume Postel cartographe. In: AAVV, Guillaume Postel 1581–1981. Actes du Colloque International d’Avranches, pp. 361–371. Guy Trédaniel, Paris (1985)

    Google Scholar 

  19. Donders, F.C.: Anomalies of Accommodation and Refraction. New Sydenham Society, London (1864)

    Google Scholar 

  20. Dubery, F., Willats, J.: Perspective and Other Drawing Systems. Van Nostrand Reinhold, New York (1983)

    Google Scholar 

  21. Duke-Elder, S.: The Eye in Evolution. System of Opthalmology, vol. I. Kimpton, London (1958)

    Google Scholar 

  22. Edwards, W., Lindman, H., Savage, L.J.: Bayesian statistical inference for psychological research. Psychol. Rev. 70, 193–242 (1963)

    Article  Google Scholar 

  23. Foley, J.M.: The size-distance relation and intrinsic geometry of visual space: implications for processing. Vis. Res. 12, 323–332 (1972)

    Article  Google Scholar 

  24. Gibson, J.J.: The Perception of the Visual World. Houghton-Mifflin, Boston (1950)

    Google Scholar 

  25. Gibson, J.J.: The Senses Considered as Perceptual Systems. Houghton-Mifflin, Boston (1966)

    Google Scholar 

  26. Gombridge, E.: Art and Illusion: A Study in the Psychology of Pictorial Representation. Phaedon, London (1969)

    Google Scholar 

  27. Graham, C.H.: Vision and Visual Perception. Wiley, New York (1966)

    Google Scholar 

  28. Hale, N.C.: Abstraction in Art and Nature. Watson-Guptill, New York (1972)

    Google Scholar 

  29. Hauck, G.: Die subjektive Perspektive und die Horizontalen Curvaturen des Dorischen Styls. Wittwer, Stuttgart (1875)

    Google Scholar 

  30. von Helmholtz, H.: Die Tatsachen in der Wahrnehmung. Hirschwald, Berlin (1878)

    Google Scholar 

  31. von Helmholtz, H.: Handbuch der Physiologischen Optik. Voss, Leipzig (1860)

    Google Scholar 

  32. Hess, R.F.: Developmental sensory impairment: amblyopia or tarachopia? Hum. Neurobiol. 1, 17–29 (1982)

    Google Scholar 

  33. Hilbert, D., Cohn-Vossen, S.: Geometry and the Imagination. Dover, New York (1944) (Orig. (G.) Anschauliche Geometrie, 1932)

    Google Scholar 

  34. Hildebrand, A.: The Problem of Form in Painting and Sculpture (transl. by M. Meyer and R.M. Ogden). Stechert, New York (1945) (First, German edition, Das Problem der Form, 1893)

    Google Scholar 

  35. Husserl, E.: Logische Untersuchungen. Zweite Teil: Untersuchungen zur Phaenomenologie und Theorie der Erkenntnis (1901)

  36. Jacobs, T.S.: Drawing with an Open Mind. Watson-Guptil, New York (1986)

    Google Scholar 

  37. Jäne, B.: Practical Handbook on Image Processing for Scientific and Technical Applications. CRC Press, Boca Raton (2004)

    Google Scholar 

  38. Jaynes, E.T.: Prior probabilities. IEEE Trans. Syst. Sci. Cybern. 4, 227–241 (1968)

    Article  Google Scholar 

  39. Kheirandish, E.: The Arabic Version of Euclid’s Optics. Springer, New York (1998)

    Google Scholar 

  40. Klein, C.F.: Vergleichende Betrachtungen über neuere geometrische Forschungen. Andreas Deichert, Erlangen (1872)

    Google Scholar 

  41. Klein, F.: Über die sogenannte nicht-Euklidische Geometrie. Math. Ann. 6, 112–145 (1871)

    Article  Google Scholar 

  42. Klein, F.: Vorlesungen über nicht-Euklidische Geometrie. Springer, Berlin (1928)

    MATH  Google Scholar 

  43. Koenderink, J.J.: The concept of local sign. In: van Doorn, A.J., van de Grind, W.A., Koenderink, J.J. (eds.) Limits in Perception. VNU Science Press, Utrecht (1984)

    Google Scholar 

  44. Koenderink, J.J., van Doorn, A.J.: The generic bilinear calibration-estimation problem. Int. J. Comput. Vis. 23, 217–234 (1997)

    Article  Google Scholar 

  45. Koenderink, J.J., van Doorn, A.J.: Exocentric pointing. In: Harris, L.R., Jenkin, M. (eds.) Vision and Action, pp. 295–313. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  46. Koenderink, J.J., van Doorn, A.J., Kappers, A.M.L., Todd, J.T.: Ambiguity and the “mental eye” in pictorial relief. Perception 30, 431–448 (2001)

    Article  Google Scholar 

  47. Koenderink, J.J., van Doorn, A.J., Lappin, J.S.: Direct measurement of the curvature of visual space. Perception 29, 69–79 (2000)

    Article  Google Scholar 

  48. Koenderink, J.J., van Doorn, A.J., Kappers, A.M.L., Todd, J.T.: Pappus in optical space. Percept. Psychophys. 64, 380–391 (2002)

    Google Scholar 

  49. Koenderink, J.J., van Doorn, A.J., Lappin, J.S.: Exocentric pointing to opposite targets. Acta Psychol. 112, 71–87 (2003)

    Article  Google Scholar 

  50. Kumler, J.J., Bauer, M.: Fisheye lens designs and their relative performance. Proc. SPIE 4093, 360–369 (2000)

    Article  Google Scholar 

  51. Listing, J.B.: Beitrag zur physiologischen Optik, Göttinger Studien. Vandenhoeck and Ruprecht, Göttingen (1845)

    Google Scholar 

  52. Lotze, H.: Mikrokosmos. Ideen zur Naturgeschichte und Geschichte der Menschheit. Versuch einer Anthropologie. Hirzel, Leipzig (1876)

    Google Scholar 

  53. Luneburg, R.K.: Mathematical Analysis of Binocular Vision. Princeton University Press, Princeton (1947)

    MATH  Google Scholar 

  54. Luneburg, R.K.: The metric of binocular visual space. J. Opt. Soc. Am. 40, 627–642 (1950)

    MathSciNet  Google Scholar 

  55. Martin, G.: An owl’s eye; schematic optics and visual performance in Strix aluco L. J. Comput. Physiol. 145, 341–349 (1982)

    Article  Google Scholar 

  56. Marr, D.: Vision. Freeman, San Francisco (1982)

    Google Scholar 

  57. Mercator, G.: Atlas sive Cosmographicae Meditationes de Fabrica Mundi et Fabricati Figura, Duisburg, 1595. Lessing J. Rosenwald Collection, Library of Congress

  58. Naber, G.L.: The Geometry of Minkowski Spacetime. Springer, New York (1992)

    MATH  Google Scholar 

  59. Nicod, J.: La géométric dans le monde sensible. Thèse, University of Paris, Paris (1923)

  60. Palmer, S.E.: Vision Science: Photons to Phenomenology. MIT Press, Cambridge (1999)

    Google Scholar 

  61. Pasch, M.: Vorlesungen über neuere Geometrie von M. Pasch. Teubner, Leipzig (1912)

    Google Scholar 

  62. Pirenne, M.H.: Optics, Painting and Photography. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  63. Poggio, T.: Low-level vision as inverse optics. In: Rauk, M. (ed.) Proceedings of Symposium on Computational Models of Hearing and Vision, pp. 123–127. Academy of Sciences of the Estonian S.S.R. (1984)

  64. Poincaré, H.: Science et la Méthode. Flammarion, Paris (1908)

    Google Scholar 

  65. Riedl, R.: Die Ordnung des Lebendigen. Systembedingungen der Evolution. Paul Parey, Hamburg (1975)

    Google Scholar 

  66. Riemann, B.: Ueber die Hypothesen, welche der Geometrie zu Grunde liegen (Aus dem dreizehnten Bande der Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen), 10 June 1854

  67. Sachs, H.: Ebene isotrope Geometrie. Friedrich Vieweg, Braunschweig (1987)

    MATH  Google Scholar 

  68. Sachs, H.: Isotrope Geometrie des Raumes. Friedrich Vieweg, Braunschweig (1990)

    MATH  Google Scholar 

  69. Schlosberg, H.: Stereoscopic depth from single pictures. Am. J. Psychol. 54, 601–605 (1941)

    Article  Google Scholar 

  70. Searle, J.: The Rediscovery of the Mind. MIT Press, Cambridge (1992)

    Google Scholar 

  71. Siegel, M., Tobinaga, Y., Akiya, T.: Kinder gentler stereo. IS&T/SPIE’98 1-10 (1998)

  72. Spivak, M.: Comprehensive Introduction to Differential Geometry. Publish or Perish, Berkeley (1990)

    Google Scholar 

  73. Strubecker, K.: Differentialgeometrie des isotropen Raumes I. Sitzungsber. Akad. Wiss. Wien 150, 1–43 (1941)

    MathSciNet  Google Scholar 

  74. Strubecker, K.: Differentialgeometrie des isotropen Raumes II. Math. Z. 47, 743–777 (1942)

    Article  MathSciNet  Google Scholar 

  75. Strubecker, K.: Differentialgeometrie des isotropen Raumes III. Math. Z. 48, 369–427 (1943)

    Article  MathSciNet  Google Scholar 

  76. Strubecker, K.: Differentialgeometrie des isotropen Raumes IV. Math. Z. 50, 1–92 (1945)

    Article  MathSciNet  Google Scholar 

  77. Swift, J.: Gulliver’s Travels and Other Works. Routledge, London (1906) (orig. 1726)

    Google Scholar 

  78. Witgenstein, L.: Tractatus Logico-Philosophicus. Routledge and Kegan Paul, London (1922) (German text with an English translation on regard by C.K. Ogden; with an introduction by Bertrand Russell)

    Google Scholar 

  79. Yaglom, I.M.: A Simple Non-Euclidean Geometry and Its Physical Basis: An Elementary Account of Galilean Geometry and the Galilean Principle of Relativity (transl. by A. Shenitzer). Springer, New York (1979)

    Google Scholar 

  80. Yaglom, I.M.: Complex Numbers in Geometry (transl. by E. Primrose from 1963 Russian original). Academic Press, New York (1968)

    Google Scholar 

  81. Zeiss, C., von Rohr, M.: Linsensystem zum einaugigen Betrachten einer in der Brennebene befindlichen Photographie. Kaiserliches Patentamt Patentschrift Nr. 151312 Klasse 42h. (1904)

  82. Zeiss, C., von Rohr, M.: Instrument zum beidäugigen Betrachten von Gemälden. Kaiserliches Patentamt Patentschrift Nr. 194480 Klasse 42h Gruppe 34. (1907)

  83. Yuille, A., Kersten, D.: Vision as Bayesian inference: analysis by synthesis? Trends Cogn. Sci. 20, 1–7 (2006).

    Google Scholar 

  84. Zucker, S.W.: The emerging paradigm of computational vision. Ann. Rev. Comput. Sci. 2, 69–89 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Koenderink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koenderink, J., van Doorn, A. The Structure of Visual Spaces. J Math Imaging Vis 31, 171–187 (2008). https://doi.org/10.1007/s10851-008-0076-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-008-0076-3

Keywords

Navigation