Skip to main content
Log in

Symmetries of 1-D Images

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The possible automorphism groups of scalar functions of a one-dimensional Euclidean domain are presented. The groups are determined relative to a class of transformations that allow an isometry of the function domain, simultaneous with a separate isometry of the function co-domain. Ten non-trivial automorphism groups are found. Seven of these are related to five of the seven Frieze groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosen, J.: Resource letter SP-2: Symmetry and group theory in physics. Am. J. Phys. 49(4), 304–319 (1981)

    Article  Google Scholar 

  2. Cantwell, B.J.: Introduction to Symmetry Analysis. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  3. Hahn, T. (ed.): Space-Group Symmetry. International Tables for Crystallography, vol. A. International Union of Crystallography, Chester (2006)

    Google Scholar 

  4. Jones, O.: The Grammar of Ornament. Day, London (1856)

    Google Scholar 

  5. Bieberbach, L.: Über die Bewegungsgruppen der Euklidischen Raume I. Math. Ann. 70, 297–336 (1911)

    Article  MathSciNet  MATH  Google Scholar 

  6. Conway, J.H., et al.: On three-dimensional space groups. Contrib. Algebra Geom. 42(2), 475–507 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Grünbaum, B., Shephard, G.C.: Tilings and Patterns. Freeman, New York (1987)

    MATH  Google Scholar 

  8. Schattschneider, D.: MC Escher. Visions of Symmetry. Plenum Press, New York (1990)

    Google Scholar 

  9. Holser, W.T.: Classification of symmetry groups. Acta Crystallograph. 14, 1236–1242 (1961)

    Article  Google Scholar 

  10. Loeb, A.A.: Color and Symmetry. Krieger, Melbourne (1978)

    Google Scholar 

  11. Koenderink, J.J., van Doorn, A.J.: Image processing done right. In: ECCV 2002, Copenhagen. Springer, Berlin (2002)

    Google Scholar 

  12. Alexander, D.C., et al.: Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans. Med. Imaging 20(11), 1131–1139 (2001)

    Article  Google Scholar 

  13. Vovk, U., Pernus, F., Likar, B.: A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imaging 26(3), 405–421 (2007)

    Article  Google Scholar 

  14. Liu, Y.X., Collins, R.T., Tsin, Y.H.: A computational model for periodic pattern perception based on frieze and wallpaper groups. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 354–371 (2004)

    Article  Google Scholar 

  15. Baylis, G.C., Driver, J.: Perception of symmetry and repetition within and across visual shapes: Part-descriptions and object-based attention. Vis. Cognit. 8(2), 163–196 (2001)

    Article  Google Scholar 

  16. Dakin, S.C., Watt, R.J.: Detection of bilateral symmetry using spatial filters. Spat. Vis. 8(4), 393–413 (1994)

    Article  Google Scholar 

  17. Levi, D.M., Saarinen, J.: Perception of mirror symmetry in amblyopic vision. Vis. Res. 44(21), 2475–2482 (2004)

    Article  Google Scholar 

  18. Mancini, S., Sally, S.L., Gurnsey, R.: Detection of symmetry and anti-symmetry. Vis. Res. 45(16), 2145–2160 (2005)

    Article  Google Scholar 

  19. Oka, S., et al.: VEPs elicited by local correlations and global symmetry: Characteristics and interactions. Vis. Res. 47(16), 2212–2222 (2007)

    Article  Google Scholar 

  20. Rainville, S.J.M., Kingdom, F.A.A.: The functional role of oriented spatial filters in the perception of mirror symmetry—psychophysics and modeling. Vis. Res. 40(19), 2621–2644 (2000)

    Article  Google Scholar 

  21. Sally, S., Gurnsey, R.: Symmetry detection across the visual field. Spat. Vis. 14(2), 217–234 (2001)

    Article  Google Scholar 

  22. Scognamillo, R., et al.: A feature-based model of symmetry detection. Proc. R. Soc. Lond. Ser. B—Biol. Sci. 270(1525), 1727–1733 (2003)

    Article  Google Scholar 

  23. Wilson, H.R., Wilkinson, F.: Symmetry perception: a novel approach for biological shapes. Vis. Res. 42(5), 589–597 (2002)

    Article  Google Scholar 

  24. Griffin, L.D.: The 2nd order local-image-structure solid. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1355–1366 (2007)

    Article  Google Scholar 

  25. Griffin, L.D., Lillholm, M.: Hypotheses for image features, icons and textons. Int. J. Comput. Vis. 71(3), 213–230 (2006)

    Article  Google Scholar 

  26. Yale, P.B.: Geometry and Symmetry. Dover Press, New York (1968)

    MATH  Google Scholar 

  27. Armstrong, M.A.: Groups and Symmetry. Springer, Berlin (1988)

    MATH  Google Scholar 

  28. Glassner, A.: Frieze groups. IEEE Comput. Graph. Appl. 16(3), 78–83 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis D. Griffin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffin, L.D. Symmetries of 1-D Images. J Math Imaging Vis 31, 157–164 (2008). https://doi.org/10.1007/s10851-008-0078-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-008-0078-1

Keywords

Navigation