Skip to main content
Log in

An Algebraic Approach to Lens Distortion by Line Rectification

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

A very important property of the usual pinhole model for camera projection is that 3D lines in the scene are projected in 2D lines. Unfortunately, wide-angle lenses (specially low-cost lenses) may introduce a strong barrel distortion which makes the usual pinhole model fail. Lens distortion models try to correct such distortion. In this paper, we propose an algebraic approach to the estimation of the lens distortion parameters based on the rectification of lines in the image. Using the proposed method, the lens distortion parameters are obtained by minimizing a 4 total-degree polynomial in several variables. We perform numerical experiments using calibration patterns and real scenes to show the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Faugeras, O.: Three-Dimensional Computer Vision. MIT Press, Cambridge (1993)

    Google Scholar 

  2. Faugeras, O., Luong, Q.-T., Papadopoulo, T.: The Geometry of Multiple Images. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  3. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. IEEE J. Robot. Autom. 3(4), 323–344 (1987)

    Article  Google Scholar 

  4. Brown, D.C.: Close-range camera calibration. Photogramm. Eng. 37, 855–866 (1971)

    Google Scholar 

  5. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  6. McGlone, C. (ed): Manual of Photogrammetry, 4th edn. Am. Soc. of Photogrammetry, Falls Church (1980)

    Google Scholar 

  7. Brown, D.C.: Decentering distortion of lenses. Photogramm. Eng. 32(3), 444–462 (1966)

    Google Scholar 

  8. Kang, S.B.: Semiautomatic methods for recovering radial distortion parameters from a single image. Digital CRL. Technical Report CRL 97/3 (1997)

  9. Swaminathan, R., Nayar, S.K.: Non-metric calibration of wide-angle lenses and polycameras. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1172–1178 (2000)

    Article  Google Scholar 

  10. Devernay, F., Faugeras, O.: Straight lines have to be straight. Mach. Vis. Appl. 13(1), 14–24 (2001)

    Article  Google Scholar 

  11. El-Melegy, T.M., Farag, A.A.: Nonmetric lens distortion calibration: Closed-form solutions, robust estimation and model selection. In: ICCV 03: Proceedings of the Ninth IEEE International Conference on Computer Vision, vol. 1(1), pp. 554–559 (2003)

  12. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  13. Steele, J.M.: The Cauchy Schwarz Master Class. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  14. Winkler, F.: Polynomial Algorithms in Computer Algebra. Springer, New York (1996)

    MATH  Google Scholar 

  15. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 2nd edn. Springer, New York (1997)

    Google Scholar 

  16. Sendra, J.R., Winkler, F., Perez-Daz, S.: Rational Algebraic Curves: A Computer Algebra Approach. Springer, Berlin (2007)

    Google Scholar 

  17. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, New York (1998)

    MATH  Google Scholar 

  18. Deriche, R.: Fast algorithms for low-level vision. IEEE Trans. Pattern Anal. Mach. Intell. 1(12), 78–88 (1990)

    Article  Google Scholar 

  19. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, 2nd edn. Applied Mathematical Sciences, vol. 147. Springer, Berlin (2006)

    MATH  Google Scholar 

  20. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, New York (1993)

    MATH  Google Scholar 

  21. Jonasson, K.: A projected conjugate gradient method for sparse minimax problems. Numer. Algorithms 5, 309–323 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Gómez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, L., Gómez, L. & Sendra, J.R. An Algebraic Approach to Lens Distortion by Line Rectification. J Math Imaging Vis 35, 36–50 (2009). https://doi.org/10.1007/s10851-009-0153-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-009-0153-2

Keywords

Navigation