Skip to main content
Log in

Invariant Signatures of Closed Planar Curves

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We prove that any subset of ℝ2 parametrized by a C 1 periodic function and its derivative is the Euclidean invariant signature of a closed planar curve. This solves a problem posed by Calabi et al. (Int. J. Comput. Vis. 26:107–135, 1998). Based on the proof of this result, we then develop some cautionary examples concerning the application of signature curves for object recognition and symmetry detection as proposed by Calabi et al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boutin, M.: Numerically invariant signature curves. Int. J. Comput. Vis. 40, 235–248 (2000)

    Article  MATH  Google Scholar 

  2. Brower, R.C., Kessler, D.A., Koplik, J., Levine, H.: Geometrical models of interface evolution. Phys. Rev. A 29, 1335–1342 (1984)

    Article  Google Scholar 

  3. Bruckstein, A.M., Shaked, D.: Skew symmetry detection via invariant signature. CIS Report No. 9419, Technion, IIT, Haifa, December 1994

  4. Bruckstein, A.M., Netravali, A.N.: On differential invariants of planar curves and recognizing partially occluded planar shapes. Ann. Math. Artif. Intell. 13, 227–250 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bruckstein, A.M., Katzir, N., Lindenbaum, M., Porat, M.: Similarity invariant signatures for partially occluded planar shapes. Int. J. Comput. Vis. 7, 271–285 (1992)

    Article  Google Scholar 

  6. Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., Haker, S.: Differential and numerically invariant signature curves applied to object recognition. Int. J. Comput. Vis. 26, 107–135 (1998)

    Article  Google Scholar 

  7. Chou, K.-S., Qu, C.: Integrable equations arising from motions of plane curves. Physica D 163, 9–33 (2002)

    Article  MathSciNet  Google Scholar 

  8. Fels, M., Olver, P.J.: Moving coframes, II. Regularization and theoretical foundations. Acta Appl. Math. 55, 127–208 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ferrández, A., Giménez, A., Lucas, P.: Geometrical particle models on 3D null curves. Phys. Lett. B 543, 311–317 (2002). hep-th/0205284

    Article  MATH  MathSciNet  Google Scholar 

  10. Gluck, H.: The converse to the four vertex theorem. Enseign. Math. (2) 17, 295–309 (1971)

    MathSciNet  Google Scholar 

  11. Grant, J.D.E., Musso, E.: Coisotropic variational problems. J. Geom. Phys. 50, 303–338 (2004). math.DG/0307216

    Article  MATH  MathSciNet  Google Scholar 

  12. Griffiths, P.A.: Exterior Differential Systems and the Calculus of Variations. Progr. Math., vol. 25. Birkhäuser, Boston (1982)

    Google Scholar 

  13. Manay, S., Hong, B.-W., Yezzi, A.J., Soatto, S.: Integral invariant signatures. In: Lecture Notes in Computer Science, vol. 3024, pp. 87–99. Springer, Berlin (2004)

    Google Scholar 

  14. Musso, E., Nicolodi, L.: Reduction for the projective arclength functional. Forum Math. 17, 569–590 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Musso, E., Nicolodi, L.: Closed trajectories of a particle model on null curves in anti-de Sitter 3-space. Classical Quantum Gravity 24(22), 5401–5411 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Musso, E., Nicolodi, L.: Reduction for constrained variational problems on 3-dimensional null curves. SIAM J. Control Optim. 47(3), 1399–1414 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Olver, P.J.: Moving frames–in geometry, algebra, computer vision, and numerical analysis. In: Foundations of Computational Mathematics, Oxford, 1999. London Math. Soc. Lecture Note Ser., vol. 284, pp. 267–297. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  18. Olver, P.J.: Moving frames. J. Symb. Comput. 36, 501–512 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Olver, P.J.: Invariant signatures, Breckenridge, March 2007; Seminars and Conference Talks at http://www.math.umn.edu/~olver

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Musso.

Additional information

In memory of Professor Aristide Sanini.

Authors partially supported by MIUR projects: Metriche riemanniane e varietà differenziabili (E.M.); Proprietà geometriche delle varietà reali e complesse (L.N.); and by the GNSAGA of INDAM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musso, E., Nicolodi, L. Invariant Signatures of Closed Planar Curves. J Math Imaging Vis 35, 68–85 (2009). https://doi.org/10.1007/s10851-009-0155-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-009-0155-0

Keywords

Navigation