Skip to main content

Advertisement

Log in

Shape Metrics Based on Elastic Deformations

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Deformations of shapes and distances between shapes are an active research topic in computer vision. We propose an energy of infinitesimal deformations of continuous 1- and 2-dimensional shapes that is based on the elastic energy of deformed objects. This energy defines a shape metric which is inherently invariant with respect to Euclidean transformations and yields very natural deformations which preserve details. We compute shortest paths between planar shapes based on elastic deformations and apply our approach to the modeling of 2-dimensional shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Allaire, G., de Gournay, F., Jouve, F., Toader, A.-M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), 363–393 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boothby, W.M.: An Introduction to Differentiable Manifolds and Riemannian Geometry. Pure and Applied Mathematics, vol. 63. Academic Press, New York (1975)

    MATH  Google Scholar 

  4. Charpiat, G., Faugeras, O., Keriven, R.: Approximations of shape metrics and application to shape warping and empirical shape statistics. Found. Comput. Math. 5(1), 1–58 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Charpiat, G., Maurel, P., Pons, J.-P., Keriven, R., Faugeras, O.: Generalized gradients: Priors on minimization flows. Int. J. Comput. Vis. 73(3), 325–344 (2007)

    Article  Google Scholar 

  6. Ciarlet, P.G.: Mathematical Elasticity, Volume I: Three-Dimensional Elasticity. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  7. Ciarlet, P.G., Ciarlet, P. Jr.: Another approach to linearized elasticity and Korn’s inequality. C. R. Acad. Sci. I(339), 307–312 (2004)

    MathSciNet  Google Scholar 

  8. Keeling, S.L.: Generalized rigid and generalized affine image registration and interpolation by geometric multigrid. J. Math. Imaging Vis. 29(2–3), 163–183 (2007)

    Article  MathSciNet  Google Scholar 

  9. Keeling, S.L., Ring, W.: Medical image registration and interpolation by optical flow with maximal rigidity. J. Math. Imaging Vis. 23(1), 47–65 (2005)

    Article  MathSciNet  Google Scholar 

  10. Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16(2), 81–121 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kilian, M., Mitra, N.J., Pottmann, H.: Geometric modeling in shape space. ACM Trans. Graph. 26(3), 1–8 (2007)

    Article  Google Scholar 

  12. Klassen, E., Srivastava, A., Mio, M., Joshi, S.H.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 372–383 (2004)

    Article  Google Scholar 

  13. Lang, S.: Fundamentals of Differential Geometry. Springer, Berlin (1999)

    MATH  Google Scholar 

  14. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. B 45(3), 503–528 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Michor, P.W., Mumford, D.B.: Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Doc. Math. 10, 217–245 (2005)

    MATH  MathSciNet  Google Scholar 

  16. Michor, P.W., Mumford, D.B.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 8(1), 1–48 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Miller, M.I., Younes, L.: Group actions, homeomorphisms, and matching: A general framework. Int. J. Comput. Vis. 41(1–2), 61–84 (2001)

    Article  MATH  Google Scholar 

  18. Mio, W., Srivastava, A., Joshi, S.: On shape of plane elastic curves. Int. J. Comput. Vis. 73(3), 307–324 (2007)

    Article  Google Scholar 

  19. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. ACM Trans. Graph. 22(3), 477–484 (2003)

    Article  Google Scholar 

  20. Sundaramoorthi, G., Yezzi, A., Mennucci, A.: Sobolev active contours. Int. J. Comput. Vis. 73(3), 345–366 (2007)

    Article  Google Scholar 

  21. van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Comput. 13(2), 631–644 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Yang, H., Fuchs, M., Jüttler, B., Scherzer, O.: Evolution of T-spline level sets with distance field constraints for geometry reconstruction and image segmentation. In: IEEE International Conference on Shape Modeling and Applications 2006 (SMI’06), pp. 247–252. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  23. Yezzi, A., Mennucci, A.: Metrics in the Space of Curves (2004)

  24. Yosida, K.: Functional Analysis. Springer, Berlin (1965)

    MATH  Google Scholar 

  25. Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58(2), 565–586 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zolésio, J.-P.: Control of moving domains, shape stabilization and variational tube formulations. Int. Ser. Numer. Math. 155, 329–382 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Fuchs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, M., Jüttler, B., Scherzer, O. et al. Shape Metrics Based on Elastic Deformations. J Math Imaging Vis 35, 86–102 (2009). https://doi.org/10.1007/s10851-009-0156-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-009-0156-z

Keywords

Navigation