Skip to main content

Advertisement

Log in

New Resolution Independent Measures of Circularity

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper we demonstrate that the most commonly used mathematical measure of circularity—the Form Factor—is highly resolution dependent. Furthermore we show that despite the abundance of papers proposing measures of roundness, most of the new measures are mathematically equivalent to the Form Factor. Only four measures were found that were different. We then present two new measures, the first based on the theory of Mean Deviations and the second based on the mathematical definition of a circle. When compared in terms of resolution dependence, order of complexity, ease of calculation, and how well they match human perception, the two new measures are shown to be better overall than the previous measures. The two new measures are resolution independent in the sense that changing the resolution makes no change to the order of circularity of different shapes. That is, changing the resolution does not change whether one object would be considered more round than another on the basis of the measure. None of the other measures has this property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bacus, J., Belanger, M., Aggarwal, R., Trobaugh, F., Jr.: Image processing for automated erythrocyte classification. J. Histochem. Cytochem. 24(1), 195–201 (1976)

    Google Scholar 

  2. Bacus, J., Weens, J.: An automated method of differential red blood cell classification with application to the diagnosis of anemia. J. Histochem. Cytochem. 25(7), 614–632 (1977)

    Google Scholar 

  3. Bacus, J.: Quantative morphological analysis of red blood cells. Blood Cells 6, 295–314 (1980)

    Google Scholar 

  4. Robinson, R., Benjamin, L., Cosgriff, J., Cox, C., Lapets, O., Rowley, P., Yatco, E., Wheeless, L.: Textural differences between AA and SS blood specimens as detected by image-analysis. Cytometry 17, 167–172 (1994)

    Article  Google Scholar 

  5. Wheeless, L., Robinson, R., Lapets, O., Cox, C., Rubio, A., Weintraub, M., Benjamin, L.: Classification of red-blood-cells as normal, sickle, or other abnormal, using a single image analysis feature. Cytometry 17, 159–166 (1994)

    Article  Google Scholar 

  6. Pambuccian, S.E., Becker, R.L., Ali, S.Z., Savik, K., Rosenthal, D.L.: Differential diagnosis of Hürthle cell neoplasms on fine needle aspirates. Acta Cytol. 41, 197–208 (1997)

    Google Scholar 

  7. Dasgupta, A., Lahiri, P.: Digital indicators for red cell disorder. Curr. Sci. 78, 1250–1255 (2000)

    Google Scholar 

  8. Foresto, P., D’Arrigo, M., Carreras, L., Cuezzo, R., Valverde, J., Rasia, R.: Evaluation of red blood cell aggregation in diabetes by computarized image analysis. Med. B. Aires 60(5), 570–572 (2000)

    Google Scholar 

  9. LoPachin, R., Jortner, B., Reid, M., Das, S.: Gamma-diketone central neuropathy: quantitative morphometric analysis of axons in rat spinal cord white matter regions and nerve roots. Toxicol. Appl. Pharmacol. 193, 29–46 (2003)

    Article  Google Scholar 

  10. Mohler, J.L., Partin, A.W., Epstein, J.I., Lohr, W.D., Coffey, D.S.: Nuclear roundness factor measurement for assessment of prognosis of patients with prostatic carcinoma. ii. standardization of methodology for histologic sections. J. Urol. 139, 1085–1090 (2008)

    Google Scholar 

  11. Giger, M., Doi, K., MacMahon, H.: Image feature analysis and computer aided diagnosis in digital radiography. 3. automated detection of nodules in peripheral lung fields. Med. Phys. 15(2) (1988)

  12. Artacho-Pérula, E., Roldán-Villalobos, R., Martínez-Cuevas, J.F., López-Rubio, F.: Nuclear quantitative grading by discrimant analysis of renal cell carcinoma samples. a patient survival evaluation. J. Parasitol. 173, 105–114 (1994)

    Google Scholar 

  13. Landry, M.E., Blanchard, C.R., Mabrey, J.D., Wang, X., Agrawal, C.M.: Morphology of in vitro generated ultrahigh molecular weight polyethylene wear particles as a function of contact conditions and material parameters. J. Biomed. Mater. Res. Part B, Appl. Biomater. 48(1), 61–69 (1999)

    Article  Google Scholar 

  14. Breslow, N., Partin, A., Lee, B., Guthrie, K., Beckwith, J., Green, D.: Nuclear morphometry and prognosis in favorable histology Wilms’ tumor: A prospective reevaluation. J. Clin. Oncol. 17, 2123–2126 (1999)

    Google Scholar 

  15. Gordon, A., Cloman-Lerner, A., Chin, T.E., Benjamin, K., Yu, R.C., Brent, R.: Supplementary notes to: Single-cell quantification of molecules and rates using open-source microscope-based cytometry. Nat. Methods 4(2) (2007), p. 22 of the supplement

    Google Scholar 

  16. Nikolakakis, I., Kachrimanis, K., Malamataris, S.: Relations between crystallisation conditions and micromeritic properties of ibuprofen. Int. J. Pharm. 201, 79–88 (2000)

    Article  Google Scholar 

  17. Cenens, C., Jenne, R., Impe, J.V.: Evaluation of different shape parameters to distinguish between flocs and filaments in activated sludge images. Water Sci. Technol. 45(45), 85–91 (2002)

    Google Scholar 

  18. Almeida-Prieto, S., Blanco-Mendez, J., Otero-Espinar, F.: Image analysis of the shape of granulated powder grains. J. Pharm. Sci. 93, 621–634 (2004)

    Article  Google Scholar 

  19. Jayaraj, J., Fleury, E., Kim, K., Lee, J.: Globulization mechanism of the primary Al of Al-15Cu alloy during slurry preparation for rheoforming. Met. Mater. Int. 11, 257–262 (2005)

    Article  Google Scholar 

  20. Moschakis, T., Murray, B., Dickinson, E.: Microstructural evolution of viscoelastic emulsions stabilised by sodium caseinate and xanthan gum. J. Colloid Interface Sci. 284, 714–728 (2005)

    Article  Google Scholar 

  21. Clemens, J., Henriod, R., Bailey, D., Jameson, P.: Vegetative phase change in metrosideros: Shoot and root restriction. Plant Growth Regul. 28, 207–214 (1999)

    Article  Google Scholar 

  22. Dell’Aquila, A.: Cabbage, lentil, pepper and tomato seed germination monitored by an image analysis system. Seed Sci. Technol. 32(1), 225–229 (2004)

    Google Scholar 

  23. Gardoll, S., Groves, D., Knox-Robinson, C., Yun, G., Elliott, N.: Developing the tools for geological shape analysis, with regional- to local-scale examples from the Kalgoorlie Terrane of Western Australia. Aust. J. Earth Sci. 47, 943–953 (2000)

    Article  Google Scholar 

  24. Kanthathas, K., Willmot, D., Benson, P.: Differentiation of developmental and post-orthodontic white lesions using image analysis. Eur. J. Orthod. 27, 167–172 (2005)

    Article  Google Scholar 

  25. Huff, P., Wilf, P., Azumah, E.: Digital future for paleoclimate estimation from fossil leaves? Preliminary results. Palaios 18, 266–274 (2003)

    Article  Google Scholar 

  26. Springham, S., Lee, S., Moo, S.: Deuterium plasma focus measurements using solid state nuclear track detectors. Braz. J. Phys. 32, 172–178 (2002)

    Google Scholar 

  27. Cox, E.: A method of assigning numerical and percentage values to the degree of roundness of sand grains. J. Paleontol. 1(3), 179–183 (1927)

    Google Scholar 

  28. Nafe, R., Yan, B., Schlote, W., Schneider, B.: Application of different methods for nuclear shape analysis with special reference to the differentiation of brain tumors. Anal. Quant. Cytol. Histol. 28, 69–77 (2006)

    Google Scholar 

  29. Payne, C., Bjore, C., Jr., Cromley, D., Roland, F.: A comparative mathematical evaluation of contour irregularity using form factor and PERBAS, a new analytical shape factor. Anal. Quant. Cytol. Histol. 11, 341–352 (1989)

    Google Scholar 

  30. Bouwman, A., Bosma, J., Vonk, P., Wesselingh, J., Frijlink, H.: Which shape factor(s) best describe granules? Powder Technol. 146, 66–72 (2004)

    Article  Google Scholar 

  31. Shen, H.: Regular form factor—a new concept and calculating method for quantitative form description. Anal. Quant. Cytol. Histol. 22, 453–458 (2000)

    Google Scholar 

  32. The American Society for Testing and Materials, Standard practice for characterization of particles (2005)

  33. Richardson, L.F.: The problem of contiguity: An appendix to statistics of deadly quarrels. Gen. Syst. Yearbook 6, 139–190 (1961)

    Google Scholar 

  34. Hausner, H.H.: Characterization of the powder particle shape. Planseeber. Pulvermetall. 14, 75–84 (1966)

    Google Scholar 

  35. Blanco, A., Tomasi, F.D., Filippo, E., Manno, D., Perrone, M., Serra, A., Tafuro, A., Tepore, A.: Characterization of African dust over southern Italy. Atmos. Chem. Phys. 3, 2147–2159 (2003)

    Article  Google Scholar 

  36. Diamond, D.A., Berry, S.J., Jewett, H.J., Eggleston, J.C., Coffey, D.S.: A new method to assess metastatic potential of human prostate cancer: Relative nuclear roundness. J. Urol. 128, 729–734 (1982)

    Google Scholar 

  37. Mandelbrot, B.: How long is the coast of Britain? statistical self-similarity and fractional dimension. Science 156, 636–638 (1967)

    Article  Google Scholar 

  38. Dorst, L., Smeulders, A.: Length estimators for digitized contours. Comput. Vis. Graph. Image Process. 40, 311–333 (1987)

    Article  Google Scholar 

  39. Bottema, M.: Circularity of objects in images. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ‘0O’), pp. 2247–2250. IEEE Press, New York (2000)

    Google Scholar 

  40. Hawkins, A.E.: The shape of powder-particle outlines. Meas. Sci. Technol., vol. 1 (1993)

  41. Pentland, A.: A method of measuring the angularity of sands. In: Proceedings & Transactions of the Royal Society of Canada, vol. 21 (1927)

  42. Toussaint, G.T.: Rotating calipers. Aug. 2006. http://www-cgrl.cs.mcgill.ca/%7Egodfried/research/calipers.html

  43. Sunday, D.: The convex hull of a 2d point set or polygon. Aug. 2006. http://www.geometryalgorithms.com/Archive/algorithm_0109/algorithm_0109.htm

  44. Ritter, N., Cooper, J.R.: Segmentation and border identification of cells in images of peripheral blood smear slides. In: Thirtieth Australasian Computer Science Conference (ACSC2007). Ballarat Australia, pp. 161–169. ACS, Washington (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Ritter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritter, N., Cooper, J. New Resolution Independent Measures of Circularity. J Math Imaging Vis 35, 117–127 (2009). https://doi.org/10.1007/s10851-009-0158-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-009-0158-x

Keywords

Navigation