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Abstract

Multiplicative noise appears in various image processing applications, e.g., in
synthetic aperture radar (SAR), ultrasound imaging or in connection with blur in
electronic microscopy, single particle emission computed tomography (SPECT) and
positron emission tomography (PET). In this paper, we consider a variational restora-
tion model consisting of the I-divergence as data fitting term and the total variation
semi-norm or nonlocal means as regularizer. Although the I-divergence is the typi-
cal data fitting term when dealing with Poisson noise we substantiate why it is also
appropriate for cleaning Gamma noise. We propose to compute the minimizer of our
restoration functional by applying Douglas-Rachford splitting techniques, resp. al-
ternating split Bregman methods, combined with an efficient algorithm to solve the
involved nonlinear systems of equations. We prove the Q-linear convergence of the
latter algorithm. Finally, we demonstrate the performance of our whole scheme by
numerical examples. It appears that the nonlocal means approach leads to very good
qualitative results.

1 Introduction

We are interested in restoring images f : 2 — R arising from original images u by corrup-
tion with (uncorrelated) multiplicative noise 7 of mean 1, i.e.,

f=un. (1)

The task of removing multiplicative noise appears in many applications, e.g., in synthetic
aperture radar (SAR), where the noise is assumed to follow a Gamma distribution, in ul-
trasound imaging, where we are confronted with Rayleigh distributed [41], K-distributed
[14, 24, 25] or Rician distributed [23] noise. Moreover, in electronic microscopy [27, 32],
single particle emission computed tomography (SPECT) [32] and positron emission to-
mography (PET) [36], multiplicative Poisson noise appears in connection with blur.

In this paper, we focus on Gamma distributed noise although our model is appropriate
for Poisson distributed noise as well. Recently, various variational models for removing
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Gamma noise were proposed. Following the MAP estimator for multiplicative Gamma
noise, Aubert and Aujol [3] introduced a non-convex model whose data term was sub-
sequently adopted in a convex model by Shi and Osher in [39]. Indeed these authors
considered a more general data fitting term, which includes also the model in [34]. They
applied a corresponding relaxed inverse scale space flow as denoising technique. The model
of Osher and Shi was modified in [22] by adding a quadratic term to get a simpler alter-
nating minimization algorithm. A variational model involving curvelet coefficients for
cleaning multiplicative Gamma noise was considered in [13].

Beyond variational approaches there exist other techniques to remove multiplicative noise,
e.g., local linear minimum mean square error approaches [29, 28] or anisotropic diffusion
methods [45, 1, 26] which will not be addressed in this paper.

In the above variational models the data fitting term arises from the MAP estimator for
multiplicative Gamma noise. However, in deblurring problems, where we have frequently
Poisson noise, Csiszar’s I-divergence [11] is usually applied as data fitting term. For the
expectation-maximization (EM) approach related to the I-divergence model in deblurring
problems see [31, 33] and the references therein and for the EM - total variation (TV)
model we refer to [32, 36].

In this paper, we consider an I-divergence - TV and I-divergence - nonlocal means (NL-
means) model for denoising. We motivate why the I-divergence data fitting term typically
used in the context of Poisson noise is also appropriate when dealing with Gamma noise.
We develop iterative algorithms for computing the minimizers of our functionals by ap-
plying Douglas-Rachford splitting techniques. Such methods were first applied in image
processing in [9]. Note that for our setting the Douglas-Rachford splitting is equivalent to
an alternating split Bregman algorithm [37, 38].

This paper is organized as follows: We start by reviewing some variational denoising
methods in Section 2. In particular, we consider their performance for two-pixel signals.
We will how the minimizer of the functional proposed in [39] is related to the minimizer of
our I-divergence - TV model. In Section 3 we propose to compute the minimizers of our
functionals by applying Douglas-Rachford splitting combined with an efficient algorithm
to solve the involved nonlinear systems of equations. Moreover, we prove the Q-linear
convergence of the latter semi-implicit schemes. Finally, we demonstrate the performance
of our algorithms for the I-divergence - TV and the I-divergence - NL-means model by
numerical examples in Section 4. Conclusions are given in Section 5.

2 Edge preserving variational methods for removing multi-
plicative noise
Variational methods aim to restore the original image by finding the minimizer of some

appropriate functional
E(u) := ¥ (u) + A®(u), A>0,

where U = U denotes the data fitting term and ® is a regularization term which includes
prior information about the original image.



In general, the data fitting term is deduced by maximizing the a-posteriori probability
density p(u|f) (MAP estimation). Most papers deal with additive noise, i.e., f = u + 7.
If u is corrupted by additive white Gaussian noise, this leads to the data fitting term

= fQ 2dx. A frequently applied regularization term is the total vari-
atlon (TV) semi-norm suggested by Rudin, Osher and Fatemi (ROF) [35] |u|py =

sup fQ udiv p dz which is formally (for sufficiently regular u)
PECH [Pl lc <1

<I>(u):/Q|Vu|d:U. (2)

In the case of additive Gaussian noise, the minimizer @ of the whole ROF functional

%/Q(f—u)de—l—)\/QWuMm (3)

has many desirable properties. It preserves important structures such as edges, fulfills a
mazimum-minimum principle which reads in the discrete n- pixel setting as finin < 4; <
fmaz, Where frin and frq: denote the minimal and maximal coefficient of f, resp., and

preserves the mean value, i.e.,
n n
E i = E fi-
i=1 i=1

The drawback of model (3) consists in its staircasing effect so that meanwhile various
alternative regularizers were considered. Among them, the NL-means regularization term
leads to very good denoising results. The idea of nonlocal means goes back to [6] and
was incorporated into the variational framework in [17, 19, 18, 46]. We refer to these
papers for further information on NL-means. Based on some pre-computed weights w the
regularization term is given by

= [ IVuulde, (Fuul = ( [ (o) - ula)Pue. ) dy) )
Q Q

In the following, we review variational methods for removing multiplicative noise, where
we restrict our attention to TV regularizers. To see the differences between the models it
is sometimes useful to apply them to the simplest signals f := (f1, f2)" consisting of only
two pixels so that (3) becomes

U(fr,u1) + V(f2,u2) + AMug — uq. (5)

log-model. By (1) it seems to be more appropriate to include quotients rather than
differences of f and u into the fitting term, e.g., max{%, %} Taking the logarithm of this
term and setting w := logu we get |w — log f| and using w in the regularization term (2)
we obtain, for a noisy signal f > 0, the log-model

W := argmin { = / —log f) dx+)\/|Vw|dx} i =e?. (6)
weBV



This is the usual ROF-model (3) for w and log f. Therefore the maximum-minimum
principle carries directly over to 4. However, the mean value preservation » ., w; =

>oiq log fi leads to
H Ui = H fi-
i1 i1

This means that the log-model preserves the geometric mean rather than the arithmetic
mean. For example, if A is large enough, then u; = (H;-L:1 fj)l/” foralli =1,...,n
which is indeed smaller than the mean of f provided that f is not the constant signal.
So this property is a severe problem if one wants to use such an approach with a strong
multiplicative noise since in this case the mean of the restored image is much less than the
one of the original image. Such a model can therefore not be considered as a good one for
multiplicative noise removal. We want to have a look at the two pixel model (5) for the
setting (6).

Ezample (two-pixel signals). We assume that f; > fo > 0. Setting the gradient with
respect to w;, ¢ = 1,2 to zero we obtain that the minimizer @i, us move to /fi fo with
increasing \ as follows:
1
iy = fre™?, Qg = foe for 0<A< §logﬁ,

f2
f1

1
Uy =1 =+/f1fa  for 510gf

= <A\
2

A A-model. Based on the MAP estimator for multiplicative Gamma noise, Aubert and
Aujol [3] proposed to determine the denoised image as a minimizer in {u € BV : u > 0}
of the following, in general non-convex, functional

/£+10gudx+)\/|Vu|dx. (7)
QU Q

While the data fitting term follows canonically from the MAP approach related to the
Gamma distribution, the choice of the regularization term is flexible and we will see in
the following that |Vlogu| seems to be a better choice. In particular, it was observed
in numerical examples [3, 39] that the noise survives much longer at low image values if
we increase the regularization parameter. This is also indicated by our simple two pixel
model.

Ezample (two-pixel signals). We restrict our attention to the case 0 < fo < f1 < 3fo.
This may appear if f; and fo are disturbed versions of a constant function u; = us = wu,
ie, fi =1 +v)uand fo = (1 —v)u, where 0 < v < 1/2. Then the minimizer reads

i 1+ VI+HAAA G _1=v1-4Af for 0<>\<2(f1—f2)
L= 2\ P 2) (fi+ f2)?
. it 2(f1 = fo)
Ul = U = B for mé)\



Assuming as above that f; = (1 — (—1)"v)u, we see that we have to choose A > £ to get
the original constant signal u. This means that A must be chosen larger for smaller values
of u.

SO-model. Shi and Osher [39] suggested to keep the data fitting term in (7) but to
replace the regularizer |Vu| by |V logu|. Moreover, setting as in the log-model w := log u,
this results in the convex functional

w:argmin{/fe_w+wdx+)\/]Vw]da;}, i =e® (8)
weBV Q Q

which overcomes the drawback of (7) as we will see by looking at our two-pixel model (5).

Ezample (two-pizel signals). Let fi > fo > 0. Then the solution of (5) is

. fi fo fi—f2
“ 1+)\,u2 1—A or 0= <f1+f27
. fitfe f1—fo
— =74 /2 f < A.
(75} ug 2 or fl—l-fg_

For f; = (1 — (=1)*v)u, the value u is reconstructed if A > v which is independent of the
size of w.

Indeed, Shi and Osher considered a more general approach with data fitting term afe™" +
% f?e2% + (a + b)w which includes also the model in [34], but b # 0 gives in general no
better results. Besides, the authors computed the corresponding relaxed inverse scale
space flow to further improve the quality of the restored image.

I-divergence model. In connection with deblurring in the presence of multiplicative
noise the I-divergence, also called generalized Kullback-Leibler divergence

I(f,u) ::/Qflogg — fH+ude

is typically used as data fitting term. The I-divergence is the Bregman distance [5] of the
function F(u) := [qulogu—udz, ie., I(f,u) = F(f)—F(u)—(p, f —u), where p € OF (u).
Therefore it shares the useful properties of a Bregman distance, in particular I(f,u) > 0.
Ignoring the constant terms, the corresponding convex denoising model reads

@ = argmin { [ u— flogudx + )\/ (V| dx}. (9)
ueBV,u>0 Q Q

Having the MAP approach in mind, this model seems to be better related to Poisson noise
than to Gamma noise. This may be the reason why it was not considered for denoising,
e.g., of SAR images up to now. But having a closer look at the model, we see that the
gradient of the data fitting terms in (9) and (8) coincide if we use again the relation
log 4 = w. Moreover, if we add TV-regularization, then both functionals have the same
minimizer. This can be seen roughly as follows:



Since Ve = e“Vw we have for u = e” that Vu(z) = 0 if and only if Vw(xz) = 0. The
minimizers w and @ of the functionals (8) and (9) are unique and given by

A~

1— fem® — )\divv—uf for |Vw(x)| #0,

0 =
V|
i
0 = 1— g — Adiv |VZ| for |Vu(x)| #O0.
Since S¥. = £ VW _ VU e obtain the assertion.

[Vw| = e¥|Vw] [Vu]

A sophisticated proof may be given via subgradient inclusions. We will use this approach
for the discrete setting in Proposition 3.7, where we have due to the discretization of the
derivative that coincidence holds only true in 1D.

3 Minimization by Douglas-Rachford splitting

In the following, we work within a discrete setting, i.e., we consider columnwise reshaped
images f : R™ — R. Products, quotients etc. of vectors are meant componentwise. By
D : R™ — R™ we denote either

i) some discretization of the gradient operator as, e.g., those in [7, 40] with m = 2, see
(26), or

ii) the NL-means operator with binary weights introduced in [19] with m associated to
the number of permitted neighbors, see Section 4. Note that as in i) the rows of D
contain exactly one entry —1 and one entry 1 or are zero rows.

Further, for p := (p1,...,pm)" € R™ with p := (pj+(k_1)n);-‘:1 we use the notation
Ip| == (p? +...,p2)"/? € R".
We ask for the minimizer @ of the discrete model

1?;]}5% {U(u) + A®(Du)}, (10)

with

W (u) :={ (ou=flogu) 3 u>0, 0 () = [l 1. (1)

00 otherwise
If D is given by i) then we refer to (10) as I-divergence - TV model and if D is determined
by ii) we call it I-divergence - NL-means model. The functional in (10) is proper, lower
semi-continuous, coercive and strictly convex on its domain. Therefore there exists a
unique minimizer. The dual problem of (10) reads

- min {T*(=D*p) + \>*(\"'p)} (12)

with the conjugate functions

U*(v) = { —(flog(1 —v)) + (f,log f —1) if v <1,

- o0 otherwise and  ®*(p) = wc(p),



where
0 if pe(,
oo otherwise

ve(p) = {

denotes the indicator function of C := {p € R™ : || |p|||lcc < 1}. There is no duality gap,
i.e., (10) and (12) take the same value and the minimizers are related by

a=f/(1+Dp). (13)

The following proposition describes properties of the minimizer of (10).
Proposition 3.1. The solution @ of (10) has the following properties:
i) Minimum-maximum principle:
fmm S ﬂi § fmax fOT all 1= 1,... ,n,
where fmin and frae denote the values of the smallest and largest coefficient of f.
i1) Averaging property:
1~ fi
~Y =1
Nl
The second property is desirable by (1) and since the mean of 7 is 1.

Proof: i) The first property follows in the same way as in [3, Theorem 4.1]. We have only
to verify the relations

J(min(u, fraz)) < J(u), J(max(u, frmin)) < J(u),

where J(u) := ®(Du). By the structure of ® and D, we see that J(u) contains only
summands of the form (u; — u;)?. Thus it remains to show that

’ui - uj‘ > ’min(uia fma:c) - min(“jy fmax)‘y

|u; — uj| > |max(u, frin) — max(uj, fmin)|-

The case u; = u; is trivial so that we assume w; > wu;. If fr00 > u; or uj > frae, resp.
fmin = u; or uj > fri, we are done. For w; > frae > uj, the first inequality becomes
|ui — uj| > | fmaz — w;| which is true since fy,qp > 0. Similarly, we get for w; > frin > u;
the correct inequality |u; — u;| > |u; — fminl-

ii) The second property follows from (13) and since 1" D* = 0. Namely, we have

Iy i Ly fi S R VR
525_5;ﬁ/<1+w*ﬁ>i>‘”5;@?%—1' 0

1=



By Fermat’s rule we know that p is a minimizer of (12) if and only if
0 € 8 (¥ o (=D%) (p) + 0" (A~'p). (14)

Since ¥* and ®* are proper, closed and convex, the operators 9 (¥* o (—D*)) and 9P*
are maximal monotone, see [4]. The second operator is indeed set-valued. For a maximal
monotone operator A, the resolvent J4 := (I + A)~! of A is single-valued and firmly non-
expansive, see [4]. Inclusions of the form (14) can be solved by various splitting techniques
like forward-backward splitting or Douglas-Rachford splitting (DRS), see [30, 15]. In this
paper, we focus on the DRS because it leads to an efficient algorithm. Note that DRS was
first considered in [12] for linear operators.

Theorem 3.2. Let H be a Hilbert space and A, B : H — 2" mazimal monotone operators.
Assume that a solution p of
0€ A(p) + B(p)

exists. Then, for any initial elements t©© and p© and any n > 0, the following DRS
algorithm converges weakly to an element t:

(D — g (@2p®) ) ) ),

(k+1) (t(k+1))_

p JnB

Furthermore, it holds that p := J,p(t) satisfies 0 € A(p)+B(p). If H is finite dimensional,

then the sequence (p(k))keN converges to p.

For the proof see, e.g., [10]. Note that the iterates in the DRS must not be computed
exactly. Their convergence is also ensured if we allow summable errors [15].

By the following Proposition 3.3, the DRS applied to the dual problem (14) coincides with
the so-called alternating split Bregman algorithm for the primal problem. To introduce
this algorithm we consider the equivalent problem of (10)

{¥(u) + A\®(d)} subject to d= Du

N —’

E(u,d)

min
uwER” ,dGR"”L

and apply the augmented Lagrangian method to compute the minimizer iteratively by

1
(kD d®HDy = argmin {E(u,d) + %), Du —d) + —||Du — d||3}
u€ER” deR™M" 27
= argmin {E(u,d)+ iHy b®) + Dy — d||%},
u€R™,deRMn 2y
p+D 0y Lpy e ey S
Y

If we replace b*) by b(k) /7, this method is also known in image processing as split Bregman
algorithm, see [16, 20, 44, 42]. Since the first functional is in general hard to minimize,



one uses instead the following alternating split Bregman algorithm:

1
w1 = argmin {W(u) + —6®) + Du — d® 13}, (15)
ueR™ 2y
d**+D = argmin {o(d) + LHb(k) + Du+D — d|3}. (16)
deRmn 279
b(k—l—l) _ b(k) + Du(k—l—l) _ d(k+1). (17)

The convergence of this algorithm is ensured by Theorem 3.2 and the following proposition
from [38].

Proposition 3.3. The alternating split Bregman algorithm coincides with the DRS algo-
rithm applied to the dual problem with A := O(¥* o (—=D*)) and B := 0®*(A\~!.), where
n=1/v and

t®) = p(® 4 a®)y, p*) = pp®) > 0. (18)

Moreover, the existence of a unique minimizer of (10) guarantees the convergence of
{u®},.cny defined in (15) to this minimizer in our finite dimensional setting, see [37].
Let us consider the minimization problems (15) and (16) appearing in the alternating split
Bregman algorithm in more detail. By the simple structure of ® in (11), the solution of
(16) is given by

d(k-l—l) — pr)\(b(k) + Du(k—l—l))7

where T, denotes the coupled shrinkage function which is determined componentwise for
p=(P1;---,pm)" € R™ with pg := (pjq(k—1)n)j=1 PY

0 if [pl; <7,

T-(Pit(b—1)n) = .
(p”(k 2 ) { pj—l—(k—l)n_ij+(k—1)n/‘p’j if ’p‘j > T,

see, e.g., [8, 43].

In contrast to the original problem (10), the functional (15) in the alternating split Breg-
man algorithm has a quadratic penalizer which is differentiable. Setting the gradient to
zero, we see that w is a solution of (15) if w > 0 satisfies

_ folr. cr (k) (k)
0 = 1—E+;(Dpw+p(b —d ) (19)
0 = yw—~f+4wD*Dw—wD*(d® — k), (20)

This nonlinear system of equations can be solved in various ways, e.g., by Newton- or
Newton-like methods if a good initial guess exists or by applying DRS again as in the
following remark, see also [9].

Remark 3.4. We apply DRS in (19) with

Aw) = %(D*Dw +D*(0%) —ad®)), B(w):=1- %



and obtain
v = (I+nA)w=w+ g(D*Dw + D*(b*) — d(k)),

& w o= Juw) =T+ gD*D)‘l(v - %D*(b(k) — d®)y)

and

v:(I—I-nB)w:w—{—n(l—%) s w=Jpl)=@v-—n++(v-—n2+4nf)/2.

Note that this formula guarantees that w is positive. However, the convergence of the
algorithm is rather slow.

We propose to solve (20) by an efficient method which can be deduced directly from (20)

by adding 7w for some 7 > 0 to both sides of the equation and using a semi-implicit
iterative version. Let A ) = diag ((w](-k))g‘:l).

Initialization: w(©® = ¥

For j =0,1,... solve until a stopping criterion is reached

((r +9)I + Ay D*D) wtD =~ f 4 ) (D*(d(k) —b*)) 4+ 7 1).

By the following theorem, the sequence produced by this process converges for sufficiently
large 7 > 0 to the solution w > 0 of (20). To this end, note that for our matrices D, the
matrix A := D*D is a positive semidefinite L-matriz, i.e., all diagonal elements of A are
positive while all non-diagonal elements are not. For the NL-means matrix D = (d; ... dy)
this can be seen since the entries of A are a; = ||d;||3 and a;; = (d;, d;) and the positions
of the entries —1 and 1 in d; cannot match those of the same entries in d; for ¢ # j.

Theorem 3.5. Let A € R™" be a positive semidefinite L-matriz and let c € R™ and v > 0
be given. Then, for sufficiently large 7 > 0 and w©® > 0, the sequence {w(j)}jeNo produced
by

(T + )T+ Ayiy A) wi D = f +wl) (c+71) (21)

fulfills w9 > 0 and converges Q-linearly to the solution w > 0 of
O=yw—vf+wAw —we. (22)

Note that in our application c is fixed but may depend on ~.

Proof. 1. First, we show that we can obtain a componentwise positive sequence {w(j ) }ieNo
for sufficiently large 7. To this end, choose 7 > 0 such that the vector on right-hand side of
(21) has only positive entries; take for example 7 := — min; ¢; if ¢ has negative components
and 7 = 0 otherwise. Since w¥) > 0 the matrix on the left-hand side of (21) is a strictly
(row) diagonal dominant L-matrix and therefore an M-matrix, i.e., the inverse matrix

10



exists and has only nonnegative entries. Thus, if w¥) > 0, then the same holds for wU+1),
i.e., for the whole sequence {w\)};cp, if we start with w( ) > 0.
2. Next, we show that ||w — w()||, decreases with j. By (22) and (21) we obtain with

Ay :=Ay Aand A; :=A ;) A that
(F+ DT+ Aw) w = (T + NI+ Aj) I = (c+71) (w—wb),
(T4 7)(w—wI ) + Ay w— A, w0 = (c+71) (w—w")

and since

Apw — Ajw+ Ajw — Ajwl+D)
= (w—wY)Aw + Aj(w —wlD)

Apw — Aj wl+Y)

this can be rewritten as
(T +9)+ Aj)(w— wIt) = (Aw — ¢ — 71) (W) — w).
Further, we see by (22) that Aw — ¢ = v(f/w — 1) so that

(F+NT+ A (w—wV ) = (y(f/w=1) = 71) (W —w),

A (w—wit)y = 117 Z(f/f ~U (- wy. (23)

(I+——
T+

For 7> 7 (3 || f/w|ls — 1) we obtain that

1= /0= Dl _,
T+

(24)

Since A is a positive semidefinite L-matrix, it is (row) diagonal dominant and consequently
the vector y defined by

(I

1
5 j)1:1+mAw(3‘)A1,
Yy

fulfills y > 0. Hence,

1 1
1=(I+—A)"11 T+ — A)!
(+T+’Y i) +(+T+’Y i)

and regarding that (I + = A ) I has only nonnegative entries, we see that the sum of
the row entries of (I + L A;)~! is never larger than 1. Together with (23) and (24) this

T+
implies ' '
lw = w o <alw—wPo, <1,
so that the algorithm converges Q-linearly. O

11



Remark 3.6. If the right-hand sides of the above linear systems of equations ~vf —+
u(k) (D*(d(k) —bk)), k= 0,1,... are positive and f/w—1 € (=1,1), i.e, 0 < f/w < 2, then
we can use T = 0 in our algorithm. The latter condition is realistic since f is approximately
a noisy variant of w, i.e., (1 —e)w < f < (14 €)w, € € (0,1).

Finally, let us deal with the coincidence of the SO-model and our I-divergence model in
the discrete setting.

Proposition 3.7. Let D € R™""™ be a matrix which rows are zero rows or contain exactly
one entry 1 and one entry —1. Then, in the case m = 1, the minimizer 4 of (10) coincides
with eV, where W is the minimizer of the discrete SO-model

w = argmin{(1, fe™" + w) + A®(Dw)}. (25)
weR™

Proof. We have that @ and w are the minimizers of (10) and (25), resp., if and only if
f
a

0 € 1-—fe ¥4+ AD*0D(Dw).

0 € 1—=+AD*0®(Da),

If & = e, then 1 — 5 =1— fe ™. Next we have a look at the subdifferentials. It is
well-known, see, e.g., [2] for the continuous case, that v € 0®(Dw) if and only if v = D*p
for some p € R™" and

(p, Dw) = ®(Dw), ||[plllec < 1.

The equality can be rewritten as

n m—1 n  m—1
Z Z Pijn(Dw)iyjn = Z ( Z (Dw)12+jn)1/2‘
i=1 j=0 =1 j=0

Set d; = ((Dw)iﬂn);:ol, i =1,...,n. Applying the Cauchy-Schwarz inequality to the
inner sums on the left hand side, we see with || [p| ||cc < 1 that

n m—1 n m—1 12 n
ST piriaDw)isinl <D (D pin) 7 ldillz <D lldsll2
i=1 j=0 i=1 j=0 i=1
where equality holds true if and only if for each ¢ € {1,...,n} one of the following settings

appears
i) ||di]l2 = 0 and (ijn);?:Ol arbitrary with Z;-”:_Ol pzz-‘,-jn <1or

ii) ||dil|2 # 0 and (piﬂn);”:_ol = ad,;, Z;'"”:_Ol p?ﬂ-n = 1. The last two equalities imply
that o = 1/||d;||2 so that piyjn = (Dw)iyjn/||dill2, 5 =0,...,m — 1.

12



Since the exponential function is strictly monotone, the case i) appears for Dw if and only
if it appears also for De®™. In the second case, we get if the (i + jn)-th row of D contains
1 at column (i + jn); and —1 at column (i + jn)s2 that

W(itjn)1 — W(itjn)a

Pitjn = m—l( - - 8 7 for w :=w
(Ej:o W(itjn)1 — W(it+jn)2
eDii+iny — oW(i+in)g ; o
Ditjn = - " s orw (= e .
(ijo (eWGtiny — Wit )2))

If m = 1, then the right-hand sides are just sgn (W(i4jn), — W(i+jn),); T€SP., SgN (em(”j”)l -
ew(”j"h) and coincide since the exponential function is strictly monotone increasing. This
finishes the proof. O

Note that the proof shows that the discrete models are in general not identical for m > 2.

4 Numerical Results

For our numerical examples we use MATLAB implementations. We restrict our attention
to multiplicative noise which follows a Gamma distribution with density function

() := L—La:L_l exp(—Lx)1

Hence 1 has mean 1 and standard deviation 1/v/L. For a more sophisticated explanation
how speckle noise appears in SAR we refer to [21].
In our regularization terms we use the following matrices D:

i) For the discrete TV functional we use

_( 1®Do .f o
D'_<D0®I)’ Dy = N : (26)

where ® denotes the tensor product (Kronecker product) of matrices. In our 1D
computations, D is just the matrix Dy without its last row.

ii) For the discrete NL-means functional we apply the following construction: For every
image pixel i = (i1,i2), we compute for all j = (j1,j2) within a search window of
size w around ¢ the distances

p p
da(i, ) =Y D> Galtr,ba)(f(ir +tr, iz +t2) = f(j1 + b1, 2 + )*  (27)

ti=—pto=—p

where GG, denotes the discretized, normalized Gaussian with standard deviation a.
We refer to p as chosen patch size. Then we select the m so-called 'neighbors’ j of
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i for which d,(7,j) takes the smallest values and set w(i,j) = w(j,4) := 1. Now, by
(4) and (11), the matrix D € R™™"™ with m < 2m consists of m blocks of size n x n,
each having —1 as diagonal elements plus one additional nonzero value 1 in each row
whose position is determined by the nonzero weights w(i, j) and maybe some zero
rows.

Our DRS algorithm reads

Algorithm I

Initialization: u© := f, b0 = 0.

For £ =0,1,... repeat until a stopping criterion is reached
dk+1) . — Tﬂ(b(’f) + Du®)
plk+1) .— pk) L Dyk) — gk+1)

w1 solution of

Initialization: w(©® = u®)
For j =0,1,... solve until a stopping criterion is reached

((T + ’7)[ + Aw(j) D*D) w(jH) =~f+ w(j) (D*(d(k+1) — b(k—H)) +T7 1).

Note that we have reversed the order of d,b and w in (15) - (17), where we would get the
same iterates if we start with d© := Df, b© := 0. In our examples, it was possible to
obtain positive vectors u(*) by choosing 7 = 0. Moreover, the solutions of the sparse linear
systems can be realized by SOR iterations.

In [36], an algorithm based on the I-divergence - TV model was proposed for deblurring
of images corrupted by multiplicative Poisson noise. Note that there doesn’t exist a
convergence proof here. Of course, we can also apply this algorithm without the blur
operator for denoising tasks. Then the algorithm reads

Algorithm 11
Initialization: u©) := f.

For £k =0,1,... repeat until a stopping criterion is reached
uw**1) solution of o
. — V2
argmin — + A®(Dv).
anin |23+ 2o

In [36], the authors propose to compute the minimizer by Chambolle’s algorithm [7]. In
the following computations, we use the gradient descent reprojection algorithm applied to
the dual functional as suggested in [8]. Of course, one could also apply an DRS algorithm
again.

We start with the 1D example depicted in Fig. 2. The figure and the noise level were
chosen in accordance with the experiments in [39]. The right image shows the denoising
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Algorithm | number of iterations | computational time
inner ‘ outer
1 1 206 0.27 sec
II 7630 5 2.04 sec

Figure 1: Number of iterations and computational time of Algorithms I (v = 10) and II
for obtaining the result in Figure 2 up to a numerical error of 0.01.

result with the I-divergence - TV model, where the Algorithms I and II give the same
result.

To compare the computational time needed, we ran both algorithms on a dual core desktop
with two 2.4 GHz processors and 2.85 GB physical memory. For the results see Table 1.
In this example, our Algorithm I with the ’backslash’ MATLAB operation to solve the
linear systems of equations is much faster than Algorithm II. To get a high accuracy in
Algorithm IT we have to perform a large number of inner iterations in the gradient descent
reprojection algorithm.

Figure 2: Left: Original signal. Middle: Noisy signal with Gamma noise of standard
deviation 0.2. Right: Denoised signal by the I-divergence - TV model with A = 0.52
(SNR= 15.86).

Next we compare the I-divergence - TV model with the I-divergence - NL-means model.
Fig. 3 shows the original 'Barbara image’ and its noisy version with Gamma noise of
standard deviation 0.2. We compare the signal-to-noise ratios

llg — gll2

SNR(u,qg) := 20 log —
(g = u) = (g —wll2

where g denotes the original signal with mean g and u the denoised signal.

The denoising result obtained by the I-divergence - TV model are presented in Fig. 4.
Again, the figure and the noise level were chosen to keep the experiments comparable with
the ones in [39]. The images at the top show the result with the best SNR, while the image
at the bottom has a better visual quality, of course with the usual staircasing. Note that
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Figure 3: Left: Original image. Right: Noisy image corrupted with Gamma noise of
standard deviation 0.2.

the loss of contrast responsible for the lower SNR was compensated by the affine rescaling
of the imagesc MATLAB routine.

The results computed by the I-divergence - NL-means model are presented in Fig. 5. We
have applied the I-divergence - NL-means model witha =3, p=9, w =11 and m = 5. In
the first iteration circle, we have computed D with respect to the logarithm of the noisy
image log f. If we use instead f for the computation of D, the resulting SNR becomes
slightly worse. The image at the top shows the result after one iteration with respect to
the best SNR. The image in the middle, which was also obtained after one iteration, was
chosen with respect to the best visual quality after the affine rescaling. The image at the
bottom of Fig. 5 shows the denoising result if we apply the algorithm a second time with
the NL-means matrix D computed with respect to the denoised image of the first iteration
circle (middle image). For f we have used again the original noisy image. As expected,
the results by the I-divergence - NL-means model are significantly better than the results
obtained by the I-divergence - TV model due to the semi-local adaptivity of the NL-means
matrix D. Note that applying other than binary weights does not improve the denoising
result.

Finally, Fig. 6 shows another denoising example with a more challenging noise level of
standard deviation 0.5 , i.e., L = 4. Again, the I-divergence - NL-means model provides a
very good reconstruction of the original image.

5 Conclusions

We have examined an I-divergence - TV model and an I-divergence - NL-means model for
removing multiplicative noise, where we focused our attention in the numerical examples
on Gamma noise. To the best of our knowledge this is the first paper which uses NL-means
in the context of multiplicative noise and our numerical results are promising.
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Figure 4: Denoised image (left) and quotient between the noisy image and the denoised
image (right) by the I-divergence - TV model with A\ = 0.12 (SNR = 11.06) (top) and
with A = 0.2 (SNR = 9.84) (bottom).

We proposed a Douglas-Rachford splitting technique (= alternating split Bregman algo-
rithm) to find the minimizers of our functionals. The convergence of the Douglas-Rachford
splitting algorithm is well-examined in the literature. However, one of our Bregman it-
eration step requires the solution of a nonlinear system of equations. We proposed a
semi-implicit iterative algorithm to find this solution and proved the Q-linear convergence
of the scheme.

Our approach can be simply generalized for restoring blurred images corrupted by, e.g.,
multiplicative Poisson noise. As a possible application we have electronic microscopy [27]
in mind. More precisely, we intend to deblur the image by finding the minimizer of

ue]l%lbi2>o {(1, Ku — flog(Ku)) + A®(Du)},

where K with K*1 = 1 denotes a blur matrix. Following (15) - (17), only the computation
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of u**1) changes in our DRS algorithm; it is the solution of

1
argmin (1, Ku — flog(Ku)) + —||b® 4+ Du — d®|3,
u€R™ u>0 2y

now, i.e., by setting the gradient to zero, the solution of the nonlinear system

ot
= — *
O=u-u K

u

+ % u (D*Du+ D*(b*) — d™)y).

For the latter, one could use the semi-implicit algorithm

(vI + Ay D D)w(Hl) = w(])(VK o D (b(k) _ d(k))). (28)

However, the deblurring topic is beyond the scope of this paper; in particular we have to
give a convergence proof of (28) in a forthcoming work.
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Figure 5: Denoised image (left) and quotient between the noisy image and the denoised
image (right) by the I-divergence - NL-means model. Top: one iteration A = 0.08 (SNR

= 12.86). Middle: one iteration A\ = 0.12 (SNR =11.71). Bottom: two iterations A = 0.09
(SNR =12.82).
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Figure 6: Top: Original 'cameraman image’ (left) and corrupted image by multiplica-
tive Gamma noise of standard deviation 0.5 (right). Bottom: Restored image by the
I-divergence - TV model with A = 0.9 (left) and the result by one iteration of the I-
divergence - NL-means model with A = 0.6, a = 1.5, p =5, w = 21 and m = 5 (right).
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