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Abstract

We address the denoising of images contaminated with multiplicative noise, e.g. speckle noise.
Classical ways to solve such problems are filtering, statistical (Bayesian) methods, variational meth-
ods, and methods that convert the multiplicative noise into additive noise (using a logarithmic func-
tion), shrinkage of the coefficients of the log-image data in a wavelet basis or in a frame, and transform
back the result using an exponential function.

We propose a method composed of several stages: we use the log-image data and apply a reason-
able under-optimal hard-thresholding on its curvelet transform; then we apply a variational method
where we minimize a specialized criterion composed of an ℓ

1 data-fitting to the thresholded coeffi-
cients and a Total Variation regularization (TV) term in the image domain; the restored image is an
exponential of the obtained minimizer, weighted in a way that the mean of the original image is pre-
served. Our restored images combine the advantages of shrinkage and variational methods and avoid
their main drawbacks. For the minimization stage, we propose a properly adapted fast minimization
scheme based on Douglas-Rachford splitting. The existence of a minimizer of our specialized criterion
being proven, we demonstrate the convergence of the minimization scheme. The obtained numerical
results outperform the main alternative methods.

1 Introduction

In various active imaging systems, such as synthetic aperture radar, laser or ultrasound imaging, the data

representing the underlying (unknown image) S0 : Ω → IR+, Ω ⊂ IR2, are corrupted with multiplicative

noise. It is well known that such a noise severely degrades the image (see Fig. 2(a)). In order to

increase the chance of restoring a cleaner image, several independent measurements for the same image

are realized, thus yielding a set of data:

Sk = S0 ηk + nk, ∀k ∈ {1, · · · ,K}, (1)

where ηk : Ω → IR+, and nk represent the multiplicative and the additive noise relevant to each measure-

ment k. Usually, nk is white Gaussian noise. A commonly used and realistic model for the distribution

of ηk is the one-sided exponential distribution:

ηk : pdf(ηk) = µ e−µηk 1lIR+
(ηk);
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the latter is plotted in Fig. 1(a). Let us remind that 1/µ is both the mean and the standard deviation of

this distribution. The usual practice is to take an average of the set of all measurements—such an image

can be seen in (see Fig. 2(b)). Noticing that
1

K

K∑

k=1

nk ≈ 0, the data production model reads

S =
1

K

K∑

k=1

Sk = S0
1

K

K∑

k=1

ηk = S0 η, (2)

see e.g. [4,60,64] and many other references. A reasonable assumption is that all ηk are independent and

share the same mean µ. Then the resultant mean of the multiplicative noise η in (2) is known to follow

a Gamma distribution,

η =
1

K

K∑

k=1

ηk : pdf(η) =

(
K

µ

)K
ηK−1

Γ(K)
exp

(
−Kη

µ

)
, (3)

where Γ is the usual Gamma-function and since K is integer, Γ(K) = (K − 1)!. Its mean is again µ and

its standard deviation is µ/K. It is shown in Fig. 1(b).

Various adaptive filters for the restoration of images contaminated with multiplicative noise have been

proposed in the past, e.g. see [37,65] and the numerous references therein. It can already been seen that

filtering methods work well basically when the noise is moderate or weak, i.e. when K is large. Bayesian

or variational methods have been proposed as well; one can consult for instance [10, 36, 52, 62] and the

references cited therein.

A large variety of methods—see e.g. [5,34], more references are given in § 1.1—rely on the conversion

of the multiplicative noise into additive noise using

v = logS = logS0 + log η = u0 + n. (4)

In this case the probability density function of n reads (see Fig. 1(c)):

n = log η : pdf(n) =

(
K

µ

)K
1

Γ(K)
expK(n− µen) . (5)

One can prove that

E [n] = ψ0(K)− logK , (6)

Var [n] = ψ1(K), (7)

where

ψk(z) =

(
d

dz

)k+1

log Γ(z) (8)

is the polygamma function [2].

Classical SAR modeling—see [59, 60] and many other references—correspond to µ = 1 in (3). Then

(3) and (5) boil down to

pdf(η) =
KKηK−1e−Kη

(K − 1)!
,

pdf(n) =
KKeK(n−en)

(K − 1)!
. (9)
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Figure 1: Noise distributions.

1.1 Multiscale shrinkage for the log-data

Many authors—see [4,6,34,49,64] and the references given there—focus on restoring the log-data as given

in (4). The common strategy is to decompose the log-data into some multiscale frame for L2(IR2), say

{〈wi〉 : i ∈ I}:
y =Wv =Wu0 +Wn, (10)

where W is the corresponding frame analysis operator, i.e. (Wv)[i] = 〈v, wi〉, ∀i ∈ I. The rationale is

that the noise Wn in y is nearly Gaussian—as seen in Fig. 1(d)—and justified by the Central Limit

Theorem. The obtained coefficients y have been considered in different frameworks in the literature. In a

general way, coefficients are restored using shrinkage estimators using a symmetric function T : IR → IR,

thus yielding

yT [i] = T
(
(Wv)[i]

)
, ∀i ∈ I. (11)

Following [27], various shrinkage estimators T have been explored in the literature, [7, 13, 28, 43, 55, 63];

see § 2.1 for more details on shrinkage methods. Shrinkage functions specially designed for multiplicative

noise were proposed e.g. in [4, 6, 64].

Let W̃ be a left inverse of W , giving rise to the dual frame {w̃i : i ∈ I}. Then a denoised log-image

vT is generated by expanding the shrunk coefficients yT in the dual frame:

vT =
∑

i∈I

T ((Wv)[i]) w̃i =
∑

i∈I

T (y[i]) w̃i. (12)

Then the sought-after image is of the form ST = exp vT .

1.2 Our approach and organization of the paper

We first apply (4) and then consider a tight-frame transform of the log-data. Our method to restore the

log-image is presented in section 2. It is based on the minimization of a criterion composed of an ℓ1-fitting

to the (suboptimally) hard-thresholded frame coefficients and a Total Variation (TV) regularization in

the image domain. This method uses some ideas from a previous work of some of the authors [29]. The

minimization scheme to compute the log-restored image, explained in section 3, uses a Douglas-Rachford

splitting specially adapted to our criterion. Restoring the sought-after image from the restored log-

image requires a bias correction which is presented in section 4. The resultant algorithm to remove the

multiplicative noise is provided in section 5. Various experiments are presented in section 6. Concluding

remarks are given in section 7.
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2 Restoration of the log-image

In this section we consider how to restore a good log-image given data v : Ω → IR obtained according

to (4). We focus basically on methods which, for a given preprocessed data set, lead to convex optimization

problems. Below we comment only variational methods and shrinkage estimators since they underly the

method proposed in this paper.

2.1 Drawbacks of shrinkage restoration and variational methods

Shrinkage restoration. The major problems with shrinkage denoising methods, as sketched in (11)-

(12), is that shrinking large coefficients entails an erosion of the spiky image features, while shrinking

small coefficients towards zero yields Gibbs-like oscillations in the vicinity of edges and a loss of texture

information. On the other hand, if shrinkage is not sufficiently strong, some coefficients bearing mainly

noise will remain almost unchanged—we call such coefficients outliers—and (12) suggests they generate

artifacts with the shape of the functions w̃i of the frame. A well instructive illustration can be seen in

Fig. 2(b-h). Several improvements, such as translation invariant thresholding [22] and block thresholding

[21], were brought to shrinkage methods in order to alleviate these artifacts. Results obtained using

the latter method are presented in Figs. 3(c), 4(d) and 5(d) in Section 6. Another inherent difficulty

comes from the fact that coefficients between different scales are not independent, as usually assumed,

see e.g. [8, 13, 43, 54].

Variational methods. In variational methods, the restored function is defined as the minimizer of a

criterion Fv which balances trade-off between closeness to data and regularity constraints,

Fv(u) = ρ

∫

Ω

ψ
(
u(t), v(t)

)
dt+

∫

Ω

ϕ(|∇u(t)|) dt, (13)

where ψ : IR+ → IR+ helps to measure closeness to data, ∇ stands for gradient (possibly in a distributional

sense), ϕ : IR+ → IR+ is called a potential function and ρ > 0 is a parameter. A classical choice for ψ

is ψ(u(t), v(t)) =
(
u(t) − v(t)

)2
which assumes that the noise n in (4) is white, Gaussian and centered.

Given the actual distribution of the noise in (9) and Fig. 1(c), this may seem hazardous; we reconsider

this choice in (15). A reasonable choice is to use the log-likelihood of n according to (9) and this was

involved in the criterion proposed in [36]—see (16) at the end of this paragraph.

Let us come to the potential function ϕ in the regularization term. In their pioneering work, Tikhonov

and Arsenin [56] considered ϕ(t) = t2; however it is well known that this choice for ϕ leads to smooth

images with flattened edges. Based on a fine analysis of the minimizers of Fv as solutions of PDE’s on Ω,

Rudin, Osher and Fatemi [53] exhibited that ϕ(|∇u(t)|) = ‖∇u(t)‖2, where ‖.‖2 is the L2-norm, leads to

images involving edges. The resultant regularization term is known as Total Variation (TV). However,

whatever smooth data-fitting is chosen, this regularization yields images containing numerous constant

regions (the well known stair-casing effect), so that textures and fine details are removed, see [46]. The

method in [10] is of this kind and operates only on the image domain; the fitting term is derived from

(3) and the criterion reads

FS(Σ) = ρ

∫ (
logΣ(t) +

S(t)

Σ(t)

)
dt+ ‖Σ‖TV, (14)
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where ρ depends onK. The denoised image Ŝ0 = argmin
Σ

FS exhibit constant regions, as seen in Figs. 4(e)

and 5(e) in Section 6. We also tried to first restore the log-image û by minimizing

Fv(u) = ρ‖u− v‖2 + ‖u‖TV (15)

and the sought after image is of the form Ŝ0 = B exp(û) where B stands for the bias correction explained

in section 4. Because of the exponential transform, there is no stair-casing, but some outliers remain

visible—see Figs. 4(c) and 5(c); nevertheless, the overall result is very reasonable. The result of [53]

was at the origin of a large amount of papers dedicated to constructing edge-preserving convex potential

functions, see e.g. [3, 20, 61], and for a recent overview, [11]. Even though smoothness at the origin

alleviates stair-casing, a systematic drawback of the images restored using all these functions ϕ is that

the amplitude of edges is underestimated—see e.g. [47]. This is particularly annoying if the sought-after

function has neat edges or spiky areas since the later are subjected to erosion. A very recent method

proposed in [36] restores the discrete log-image using the log-likelihood of (9) and a regularized TV; more

precisely,

Fv(u,w) =
∑

i

(
u[i] + S[i]e−u[i]

)
+ ρ0‖u− w‖2 + ρ‖w‖TV, (16)

where the denoised log-image û is obtained using alternate minimization on u and w. The TV term here

is regularized via ‖u−w‖22 and the resultant denoised image is given by Ŝ0 = exp(ŵ). The results present

some improvement with respect to the method proposed in [10], at the expense of two regularization

parameters (ρ and ρ0) and twho stopping rules for each one of the minimization steps.

2.2 Hybrid methods

Hybrid methods [14, 16, 19, 23, 30, 33, 40, 41] combine the information contained in the large coefficients

y[i], obtained according to (10), with pertinent priors directly on the log-image u.

Remark 1 Such a framework is particularly favorable in our case since the noise Wn[i], i ∈ I in the

coefficients y[i], i ∈ I, have a nearly Gaussian distribution—see Fig. 1(d).

Although based on different motives, hybrid methods amount to define the restored function û as

minimize Φ(u)

subject to û ∈ {u : |(W (u− v)) [i]| ≤ µi, ∀i ∈ I} .

If the use of an edge-preserving regularization, such as TV for Φ is a pertinent choice, the strategy for the

selection of parameters {µi}i∈J is more tricky. This choice must take into account the magnitude of the

relevant data coefficient y[i]. However, deciding on the value of µi based solely on y[i], as done in these

papers, is too rigid since there are either correct data coefficients that incur smoothing (µi > 0), or noisy

coefficients that are left unchanged (µi = 0). A way to alleviate this situation is to determine (µi)i∈I

based both on the data and on a prior regularization term. Following [44,45], this objective is carried out

by defining restored coefficients x̂ to minimize the non-smooth objective function, as explained below.
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2.3 A specialized hybrid criterion

Given the log-data v obtained according to (4), we first apply a frame transform as in (10) to get

y =Wv =Wu0 +Wn. We systematically denote by x̂ the denoised coefficients. The noise contained in

the i-th datum reads 〈n,wi〉 whose distribution is displayed in Fig. 1(d). The low frequency approximation

coefficients carry important information about the image. In other words, when wi is low frequency, then

〈n,wi〉 has a better SNR than other coefficients. Therefore, as usual, a good choice is to keep them intact

at this preprocessing stage. Let I∗ ⊂ I denote the subset of all such elements of the frame. Then we

apply a hard-thresholding to all coefficients except those contained in I∗

yTH [i]
def
= TH

(
y[i]

)
, ∀i ∈ I \ I∗, (17)

where the hard-thresholding operator TH reads [27]

TH(t) =
{

0 if |t| ≤ T,
t otherwise.

(18)

The resultant set of coefficients is systematically denoted by yTH . We choose an underoptimal threshold

T in order to preserve as much as possible the information relevant to edges and to textures, an important

part of which is contained in the small coefficients. Let us consider

vTH =
∑

i∈I1

Wv[i] w̃i, (19)

where

I1 = {i ∈ I \ I∗ : |y[i]| > T }. (20)

The image vTH contains a lot of artifacts with the shape of the w̃i for those y[i] that are noisy but above

the threshold T , as well as a lot of information about the fine details in the original log-image u0. In all

cases, whatever the choice of T , the image of the form vTH is unsatisfactory—see Fig. 2 (b-h).

We will restore x̂ based on the under-thresholded data yTH . We focus on hybrid methods of the form:





x̂ = argmin
x
F (x)

F (x) = Ψ(x, yTH) + Φ(W̃x),

(21)

where Ψ is a data-fitting term in the domain of the frame coefficients and Φ is an edge-preserving

regularization term bearing the prior on the sought-after log-image û. The latter sought-after log-image

û reads

û = W̃ x̂ . (22)

Next we analyze the information content of the coefficients yTH that give rise to our log-image û. Let

us denote

I0 = I \
(
I1 ∪ I∗

)
= {i ∈ I \ I∗ : |y[i]| ≤ T }. (23)

We are mostly interested by the information borne by the coefficients relevant to I0 and I1.

(I0) The coefficients y[i] for i ∈ I0 are usually high-frequency components which can be of the two types

described below.
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(a) Noisy for K = 1 (b) Noisy for K = 10 (c) T = 2σ (d) T = 3σ

(e) T = 4σ (f) T = 5σ (g) T = 6σ (h) T = 8σ

Figure 2: (a) Noisy Lena for K = 1. (b) Noisy Lena obtained via averaging, see (1), for K = 10. (c)-(h)
Denoising of data v shown in (c) where the curvelet trasform of v are hard-thresholded according to
(17)-(19) for different choices of T where σ =

√
ψ1(K) is the standard deviation of the noise n. The

displayed restorations correspond to exp vTH , see (19).

(a) Coefficients y[i] containing essentially noise—in which case the best we can do is to keep them

null, i.e. x̂[i] = y[i];

(b) Coefficients y[i] which correspond to edges and other details in u0. Since y[i] is difficult to

distinguish from the noise, the relevant x̂[i] should be restored using the edge-preserving prior

conveyed by Φ. Notice that a careful restoration must find a nonzero x̂[i], since otherwise

x̂[i] = 0 would generate Gibbs-like oscillations in û.

(I1) The coefficients y[i] for i ∈ I1 are of the following two types:

(a) Large coefficients which carry the main features of the sought-after function. They verify

y[i] ≈ 〈wi, u0〉 and can be kept intact.

(b) Coefficients which are highly contaminated by noise, characterized by |y[i]| ≫ |〈wi, u0〉|. We

call them outliers because if we had x̂[i] = y[i], then û would contain an artifact with the

shape of w̃i since by (19) we get vTH =
∑

j\i x̂[j]w̃j + y[i]w̃i. Instead, x̂[i] must be restored

according to the prior Φ.

This analysis clearly defines the goals that the minimizer x̂ of Fy is expected to achieve. In particular,

x̂ must involve an implicit classification between coefficients that fit to yTH exactly and coefficients that

are restored according to the prior term Φ. In short, restored coefficients have to fit yTH exactly if they

are in accordance with the regularization term Φ and have to be restored via the later term otherwise.

Since [44,45] we know that criteria Fy where Ψ is non-smooth at the origin (e.g. ℓ1) can satisfy x̂[i] = yTH [i]

7



for coefficients that are in accordance with the prior Φ, while the others coefficients are restored according

to Φ, see also [29]. For these reasons, we focus on a criterion on the form

Fy(x) = Ψ(x) + Φ(x) (24)

where

Ψ(x) =
∑

i∈I

λi
∣∣(x − yTH)[i]

∣∣ =
∑

i∈I1∪I∗

λi |(x− y)[i]|+
∑

i∈I0

λi |x[i]| , (25)

Φ(x) =

∫

Ω

|∇W̃x| ds = ‖W̃x‖TV. (26)

Note that in (24), as well as in what follows, we write Fy in place of FyTH
in order to simplify the

notations.

In the pre-processing step (18) we would not recommend the use of a shrinkage function other than

TH since it will alter all the data coefficients yT , without restoring them faithfully. In contrast, we base

our restoration on data yTH where all non-thresholded coefficients keep the original information on the

sought-after image.

The theorem stated next ensures the existence of a minimizer for Fy as defined in (24) and (25)-(26).

Its proof can be found in [29].

Theorem 1 [29] For y ∈ ℓ2(I) and T > 0 given, consider Fy as defined in (24), where Ω ∈ IR2 is open,

bounded and its boundary ∂Ω is Lipschitz. Suppose that

1. {wi}i∈I is a frame of L2(Ω) and the operator W̃ is the pseudo-inverse of W ;

2. λmin = min
i∈I

λi > 0.

Then Fy has a minimizer in ℓ2(I).

Let us remind that the minimizer of Fy is not necessarily unique. Given y, denote

Gy
def
=

{
x̂ ∈ ℓ2(I) : Fy(x̂) = min

x∈ℓ2(I)
Fy(x)

}
. (27)

Hopefully, for every sample of the preprocessed data yTH , the set Gy is convex and corresponds to images

W̃ x̂ which are very similar since they share the same level lines. The theorem below confirms this assertion

and is proven in [29].

Theorem 2 [29] If x̂1 and x̂2 are two minimizers of Fy (i.e. x̂1 ∈ Gy and x̂2 ∈ Gy), then

∇W̃ x̂1 ∝ ∇W̃ x̂2, a.e. on Ω.

In other words, W̃ x̂1 and W̃ x̂2 have the same level lines.

In words, images W̃ x̂1 and W̃ x̂2 are obtained one from another by a local change of contrast which

is usually invisible for to the naked eye.
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Some orientations for the choice of λi were investigated in [29]. If i ∈ I1, the parameter λi should

be close to, but below the upper bound ‖w̃i‖TV, since above this bound, the coefficients y[i] cannot be

changed. For i ∈ I0, a reasonable choice is

λi = max
k 6=i

∣∣∣∣
∫

Ω

(∇w̃i)T
∇w̃k
|∇w̃k|

ds

∣∣∣∣ ,

where .T stands for transposed. If λi is below this bound, some neighboring outliers might not be

properly removed although Gibbs oscillations are better reduced. Another important remark is that, for

some multiscale transforms, the bounds discussed above are constant. In the proposed model, we use

only two values for λi, depending only on the set Iǫ the index i belongs to.

We focus on the coefficients of a curvelets transforms of the log-data because (a) such a transform

captures efficiently the main features of the data and (b) it is a tight-frame which is helpful for the

subsequent numerical stage.

3 Minimization for the log-image

Let us rewrite the minimization problem defined in (24) and (25)-(26) in a more compact form: find x̂

such that Fy(x̂) = minx Fy for

minx Fy = Ψ+Φ,

where

{
Ψ(x) = ‖Λ(x− yTH)‖1 , for Λ = diag(λi)i∈I ,

Φ(x) = ‖W̃x‖TV.

(28)

where λi are the coefficients given in (25). Clearly, Ψ and Φ are proper lower-semicontinuous convex

functions, hence the same holds true for Fy. The set Gy introduced in (27) is non-empty by Theorem 1

and can be rewritten as

Gy = {x ∈ ℓ2(I)
∣∣x ∈ (∂Fy)

−1(0)},

where ∂Fy stands for subdifferential operator. Minimizing Fy amounts to solving the inclusion

0 ∈ ∂Fy(x) ,

or equivalently, to finding a solution to the fixed point equation

x = (Id + γ∂Fy)
−1(x) , (29)

where (Id + γ∂Fy)
−1 is the resolvent operator associated to ∂Fy, γ > 0 is the proximal stepsize and Id

is the identity map on the Hilbert space ℓ2(I). The proximal schematic algorithm resulting from (29),

namely

x(t+1) = (Id + γ∂Fy)
−1(x(t)),

is a fundamental tool for finding the root of any maximal monotone operator [31, 51], such as e.g. the

subdifferential of a convex function. Since the resolvent operator (Id + γ∂Fy)
−1 for Fy in (28) cannot be

calculated in closed-form, we focus on iterative methods.
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Splitting methods do not attempt to evaluate the resolvent mapping (Id + γ(∂Ψ + ∂Φ))−1 of the

combined function Fy , but instead perform a sequence of calculations involving separately the resolvent

operators (Id+ γ∂Ψ)−1 and (Id + γ∂Φ))−1. The latter are usually easier to evaluate, and this holds true

for our functionals Ψ and Φ in (28).

Splitting methods for monotone operators have numerous applications for convex optimization and

monotone variational inequalities. Even though the literature is abundant, these can basically be system-

atized into three main classes: the forward-backward [35, 57, 58], the Douglas/Peaceman-Rachford [39],

and the little-used double-backward [38, 48]. A recent theoretical overview of all these methods can be

found in [24, 32]. Forward-backward can be seen as a generalization of the classical gradient projection

method for constrained convex optimization, hence it inherits all its restrictions. Typically, one must

assume that either Ψ or Φ is differentiable with Lipschitz continuous gradient, and the stepsizes γ must

fall in a range dictated by the gradient modulus of continuity; see [26] for an excellent account. Obviously,

forward-backward splitting is not adapted to our functional (29).

3.1 Specialized Douglas-Rachford splitting algorithm

The Douglas/Peaceman-Rachford family is the most general preexisting class of monotone operator split-

ting methods. Given a fixed scalar γ > 0, let

Jγ∂Ψ
def
= (Id + γ∂Ψ)−1 and Jγ∂Φ

def
= (Id + γ∂Φ)−1. (30)

Given a sequence µt ∈ (0, 2), this class of methods can be expressed via the recursion

x(t+1) =
[(

1− µt
2

)
Id +

µt
2
(2Jγ∂Ψ − Id) ◦ (2Jγ∂Φ − Id)

]
x(t) . (31)

Since our problem (28) admits solutions, the following result ensures that iteration (31) converges for

our functional Fy.

Theorem 3 Let γ > 0 and µt ∈ (0, 2) be such that
∑
t∈IN µt(2 − µt) = +∞. Take x(0) ∈ ℓ2(I) and

consider the sequence of iterates defined by (31). Then, (x(t))t∈IN converges weakly to some point x̂ ∈ ℓ(I)

and Jγ∂Φ(x̂) ∈ Gy.

This statement is a straightforward consequence of [24, Corollary 5.2]. For instance, the sequence µt =

1, ∀t ∈ IN, satisfies the requirement of the latter theorem.

It will be convenient to introduce the reflection operator

rproxϕ = 2proxϕ − Id. (32)

where proxϕ is the proximity operator of ϕ according to in Definition 1. Using (35) and (32), the

Douglas-Rachford iteration given in (31) becomes

x(t+1) =
[(

1− µt
2

)
Id +

µt
2
rproxγΨ ◦ rproxγΦ

]
x(t) . (33)

Below we compute the resolvent operators Jγ∂Ψ and Jγ∂Φ with the help of Moreau proximity operators.
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3.2 Proximal calculus

Proximity operators were inaugurated in [42] as a generalization of convex projection operators.

Definition 1 (Moreau [42]) Let ϕ be a proper, lower-semicontinuous and convex function defined on

a Hilbert space H. Then, for every x ∈ H, the function z 7→ ϕ(z) + ‖x− z‖2 /2, for z ∈ H, achieves its

infimum at a unique point denoted by proxϕx. The operator proxϕ : H → H thus defined is the proximity

operator of ϕ.

By the minimality condition for proxϕ, it is straightforward that ∀x, p ∈ H we have

p = proxϕx ⇐⇒ x− p ∈ ∂ϕ(p) ⇐⇒ (Id + ∂ϕ)−1 = proxϕ. (34)

Then (30) reads

Jγ∂Ψ = proxγΨ and Jγ∂Φ = proxγΦ. (35)

3.2.1 Proximity operator of Ψ

The proximity operator of γΨ is established in the lemma stated below.

Lemma 1 Let x ∈ ℓ2(I). Then

proxγΨ(x) =
(
yTH [i] + TSγλi (x[i]− yTH [i])

)
i∈I

, (36)

with

TSγλi(z[i]) = max
{
0, z[i]− γλisign(z[i])

}
. (37)

Proof. Ψ is an additive separable function in each coordinate i ∈ I. Thus, solving the proximal

minimization problem of Definition 1 is also separable. For any convex function ϕ and v ∈ ℓ2(I), put

ψ(.) = ϕ(. − v). Then

p = proxψ(x) ⇐⇒ x− p ∈ ∂ψ(p)

⇐⇒ (x− v)− (p− v) ∈ ∂ϕ(p− v)

⇐⇒ p− v = proxϕ(x − v)

⇐⇒ p = v + proxϕ(x − v) .

For each i ∈ I, we apply this result with v = yTH [i] and ϕ(z[i]) = γλi|z[i]|. Noticing that proxϕ = TSγλi

is soft-thresholding with threshold γλi, leads to (36). ⋄

Note that now

rproxγΨ(x) = 2
(
yTH [i] + TSγλi (x[i]− yTH [i])

)
i∈I

− x . (38)
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3.2.2 Proximity operator of Φ

Clearly, Φ(x) = ‖·‖TV◦W̃ (x) is a pre-composition of the TV-norm with the linear operator W̃ . Computing

the proximity operator of Φ for an arbitrary W̃ may be intractable. We adopt the following assumptions:

(w1) W̃ : ℓ2(I) → L2(Ω) is surjective;

(w2) W̃W = Id and W̃ = c−1W ∗ for 0 < c < ∞, where W ∗ stands for the adjoint operator; note that

we also have W ∗W = c Id;

(w3) W̃ is bounded.

For any z(t) = (z1(t), z2(t)) ∈ IR2, t ∈ Ω, we set |z(t)| =
√
z1(t)2 + z2(t)2. Let X = L2(Ω) × L2(Ω) and

〈·, ·〉X be the inner product in X , and
∣∣∣∣∣∣ ·

∣∣∣∣∣∣
p
, for p ∈ [1,∞] the Lp-norm on X . We define B

γ

∞(X ) as the

closed L∞-ball of radius γ in X ,

B
γ

∞
def
=

{
z ∈ X :

∣∣∣∣∣∣z
∣∣∣∣∣∣
∞

≤ γ
}
=

{
z = (z1, z2) ∈ X : |z(t)| ≤ γ, ∀t ∈ Ω

}
, (39)

and PB γ

∞
(X ) : X → B

γ

∞(X ) the associated projector; it is easy to check that the latter is equal to the

proximity operator of the indicator function of B
γ

∞(X ). The expression for proxγΦ is given in the next

lemma while the computation scheme to solve item (ii) is stated in Lemma 3.

Lemma 2 Let x ∈ ℓ2(I) and B
γ

∞(X ) is as defined above.

(i) Denoting by proxc−1γ‖·‖TV
(u) the proximity operator of the (c−1-scaled) TV-norm, we have

proxγΦ(x) =
(
Id−W ◦

(
Id− proxc−1γ‖·‖TV

)
◦ W̃

)
(x) ; (40)

(ii) Furthermore,

proxc−1γ‖·‖TV
(u) = u− PC(u) , (41)

where

C =
{
div(z) ∈ L2(Ω)

∣∣z ∈ C∞
c (Ω× Ω), z ∈ B

γ/c

∞ (X )
}
. (42)

Proof. Since W̃ is surjective, its range is L2(Ω) which is closed. Moreover, the domain dom(‖ ·
‖TV) = L2(Ω) as well, so that cone

(
dom‖ · ‖TV − range W̃

)
= {0} which is a closed subspace of L2(Ω).

Reminding that ‖ · ‖TV is lower bounded, continuous and convex, it is clear that all assumptions required

in [25, Proposition 11] are satisfied. Applying the same proposition yields statement (i).

We focus next on (ii). Note that C in (42) is a closed convex subset since B
γ/c

∞ (X ) is closed and

convex, and div is linear; thus the projection PC is well defined.

Let us remind that the Legendre-Fenchel (known also as the convex-conjugate) transform of a function

ϕ : H → IR, where H is an Hilbert space, is defined by

ϕ∗(w) = sup
u∈dom(ϕ)

{
〈w, u〉 − ϕ(u)

}
,

12



and that ϕ∗ is a closed convex function. If ϕ is convex, proper and lower semi-continuous, the original

Moreau decomposition [42, Proposition 4.a] tells us that

proxϕ + proxϕ∗ = Id . (43)

One can see also [26, Lemma 2.10] for an alternate proof. It is easy to check that the conjugate function

of a norm is the indicator function ı of the ball of its dual norm, see e.g. [9, Eq.(2.7)]; thus

(
c−1γ‖ · ‖TV

)∗
(z) =

{
0 if z ∈ C ,

+∞ if z 6∈ C ,

where C is given in (42). Using Definition 1, it is straightforward that

prox(
c−1γ‖.‖TV

)
∗ = PC .

Identifying c−1γ‖.‖TV with ϕ and
(
c−1γ‖.‖TV

)∗
with ϕ∗, equation (43) leads to statement (ii). The proof

is complete. ⋄

Note that our argument (43) for the computation of proxc−1γ‖·‖TV
(u) is not used in [18], which instead

uses conjugates and bi-conjugates of the objective function.

Remark 2 In view of equations (41) and (42), we one can see that the term between the middle paren-

theses in equation (40) admits a simpler form:

Id− proxc−1γ‖·‖TV
= PC .

Using (32) along with (40)-(41) we easily find that

rproxγΦ(x) =
(
Id− 2W ◦

(
Id− proxc−1γ‖·‖TV

)
◦ W̃

)
(x)

=
(
Id− 2W ◦ PC ◦ W̃

)
(x) . (44)

3.2.3 Calculation of the projection PC in (41) in a discrete setting

In what follows, we work in the discrete setting. We consider that that W is an M ×N tight frame with

M = #I ≫ N , admitting a constant c > 0 such that

W̃W = Id and W̃ = c−1WT ( hence WTW = c Id).

(This is the discrete equivalent of assumption (w2).) We also suppose that W̃ : ℓ2(I) → ℓ2(Ω) is surjective.

Next we replace X by its discrete counterpart,

X = ℓ2(Ω)× ℓ2(Ω) where Ω is discrete with #Ω = N. (45)

We denote the discrete gradient by ∇̈ and consider Div : X → ℓ2(Ω) the discrete divergence defined by

analogy with the continuous setting 1 as the adjoint of the gradient Div = −∇̈∗; see [18].

1More precisely, let u ∈ ℓ2(Ω) be of size m× n, N = mn. We write (∇̈u)[i, j] =
`

u[i+ 1, j]− u[i, j], u[i, j + 1]− u[i, j]
´

with boundary conditions u[m + 1, i] = u[m, i], ∀i and u[i, n + 1] = u[i, n], ∀i; then for z ∈ X , we have (Div(z))[i, j] =
`

z1[i, j]− z1[i− 1, j]
´

+
`

z2[i, j]− z2[i, j − 1]
´

along with z1[0, i] = z1[m, i] = z2[i, 0] = z2[i, n] = 0, ∀i.
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Unfortunately, the projection in (41) does not admit an explicit form. The next lemma provides an

iterative scheme to compute the proximal points introduced in Lemma 2. In this discrete setting, C in

(42) admits a simpler expression:

C =
{
Div(z) ∈ ℓ2(Ω)

∣∣ z ∈ B
γ/c

∞ (X )
}
. , (46)

where B
γ/c

∞ (X ) is defined according to (39).

Lemma 3 We adapt all assumptions of Lemma 2 to the new discrete setting, as explained above. Con-

sider the forward-backward iteration

z(t+1) = P
B

1
∞

(X )

(
z(t) + βt∇̈

(
Div(z(t))− cu/γ

))
for 0 < inf

t
βt ≤ sup

t
βt < 1/4, (47)

where ∀(i, j) ∈ Ω

P
B

1
∞(X )

(z)[i, j] =




z[i, j] if |z[i, j]| ≤ 1;
z[i, j]

|z[i, j]| otherwise .

Then

(i) (z(t))t∈IN converges to a point ẑ ∈ B
1

∞(X );

(ii)
(
c−1γDiv(z(t))

)
t∈IN

converges to c−1γDiv(ẑ) = (Id− proxc−1γ‖·‖TV
)(u).

Proof. Given u ∈ ℓ2(Ω), the projection ŵ = PC(u) defined by (41) and (46) is unique and satisfies

ŵ = arg min
w∈C

1

2
‖u− w‖2 = argmin

{
1

2

∥∥∥∥
c

γ
u− w

∥∥∥∥
2

subject to w = Div(z) for z ∈ B
1

∞(X )

}

m

ŵ = Div(ẑ) where ẑ = arg min
z∈B

1
∞

(X )

1

2

∥∥∥∥
c

γ
u−Div(z)

∥∥∥∥
2

(48)

This problem can be solved using a projected gradient method (which is a special instance of the forward-

backward splitting scheme) whose iteration is given by (47). This iteration converges weakly to a mini-

mizer of (48)—see [24, Corollary 6.5], provided that the stepsize βt > 0 satisfies supt βt < 2/δ2, where δ

is the spectral norm of the div operator. It is easy to check that δ2 ≤ 8—see e.g. [18].

Set

ω(t) = c−1γDiv(z(t)), ∀t ∈ IN and ω̂ = c−1γDiv(ẑ).

Thus,

∥∥∥ω(t) − ω̂
∥∥∥
2

=
(γ
c

)2 ∥∥∥Div(z(t))−Div(ẑ)
∥∥∥
2

=
(γ
c

)2

〈−∇̈
(
Div(z(t))−Div(ẑ)

)
, z(t) − ẑ〉X , (49)

where we use the fact that −∇̈ is the adjoint of Div. Let Dz denote the gradient of a scalar-valued

function of z, not to be confused with the discrete gradient operator ∇̈ of an image. The gradient of the
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function 1
2 ‖cu/γ −Div(z)‖2 with respect to z is Dz

(
1
2 ‖cu/γ −Div(z)‖2

)
= −∇̈ (Div(z)− cu/γ). This

relation together with the Schwarz inequality applied to (49) lead to

∥∥∥ω(t) − ω̂
∥∥∥
2

≤
(γ
c

)2 ∣∣∣∣∣∣∇̈ Div(z(t))− ∇̈ Div(ẑ)
∣∣∣∣∣∣
2

∣∣∣∣∣∣z(t) − ẑ
∣∣∣∣∣∣
2

=
(γ
c

)2 ∣∣∣∣∣∣∇̈
(
Div(z(t))− cu/γ

)
− ∇̈

(
Div

(
(ẑ)− cu/γ

)∣∣∣∣∣∣
2

∣∣∣∣∣∣z(t) − ẑ
∣∣∣∣∣∣
2

= 0.5
(γ
c

)2 ∣∣∣∣∣∣Dz
(∥∥∥cu/γ −Div(z(t))

∥∥∥
2
)
− Dz

(
‖cu/γ −Div(ẑ)‖2

) ∣∣∣∣∣∣
2

∣∣∣∣∣∣z(t) − ẑ
∣∣∣∣∣∣
2
.(50)

From [24, Theorem 6.3], we deduce that the series

∑

t∈IN

∣∣∣∣∣∣Dz (‖cu/γ −Div(·)‖) (z(t))− Dz (‖cu/γ −Div(.)‖) (ẑ)
∣∣∣∣∣∣2
2

is convergent. Inserting this property in (50) and using the fact that the sequence (z(t))t∈IN is bounded

(as it converges weakly with
∣∣∣∣∣∣ẑ

∣∣∣∣∣∣
2
< lim inft→∞

∣∣∣∣∣∣z(t)
∣∣∣∣∣∣
2
), it follows that ω(t) converges strongly to ω̂.

This completes the proof. ⋄

The forward-backward splitting-based iteration proposed in (47) to compute the proximity operator

of the TV-norm is new and different from the projection algorithm of Chambolle [18], even tough the

two algorithms bear some similarities. The forward-backward splitting allows to derive a sharper upper-

bound on the stepsize βt than the one proposed in [18]—actually twice as large. Let us remind that it

was observed in [18] that the bound 1/4 still works in practice. Here we prove why thus is really true.

3.3 Comments on the Douglas-Rachford scheme for Fy

A crucial property of the Douglas-Rachford splitting scheme (33) is its robustness to numerical errors

that may occur when computing the proximity operators proxΨ and proxΦ, see [24]. We have deliberately

omitted this property in (33) for the sake of simplicity. This robustness property has important conse-

quences: e.g. it allows us to run the forward-backward sub-recursion (47) only a few iterations to compute

an approximate of the TV-norm proximity operator in the inner iterations, and the Douglas-Rachford

is still guaranteed to converge provided that these numerical errors are under control. More precisely,

let at ∈ ℓ2(I) be an error term that models the inexact computation of proxγΦ in (40), as the latter is

obtained through (47). If the sequence of error terms (at)t∈IN and stepsizes (µt)t∈IN defined in Theorem 3

obey
∑

t∈IN µt ‖at‖ < +∞, then the Douglas-Rachford algorithm (33) converges weakly [24, Corollary 6.2].

In our case, using 200 inner iterations in (47) was sufficient to satisfy this requirement.

Remark 3 Owing to the splitting framework and proximal calculus, we have shown in Lemma 2 that

the bottleneck of the minimization algorithm is in the computation of the proximity-operator of the TV-

norm. In fact, computing prox‖·‖TV
amounts to solving a discrete ROF-denoising. Our forward-backward

iteration is one possibility among others, and other algorithms beside [18] have been proposed to solve

the discrete ROF-denoising problem. While this paper was submitted, our attention was drawn to an

independent work of [12] who, using a different framework, derive an iteration similar to (47) to solve

the ROF. Another parallel work of [66] propose an application of gradient projection to solving the dual

problem (48). We are of course aware of max-flow/min-cut type algorithms, for instance the one in [17].
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We have compared our whole denoising procedure using our implementation of prox‖·‖TV
and the max-

flow based implementation that we adapted from the code available at [1]. We obtained similar results,

although the max-flow-based algorithm was faster, mainly because it uses the ℓ1 approximation of the

discrete gradient, namely
∥∥∥(∇̈u)[i, j]

∥∥∥
1
=

∣∣u[i + 1, j] − u[i, j]
∣∣ +

∣∣u[i, j + 1] − [i, j]
∣∣. Let us remind that

this approximation for the discrete gradient does not inherits the rotational invariance property of the

L2 norm of the usual gradient.

4 Bias correction to recover the sought-after image

Recall from (4) that u0 = logS0 and set û = W̃ x̂(NDR) as the estimator of u0, where NDR is the number of

Douglas-Rachford iterations in (33). Unfortunately, the estimator û is prone to bias, i.e. E [û] = u0 − bû.

A problem that classically arises in statistical estimation is how to correct such a bias. More importantly

is how this bias affects the estimate after applying the inverse transformation, here the exponential. Our

goal is then to ensure that for the estimate Ŝ of the image, we have E

[
Ŝ
]
= S0. Expanding Ŝ in the

neighborhood of E [û], we have

E [exp û] = exp (E [û])(1 + Var [û] /2 +R2)

= S0 exp (−bû)(1 + Var [û] /2 +R2) , (51)

where R2 is expectation of the Lagrange remainder in the Taylor series. One can observe that the posterior

distribution of û is nearly symmetric, in which case R2 ≈ 0. That is, bû ≈ log(1 + Var [û] /2) to ensure

unbiasedness. Consequently, finite sample (nearly) unbiased estimates of u0 and S0 are respectively

û + log(1 + Var [û] /2), and exp (û) (1 + Var [û] /2). Var [û] can be reasonably estimated by ψ1(K), the

variance of the noise n in (4) being given in (7). Thus, given the restored log-image û, our restored image

read:

Ŝ = exp (û) (1 + ψ1(K)/2) . (52)

The authors of [64] propose a direct estimate of the bias bû using the obvious argument that the

noise n in the log-transformed image has a non-zero mean ψ0(K)− logK. A quick study shows that the

functions (1 + ψ1(K)/2) and exp(logK − ψ0(K)) are very close for K reasonably large. Thus, the two

bias corrections are equivalent. Even though the bias correction approach we propose can be used in a

more general setting.

5 Full algorithm to suppress multiplicative noise

Now, piecing together Lemma 1, Lemma 2 and Theorem 3, we arrive at the multiplicative noise removal

algorithm:

Task: Denoise an image S contaminated with multiplicative noise according to (2).

Parameters: The observed noisy image S, number of iterationsNDR (Douglas-Rachford outer iterations)

and NFB (Forward-Backward inner iterations), stepsizes µt ∈ (0, 2), 0 < βt < 1/4 and γ > 0, tight-frame

transform W and initial threshold T (e.g. T = 2
√
ψ1(K)), regularization parameters λ0,1 associated to

the sets I0,1.

Specific operators:
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(a) TSγλi(z) =
(
max

{
0, z[i]− γλisign(z[i])

})
i∈I
, ∀z ∈ IR#I .

(b) P
B

1
∞(X )

(z)[i, j] =




z[i, j] if |z[i, j]| ≤ 1;
z[i, j]

|z[i, j]| otherwise,
∀(i, j) ∈ Ω.

(c) ∇̈ and Div—the discrete versions of the continuous operators ∇ and div.

(d) ψ1(·) defined according to (8) (built-in Matlab function, otherwise see [50]).

Initialization:

• Compute v = logS and transform coefficients y = Wv. Hard-threshold y at T to get yTH . Choose

an initial x(0).

Main iteration:

For t = 1 to NDR,

(1) Inverse curvelet transform of x(t) according to u(t) = W̃x(t).

(2) Initialize z(0); For s = 0 to NFB − 1

z(s+1) = P
B

1
∞(X )

(
z(s) + βt∇̈

(
Div(z(s))− c

γu
(t)
))

.

(3) Set z(t) = z(NFB) .

(4) Compute w(t) = c−1γ Div(z(t)).

(5) Forward curvelet transform: α(t) =Ww(t).

(6) Compute r(t) = rproxγΦ(x
(t)) = x(t) − 2α(t).

(7) By (38) compute q(t) =
(
rproxγΨ ◦ rproxγΦ

)
x(t) = 2

(
yTH [i] + TSγλi

(
r(t)[i]− yTH [i]

))
i∈I

− r(t) .

(8) Update x(t+1) using (33): x(t+1) =
(
1− µt

2

)
x(t) +

µt
2
q(t) .

End main iteration

Output: Denoised image Ŝ = exp
(
W̃x(NDR)

)
(1 + ψ1(K)/2).

Remark 4 (Computation load) The bulk of computation of our denoising algorithm is invested in

applying W and its pseudo-inverse W̃ . These operators are of course never constructed explicitly, rather

they are implemented as fast implicit analysis and synthesis operators. Each application of W or W̃

cost O(N logN) for the second generation curvelet transform of an N -pixel image [15]. If we define

NDR and NFB as the number of iterations in the Douglas-Rachford algorithm and the forward-backward

sub-iteration, the computational complexity of the denoising algorithm is of order NDRNFB2N logN

operations.
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6 Experiments

In all experiments carried out in this paper, our algorithm was run using second-generation curvelet tight

frame along with the following set of parameters: ∀t, µt ≡ 1, βt = 0.24, γ = 10 and NDR = 50. The initial

threshold T was set to 2
√
ψ1(K). For comparison purposes, some very recent multiplicative noise removal

algorithms from the literature are considered: the AA algorithm [10] minimizing the criterion in (14),

and the Stein-Block denoising method [21] in the curvelet domain, applied on the log transformed image.

The latter is a sophisticated shrinkage-based denoiser that thresholds the coefficients by blocks rather

than individually, and has been shown to be nearly minimax over a large class of images in presence of

additive bounded noise (not necessarily Gaussian nor independent). We also tried the “naive” method,

called L2-TV, where û minimizes (15) and the denoised image is given after bias correcion according

to (52). No without surprise, one realizes that the results are quite good, even though some persistent

outliers remain quite visible. This again raises the persistent question of relevance of PSNR (or even

MAE) as a measure of perceptual restoration quality. For fair comparison, the hyperparameters for all

competitors were tweaked to reach their best level of performance on each noisy realization.

The denoising algorithms were tested on three images: Shepp-Logan phantom, Lena and Boat all of

size 256× 256 and with gray-scale in the range [1, 256]. For each image, a noisy observation is generated

by multiplying the original image by a realization of noise according to the model in (2)-(3) with the

choice µ = 1 and K = 10. For a N -pixel noise-free image S0 and its denoised version by any algorithm

Ŝ, the denoising performance is measured in terms of peak signal-to-noise ratio (PSNR) in decibels (dB)

PSNR = 20 log10

√
N‖S0‖∞∥∥∥Ŝ − S0

∥∥∥
dB ,

and mean absolute-deviation MAE

MAE =
∥∥∥Ŝ − S0

∥∥∥
1
/N .

The results are depicted in Fig. 3, Fig. 4 and Fig. 5. Our denoiser clearly outperforms its competitors

both visually and quantitatively as revealed by the PSNR and MAE values. The PSNR improvement

brought by our approach is up to 4dB on the Shepp-Logan phantom, and is ∼ 1dB for Lena and Boat.

Note also that a systematic behavior of AA algorithm is its tendency to lose some important details

and the persistence of a low-frequency ghost as it can be seen on the error maps on the third row in

Figs. 4 and 5.

7 Conclusions

This work proposes quite an original, efficient and fast method for multiplicative noise removal. The

latter is a difficult problem that arises in various applications relevant to active imaging system, such as

laser imaging, ultrasound imaging, SAR and many others. Multiplicative noise contamination involves

inherent difficulties that severely restrict the main restoration algorithms.
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The main ingredients of our method are: (1) consider the log-data to restore a log-image; (2) preprocess

the log-fata using and under-optimal hard-thresholding of its tight frame coefficients; (3) restore the log-

image using a hybrid criterion composed of an ℓ1 data-fitting for the coefficients and a TV regularization

in the log-image domain; (4) restore the sought-after image using an exponential transform along with

a pertinent bias correction. The resultant algorithm is fast, its consistency and convergence are proved

theoretically.

The obtained numerical results are really encouraging since they outperform the most recent methods

in this field.
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(a) Shepp-Logan (256× 256) (b) Noisy µ = 1, K = 10

(c) Stein-block thresholding (d) Our method

(e) (f)

Figure 3: Performance comparison with Shepp-Logan phantom (256 × 256). (a) Original. (b) Noisy
µ = 1,K = 10. (c) Denoised with Stein-block thresholding in the curvelet domain [21] PSNR=24.73dB,
MAE=4. (d) Denoised with our algorithm PSNR=31.25dB, MAE=1.87. (e)-(f) Errors (restored −
original) for (c)-(d).
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(a) Lena (256× 256)—original (b) Noisy: µ = 1, K = 10 (c) L2-TV
psnr=26.22 db, mae=8.5

(d) Stein-block thresholding [21] (e) AA algorithm [10] (f) Our method
psnr=25.49 db, mae=9.45 psnr=25.37 db, mae=9.41 psnr=26.05 db, mae=8.8

Figure 4: Comparative restoration of the noisy Lena in (b) using modern methods. Note that the
algorithm in (c) is initialized with the log-data and that the restoration in (d) is done in the curvelet
domain. The images on the last row show the error (restored − original) for (d), (e) and (f).
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(a) Boat (256× 256)—original (b) Noisy: µ = 1, K = 10 (c) L2-TV
see (2)-(3) psnr=24.118db, mae=10.202

(d) Stein-block thresholding [21] (e) AA algorithm [10] (f) Our method
psnr=23.57db, mae=10.98 psnr=23.36db, mae=11.08 psnr=24.12db, mae=10.2

Figure 5: Restoration of (b) using contemporary methods. The last row shows the error images, namely
(restored − original) for (d), (e) and (f).
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