Skip to main content
Log in

An SL(2) Invariant Shape Median

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Median averaging is a powerful averaging concept on sets of vector data in finite dimensions. A generalization of the median for shapes in the plane is introduced. The underlying distance measure for shapes takes into account the area of the symmetric difference of shapes, where shapes are considered to be invariant with respect to different classes of affine transformations. To obtain a well-posed problem the perimeter is introduced as a geometric prior. Based on this model, an existence result can be established in the class of sets of finite perimeter. As alternative invariance classes other classical transformation groups such as pure translation, rotation, scaling, and shear are investigated. The numerical approximation of median shapes uses a level set approach to describe the shape contour. The level set function and the parameter sets of the group action on every given shape are incorporated in a joint variational functional, which is minimized based on step size controlled, regularized gradient descent. Various applications show in detail the qualitative properties of the median.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  2. Avants, B., Gee, J.C.: Geodesic estimation for large deformation anatomical shape averaging and interpolation. NeuroImage 23, 139–150 (2004). Supplement 1

    Article  Google Scholar 

  3. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

    Article  Google Scholar 

  4. Berkels, B., Linkmann, G., Rumpf, M.: A shape median based on symmetric area differences. In: Deussen, O., Keim, D., Saupe, D. (eds.) Vision, Modeling, and Visualization Proceedings, pp. 399–407 (2008)

  5. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  6. Bhatia, K.K., Hajnal, J.V., Puri, B.K., Edwards, A.D., Rueckert, D.: Consistent groupwise non–rigid registration for atlas construction. In: IEEE International Symposium on Biomedical Imaging: Nano to Macro, vol. 1, pp. 908–911 (2004)

  7. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  8. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  9. Charpiat, G., Faugeras, O., Keriven, R.: Approximations of shape metrics and application to shape warping and empirical shape statistics. Found. Comput. Math. 5(1), 1–58 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Charpiat, G., Faugeras, O., Keriven, R., Maurel, P.: Distance-based shape statistics. In: Acoustics, Speech and Signal Processing, 2006 (ICASSP 2006), vol. 5 (2006)

  11. Chen, S.E., Parent, R.E.: Shape averaging and its applications to industrial design. IEEE Comput. Graph. Appl. 9(1), 47–54 (1989)

    Article  Google Scholar 

  12. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  13. Dupuis, D., Grenander, U., Miller, M.: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 56, 587–600 (1998)

    MATH  MathSciNet  Google Scholar 

  14. Felzenszwalb, P.F.: Representation and detection of deformable shapes. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 208–220 (2005)

    Article  Google Scholar 

  15. Fletcher, P.T., Lu, C., Joshi, S.: Statistics of shape via principal geodesic analysis on Lie groups. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR, vol. 1, pp. 95–101 (2003)

  16. Fletcher, T., Venkatasubramanian, S., Joshi, S.: Robust statistics on Riemannian manifolds via the geometric median. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2008)

  17. Fréchet, M.: Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. H. Poincaré 10, 215–310 (1948)

    Google Scholar 

  18. Fuchs, M., Jüttler, B., Scherzer, O., Yang, H.: Shape metrics based on elastic deformations. J. Math. Imaging Vis. 35(1), 86–102 (2009)

    Article  Google Scholar 

  19. Jiang, X., Schiffmann, L., Bunke, H.: Computation of median shapes. In: Proceedings of the Fourth IEEE Asian Conference on Computer Vision (ACCV’00), pp. 300–305 (2000)

  20. Jiang, X., Abegglen, K., Bunke, H., Csirik, J.: Dynamic computation of generalised median strings. Pattern Anal. Appl. 6(3), 185–193 (2003)

    Article  MathSciNet  Google Scholar 

  21. Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23, 151–160 (2004). Supplement 1

    Article  Google Scholar 

  22. Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30(5), 509–541 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16, 81–121 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  24. Miller, M.I., Younes, L.: Group actions, homeomorphisms, and matching: a general framework. Int. J. Comput. Vis. 4(1–2), 61–84 (2001)

    Article  Google Scholar 

  25. Miller, M., Trouvé, A., Younes, L.: On the metrics and Euler-Lagrange equations of computational anatomy. Ann. Rev. Biomed. Eng. 4, 375–405 (2002)

    Article  Google Scholar 

  26. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rueckert, D., Frangi, A.F., Schnabel, J.A.: Automatic construction of 3D statistical deformation models using nonrigid registration. In: Niessen, W., Viergever, M. (eds.) Medical Image Computing and Computer–Assisted Intervention, MICCAI. Lecture Notes in Computer Science, vol. 2208, pp. 77–84. Springer, Berlin (2001)

    Google Scholar 

  28. Rumpf, M., Wirth, B.: An elasticity approach to principal modes of shape variation. In: Proceedings of the Second International Conference on Scale Space Methods and Variational Methods in Computer Vision (SSVM 2009). Lecture Notes in Computer Science, vol. 5567, pp. 709–720. Springer, Berlin (2009)

    Chapter  Google Scholar 

  29. Rumpf, M., Wirth, B.: A nonlinear elastic shape averaging approach. SIAM J. Imaging Sci. 2(3), 800–833 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sokolowski, J., Zochowski, A.: Optimality conditions for simultaneous topology and shape optimization. SIAM J. Control Optim. 42, 1198–1221 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sokołowski, J., Zolésio, J.-P.: Introduction to shape optimization. Springer, Berlin (1992). Shape sensitivity analysis

    MATH  Google Scholar 

  32. Sundaramoorthi, G., Jackson, J.D., Yezzi, A., Mennucci, A.C.: Tracking with Sobolev active contours. In: CVPR ’06: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 674–680. IEEE Computer Society, Washington (2006)

    Google Scholar 

  33. Wirth, B., Bar, L., Rumpf, M., Sapiro, G.: Geodesics in shape space via variational time discretization. In: EMMCVPR’09, to appear (2009)

  34. Yezzi, A., Soatto, S.: Deformotion: Deforming motion, shape average and the joint registration and approximation of structures in images. Int. J. Comput. Vis. 53(2), 153–167 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Berkels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berkels, B., Linkmann, G. & Rumpf, M. An SL(2) Invariant Shape Median. J Math Imaging Vis 37, 85–97 (2010). https://doi.org/10.1007/s10851-010-0194-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-010-0194-6

Keywords

Navigation